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Vehicles of Performance Growth

๏ Enablers of performance growth over the last 5 decades
– Complex instructions (CISC): more co-dependent work per cycle
– Simple instructions / hardware (RISC): ride technology scaling curve, faster cycles
– Parallelism (superscalar, multithread, multicore): more independent work per cycle

๏ Limits to performance vehicles
– CISC: uncommon denominators—complicated compilation
– RISC: no longer feasible to run at faster cycles—power-limited scaling
– Parallelism: available parallelism at instruction, thread, task, and data levels
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vehicle |ˈvēəkəl; ˈvēˌhikəl|
noun
1   a thing used to express, embody, or fulfill something

(today)



๏ This talk
– Device technology trends, spanning the last 30 years, for >150 real designs
– Tools for characterizing parallelism
– Challenges to scaling via parallelism
– Picking the right point in the low-power versus high-performance spectrum
– Opportunities and challenges for the next “performance vehicle”: algorithms
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Device Technology, Parallelism, and Beyond
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1 ox: single-thread performance 1024 chickens: parallelism

...

1 tractor: better algorithms

If you were plowing a field, which would you rather 
use? Two strong oxen or 1024 chickens?

— Seymour Cray
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Technology, Supply Voltage, and Power Delivery Limits1 of 2

5

Data: from an analysis of ~150 HW publications in IEEE ISSCC 
and IEEE JSSC Journal, from 1980–2010
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๏ Density scaling continues (transistors per unit area)
– However, power per unit area is not scaling
– Power delivery and cooling for large-transistor-count designs increasingly difficult
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๏ Density scaling continues (transistors per unit area)
– However, power per unit area is not scaling
– Power delivery and cooling for large-transistor-count designs increasingly difficult



Data: from an analysis of ~150 HW publications in IEEE ISSCC 
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๏ Power per unit area not scaling because supply voltages stagnated
– Due to concerns with sub-threshold leakage current
– Lower supply voltages also lead to higher supply currents at constant power

๏ Power and cooling challenges limit clock speeds, # active transistors
– Industry-wide shift to increased performance via parallelism and heterogeneity
– Parallelism can be harnessed at different granularities...
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Challenge: Systems and Architectures Tailored to Workloads 

8

๏ Mapping application parallelism to hardware concurrency
– Appropriate form and amount of hardware concurrency depends on applications

๏ Hardware properties, e.g., microarchitectures
• Power7                 : 8 cores  ×  4-way SMT  ×  12-wide superscalar (8-issue, but 12 FUs)

• ARM Cortex A8    : 1 core    ×  1 thread       ×  2-wide superscalar
• Power A2 cores   : 1 core    ×  4-way SMT  ×  2-wide superscalar

๏ Granularities of parallelism in software
– Available data-, task-, thread- (TLP) and instruction-level parallelism (ILP)



V. Caparrós Cabezas and P. Stanley-Marbell, “Parallelism and Data Movement Characterization for Contemporary Application 
Classes”, 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), June 2011
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Application Parallelism Characterization Framework

๏ Input
–  Compiled program binaries and their associated input datasets

๏ Output
–  Best-case instruction- (ILP) and thread-level parallelism (TLP), and potential data-level parallelism
–  Communication-minimizing MPMD code partitioning
–  Data movement characterization
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Characterization of Applications Spanning Berkeley “Dwarfs”

10

Dwarf 1: Dense Linear Algebra (DLA) JPEG(encode,decode)b, kmeansc,pcac

Dwarf 2: Sparse Linear Algebra (SLA) basicmathb, bitcountb, matrix_multiplyc

Dwarf 3: Spectral Methods (SM) lameb, FFTb, IFFTb

Dwarf 4: N-Body Methods (NB) ammpa

Dwarf 5: Structured Grids (SG) JPEGb(encode, decode)
Dwarf 6: Unstructured Grids (UG) equakea

Dwarf 7: MapReduce (MR) mesaa

Dwarf 8: Combinational Logic (CL) rijndaelb(encode, decode), shab

Dwarf 9: Graph Traversal (GT) qsortb, Dijkstrab

Dwarf 10: Dynamic Programming (DP) None
Dwarf 11: Backtrack / Branch+Bound (BT) vpra, mcfa, arta, susanb

Dwarf 12: Graphical Models (GM) None
Dwarf 13: Finite State Machine (FSM) gzipa, gcca, parsera, stringsearchb

a  SPEC 2000
b  MiBench
c  Phoenix MapReduce Suite

26 Applications
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How Low-Power? How-Parallel?

๏ How low-power and restricted-performance should one go? [Barroso 2010]

– Single-thread performance still matters for multi-core [Hill and Marty 2008]

– When cores are too simple, cost becomes dominated by packaging costs

12

[Barroso 2010] T. Mudge and U. Holzle. Challenges and Opportunities for Extremely Energy-Efficient Processors. IEEE Micro, (3) 4, 2010

[Hill and Marty 2008] M. D. Hill and M. R. Marty. Amdahl's Law in the Multicore Era. IEEE Computer, (41) 7, 2008
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Platforms

๏ Candidate processors for scale-out systems: Atom, PowerPC, ARM
– Three hardware reference designs; all processors implemented in 45nm CMOS
– All three systems running Linux distributions based on kernel 2.6.32

13

Platform General-Purpose CPU Cache Hierarchy
Cores Clock

Atom™ D510MO 2 x86-64 1.66 GHz 32 K/24 K L1 I/D

(per core)

and 1 M L2

Freescale™ P2020RDB 2 Power Architecture
®

1.0 GHz 32 K/32 K L1 I/D

e500 (per core),

512 K shared L2

TI DM3730 1 ARM
®

Cortex
™

-A8 1.0 GHz 32 K/32 K L1 I/D,

(Beagleboard-xM) 256 K L2

Common Properties:
• Identical 4GB flash disk

• Lab-grade power meter, 1 measurement 
per second, sub-mA resolution 

• Power measured for whole platform
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Application-Driven Whole-System Power Analysis

๏ Serial workload
– Essentially tied between ARM (30.8kJ) and Atom (33.1kJ): 7.8% difference

14

≈9100s

Etotal ≈ 31 kJ

A
R

M

P. Stanley-Marbell and V. Caparrós Cabezas “Performance, Power, and Thermal Analysis of Low-Power Processors for 
Scale-Out Systems”, In IEEE High-Performance and Power-Aware Computing (HPPAC 2011).
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Application-Driven Whole-System Power Analysis

๏ Serial workload
– Essentially tied between ARM (30.8kJ) and Atom (33.1kJ): 7.8% difference

14

≈7900s

Etotal ≈ 104 kJ

A
tom

PPC

P. Stanley-Marbell and V. Caparrós Cabezas “Performance, Power, and Thermal Analysis of Low-Power Processors for 
Scale-Out Systems”, In IEEE High-Performance and Power-Aware Computing (HPPAC 2011).
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Application-Driven Whole-System Power Analysis

๏ “Throughput” workload
– All 16 applications launched simultaneously; on Atom and PPC, utilize 2 cores
– PPC: has limited FPU; perf. limited by floating-point-intensive Equake benchmark

๏ Highest-average-power system is the most energy-efficient
– Atom platform uses least energy (15.4kJ), vs. ARM (30.8kJ) and PPC (86.8kJ)

15

Etotal ≈ 15 kJ

≈820s

A
tom
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๏ “Throughput” workload
– All 16 applications launched simultaneously; on Atom and PPC, utilize 2 cores
– PPC: has limited FPU; perf. limited by floating-point-intensive Equake benchmark

๏ Highest-average-power system is the most energy-efficient
– Atom platform uses least energy (15.4kJ), vs. ARM (30.8kJ) and PPC (86.8kJ)
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≈6400s

Etotal ≈ 86 kJ

PPC
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Data: from an analysis of ~150 HW publications in IEEE ISSCC and 
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Interplay Between Power and Bandwidth: Pins
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Interplay Between Power and Bandwidth: Pins

๏ Bandwidth and power are both limiters; both require more pins
– Limited pin count growth (doubling every ~6 years)
– Supply pin count growing more rapidly than total pin count
– Tradeoff b/n more supply pins for lower resistive losses, but restricted I/O bandwidth
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Interplay Between Power and Bandwidth: Pins

๏ Projections
– From hardware trends of previous slide, and application memory reference analyses

๏ Takeaway message
– In addition to constraints on available parallelism in applications, existing packaging 

techniques and their improvement trends may not support >1000 cores circa 2020
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solving problem, without being specific 
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(via Salc Compiler)
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Outline

๏ Context

๏ Technology Trends

๏ Algorithms and Parallelism

๏ Low-Power versus High-Performance Tradeoff

๏ Concurrency Limits and Performance Beyond Parallelism

๏ Summary
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Summary

๏ Context
– Continued performance increases desirable for, e.g., future SKA backend

๏ Technology trends
– Performance growth no longer through clock speed increases; power-limited

๏ Parallelism as a performance vehicle
– Presented framework for characterizing available parallelism (ILP, TLP) in applications

๏ Parallelism, performance, and low-power tradeoffs
– Characterization of not just average power, but energy-to-solution for whole systems

๏ Potential limits to scaling via parallelism
– New approaches desirable for improved bandwidth to support parallelism
– Alternatives to single-algorithm scaling: algorithmic choice 
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