

### From eVLBI to the SKA

Roshene McCool SKA Domain Specialist Signal Transport & Networks

## **Objectives**



- What is the SKA?
- How is it similar to eVLBI and, therefore what techniques and developments can be shared?
- How is it different from eVLBI and, therefore what needs to be considered in the development of solutions?

## What is the SKA?

Five Key Science Projects (KSPs)

- 1. Probing the Dark Ages
- 2. Galaxy Evolution, Cosmology, & Dark Energy
- 3. The Origin & Evolution of Cosmic Magnetism
- 4. Strong Field Tests of Gravity Using Pulsars and Black Holes
- 5. The Cradle of Life/Astrobiology

... plus **The Exploration of the Unknown** as an underlying philosophy for design of the instrument





#### The Square Kilometre Array



4 prime characteristics

➤ very large collecting area (km<sup>2</sup>) → sensitivity to detect and image hydrogen in the early universe

➤ very-large-angle field of view → fast surveying capability over the whole sky

wide frequency range required for the Science Reference Mission

- Iow : 70-300 MHz
- mid: 300 MHz-10 GHz

➢ large physical extent (3000+ km) → capability for detailed imaging of compact objects and astrometry with milli-arcsec resolution

## The SKA





### The SKA





Exploring the Universe with the world's largest radio telescope

## **Implementing the SKA**



- Many elements
  - Mass manufacturing
  - Installation techniques
  - Operational considerations
- High speed, long distance data transfer
- High Performance Computing
- Low cost, low power, low RFI
- Developed & funded by a global community



- Defined approach for the project
- Methodical and documented, recognised process for the design and construction of large projects
- Establishing requirements
- Defining interfaces;
  - physical & data exchange
- Application of knowledge and experience within this framework

## Phased Approach



- SKA1 10% array.
- Studying Neutral Hydrogen in the Universe and Pulsars as probes of fundamental physics.
- Includes 300 dishes to 3 GHz and AA-lo stations.
- 100 km baselines
- Described in SKA memos 125 and 130.
- Implemented with extensibility to SKA2 in mind.

## **Phased Approach**



- SKA2
- Large collecting area
- Long baselines
- 10 GHz top frequency
- Inclusion of advanced instrumentation (AIP)
  - PAFs
  - Dense Aperture Arrays
  - WBSPFs

#### **Visualising SKA2 Baseline Requirements**



## **Array Configuration SKA2**





Collecting area will be concentrated in an inner 2.5 km radius. With Outer stations, over 3,000km from the core.

Exploring the Universe with the world's largest radio telescope

# Signal Transport & Networks for the SKA



| Data Network                                  | <ul> <li>For transporting astronomical signals to a central<br/>processing facility (CPF)</li> </ul>       |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                                            |
| Timing Network                                | <ul> <li>For the distribution of local oscillator signals for<br/>clocks and down converters.</li> </ul>   |
|                                               |                                                                                                            |
| A Monitor & Control<br>Network (M&C)          | <ul> <li>Including comms and required redundancy</li> </ul>                                                |
|                                               |                                                                                                            |
| Connections from the HPC to the outside world | <ul> <li>For the distribution of imaging data to regional<br/>centres</li> </ul>                           |
|                                               |                                                                                                            |
| High Volume, High Speed<br>Interconnects      | <ul> <li>Not fully defined but significant data centre style<br/>interconnects will be required</li> </ul> |

## **Data Network Requirements**





# Beamformed stations on long baselines





The nature of the SKA Data Transport networks



- A radio telescope can accept a lower availability than a commercial network.
- The data is not, in its own right, valuable.
- The network is deterministic.
  - That is to say the data always flows from one known location to another. The data rate and the routing remain constant.
- The data traffic is unidirectional
  - (this excludes, of course, the clock and M&C functions)

## The nature of the SKA data transport requirements



- The data rates are large
- The network does not produce revenue.
- Timing is critical
- The removal of a dish, or station from a radio telescope array will not prevent observations from taking place.
- Observatory, station and dish system environment has particular and peculiar requirements

### Lessons to be learnt from eVLBI

- Protocols
  - Transport of large datasets
  - Applicable metadata
- Recording and streaming data
   I/O considerations & techniques
- Operating widely spaced antenna
  - Timing
  - Control
- Technical demonstrator



### Lessons to be learnt from eVLBI



- Standardisation across institutions
  - Interfaces
  - Equipment
  - Language & Definitions
- Use of commercial networks & NRENS
  - Operational models
  - Technical Challenges
- Other ...

## What is different?



| SKA                                         | eVLBI                                                                   |
|---------------------------------------------|-------------------------------------------------------------------------|
| Always on production traffic                | Experimental 'best efforts'<br>service                                  |
| Exceeding capacity of<br>existing networks  | Stress testing capacity of existing networks                            |
| SKA billed for service?                     | "free" to the user in many cases                                        |
| Could utilise existing NREN<br>or might not | Utilising existing NREN<br>networks.(Facilitated by<br>DANTE in Europe) |

## Conclusions



- SKA is a large and exciting project
- Conduct transformational science
- SKA2 signal transport & networks represents the biggest (and most exciting!) network in science.
- The eVLBI community has a lot to contribute in experience and techniques
- SKA is like eVLBI, but it is not the same as eVLBI

## Engaging with the project



- International groups of collaborators
- System engineering approach
- Central Project Office SPDO UMAN >> SPO based at Jodrell Bank, UK.
- Domain Specialist <u>mccool@skatelescope.org</u>
- Industrial liaison officer <u>crosby@skatelescope.org</u>
- http://www.ska2011.org

### Questions



