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Vehicles of Performance Growth

_ (SKA1
A construction)

vehicle |'veokoal; 'vé hikal |

noun
1 a thing used to express, embody, or fulfill something

PRS———
@ Enablers of performance growth over the last 5 decades
— Complex instructions (CISC): more co-dependent work per cycle

— Simple instructions / hardware (RISC): ride technology scaling curve, faster cycles
— Parallelism (superscalar, multithread, multicore): more independent work per cycle

@ Limits to performance vehicles
— CISC: uncommon denominators—complicated compilation
— RISC: no longer feasible to run at faster cycles—power-limited scaling
— Parallelism: available parallelism at instruction, thread, task, and data levels
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Device Technology, Parallelism, and Beyond
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1024 chickens: parallelis 1 tractor: better algorithm?

If you were plowing a field, which would you rather ¢
use? Two strong oxen or 1024 chickens? |

— Seymour Cray
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Device Technology, Parallelism, and Beyond
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@ Ihis talk

Device technology trends, spanning the last 30 years, for >150 real designs
Tools for characterizing parallelism

Challenges to scaling via parallelism

Picking the right point in the low-power versus high-performance spectrum
Opportunities and challenges for the next “performance vehicle”. algorithms

Aveiro, Portugal © 2011 IBM Corporation
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Outline

@ lechnology Trends

@ Algorithms and Parallelism

@ Low-Power versus High-Performance Tradeoff

® Concurrency Limits and Performance Beyond Parallelism

®@ Summary
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Technology, Supply Voltage, and Power Delivery Limits

@ Density scaling continues (transistors per unit area)
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Technology, Supply Voltage, and Power Delivery Limits

@ Density scaling continues (transistors per unit area)
— However, power per unit area is not scaling
— Power delivery and cooling for large-transistor-count designs increasingly difficult

‘Data: from an analysis of ~150 HW publications in IEEE ISSCC
and IEEE JSSC Journal, from 1980-2010
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Technology, Supply Voltage, and Power Delivery Limits
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“Data: from an analysis of ~150 HW publications in IEEE ISSCC
and IEEE JSSC Journal, from 1980-2010

@ Power per unit area not scaling because supply voltages stagnated
— Due to concerns with sub-threshold leakage current
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Technology, Supply Voltage, and Power Delivery Limits
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@ Power per unit area not scaling because supply voltages stagnated

Due to concerns with sub-threshold leakage current
Lower supply voltages also lead to higher supply currents at constant power
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Technology, Supply Voltage, and Power Delivery Limits
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@ Power per unit area not scaling because supply voltages stagnated
— Due to concerns with sub-threshold leakage current
— Lower supply voltages also lead to higher supply currents at constant power

@ Power and cooling challenges limit clock speeds, # active transistors
— Industry-wide shift to increased performance via parallelism and heterogeneity
— Parallelism can be harnessed at different granularities...
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Outline

@ Algorithms and Parallelism
@ Low-Power versus High-Performance Tradeoff
® Concurrency Limits and Performance Beyond Parallelism

®@ Summary
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Challenge: Systems and Architectures Tailored to Workloads

@ Mapping application parallelism to hardware concurrency
— Appropriate form and amount of hardware concurrency depends on applications

@ Hardware properties, e.g., microarchitectures
*  Power7 : 8 cores X 4-way SMT X 12-wide superscalar (8-issue, but 12 FUs)
* ARMCortex A8 :1core X 1thread X 2-wide superscalar

* Power A2 cores :1core X 4-way SMT X 2-wide superscalar

® Granularities of parallelism in software
— Available data-, task-, thread- (TLP) and instruction-level parallelism (ILP)
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Application Parallelism Characterization Framework

Stage 1 Stage 2
Input program binary

addu r.:.3.,r2,r6
SwW r0,0(xx)
addu r2,r2,rs5
addiu  r4,r4,1

swW r0,0(r3)

Execution-
+ driven dataflow
analysis

Input dataset

@ Input

—  Compiled program binaries and their associated input datasets

V. Caparros Cabezas and P. Stanley-Marbell, “Parallelism and Data Movement Characterization for Contemporary Application
Classes”, 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), June 2011
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Application Parallelism Characterization Framework

Stage 1 Stage 2
Input program binary
g (1] Task-level O Thread-level
addu (r)sérz,re | partitioning to I:-ZII;Ieinen
o Y Instruction control- minimize value p
addiu 1441 flow-, register- and communication
sw  r0,0(r3) memory- @/nter-thread data
dependence trace @ Inter-task dat movement
- nter-task data
+ Execution Post-execution N Corenny
driven ?atgflow ’ analysis @ instruction-level
n :
Input dataset analysis parallelism

Inter-dependent

basic blocks with 0 : _
potential data- Per-instruction

level parallelism data movement

@ Input

—  Compiled program binaries and their associated input datasets

@ Output
—  Best-case instruction- (ILP) and thread-level parallelism (TLP), and potential data-level parallelism
—  Communication-minimizing MPMD code partitioning
—  Data movement characterization

V. Caparros Cabezas and P. Stanley-Marbell, “Parallelism and Data Movement Characterization for Contemporary Application
Classes”, 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), June 2011

9 Aveiro, Portugal © 2011 IBM Corporation



Performance and Energy-Efficiency: Device Technology, Parallelism, Algorithms, and Beyond

Characterization of Applications Spanning Berkeley “Dwarfs”

TLP
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s S
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1 10 100 1000
ILP
Dwarf 1: Dense Linear Algebra (DLA) JPEG(encode,decode)?, kmeans®,pca® - -
g pea” 26 Applications

Dwarf 2: Sparse Linear Algebra (SLA)

Dwarf 3: Spectral Methods (SM)
Dwarf 4: N-Body Methods (NB)

Dwarf 5: Structured Grids (SG)
Dwarf 6: Unstructured Grids (UG)
Dwarf 7: MapReduce (MR)

Dwarf 8: Combinational Logic (CL)

Dwarf 9: Graph Traversal (GT)
Dwarf 10: Dynamic Programming (DP)

Dwarf 11: Backtrack / Branch+Bound (BT)

Dwarf 12: Graphical Models (GM)
Dwarf 13: Finite State Machine (FSM)

basicmath?, bitcount?, matrix_multiply
lame?, FFT?, IFFT?

ammp?

JPEG? (encode, decode)

equake”

mesa®

rijndaelb (encode, decode), sha?

qsortb , Dijkstrab

None

vpr, mcf?, art?, susan
None

gzip?, gcc”, parser?, stringsearchb

b
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Characterization of Applications Spanning Berkeley
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Low-Power versus High-Performance Tradeoff

Concurrency Limits and Performance Beyond Parallelism

Outline

®

®

®@ Summary
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How Low-Power? How-Parallel?

@ How low-power and restricted-performance should one go?
— Single-thread performance still matters for multi-core
— When cores are too simple, cost becomes dominated by packaging costs

o “Brawny”
- ” 4 [_ 8 Core
Wimpy 2 ) .
Core
11

Core-0-Meter

[Barroso 2010] T. Mudge and U. Holzle. Challenges and Opportunities for Extremely Energy-Efficient Processors. IEEE Micro, (3) 4, 2010

[Hill and Marty 2008] M. D. Hill and M. R. Marty. Amdahl's Law in the Multicore Era. IEEE Computer, (41) 7, 2008
12 Aveiro, Portugal © 2011 IBM Corporation
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Platforms

@ Candidate processors for scale-out systems: Atom, PowerPC, ARM
— Three hardware reference designs; all processors implemented in 45nm CMOS
— All three systems running Linux distributions based on kernel 2.6.32

Common Properties:
e |dentical 4GB flash disk

e [Lab-grade power meter, 1 measurement
per second, sub-mA resolution

e Power measured for whole platform

Platform General-Purpose CPU Cache Hierarchy
Cores Clock
Atom D510MO 2 x86-64 1.66 GHz 32K/24KL11/D
(per core)
and 1M L2
Freescale P2020RDB 2 Power Architecture® 1.0 GHz 32K/32KL11/D
e500 (per core),
512 K shared L2
TI DM3730 1 ARM® Cortex  -A8 1.0 GHz 32K/32KL11/D,

13 (Beagleboard-xM) 256K L2 © 2011 IBM Corporation
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Platforms

@ Candidate processors for scale-out systems: Atom, PowerPC, ARM
— Three hardware reference designs; all processors implemented in 45nm CMOS
— All three systems running Linux distributions based on kernel 2.6.32

Pictures are NOT

Platform General-Purpose CPU Cache Hierarchy
Cores Clock to scale
Atom D510MO 2 X86-64 1.66 GHz~ 32K/24KL11/D
(per core)
and 1M L2
Freescale P2020RDB“ 2 Power Architecture® 1.0 GHz 32K/32KL11/D
€500 (per core),
512 K shared L2
TI DM3730 1 ARM® Cortex  -A8 1.0 GHz 32K/32KL11/D,

13 (Beagleboard-xM)

256 KL2 © 2011 IBM Corporation
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Application-Driven Whole-System Power Analysis

T1 DM3730 (ARM Cortex A8 + DSP), Linux, 16 app. run (serial), Ethernet Link >

T v T T T
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Time (seconds) ~9100s

@ Serial workload
— Essentially tied between ARM (30.8kJ) and Atom (33.1kJ): 7.8% difference

P. Stanley-Marbell and V. Caparrés Cabezas “Performance, Power, and Thermal Analysis of Low-Power Processors for
Scale-Out Systems”, In [EEE High-Performance and Power-Aware Computing (HPPAC 2011).
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Application-Driven Whole-System Power Analysis

T1 DM3730 (ARM Cortex A8 + DSP), Linux, 16 app. run (serial), Ethernet Link

Power Dissipation (W)
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@ Serial workload
Essentially tied between ARM (30.8kJ) and Atom (33.1kJ): 7.8% difference

P. Stanley-Marbell and V. Caparrés Cabezas “Performance, Power, and Thermal Analysis of Low-Power Processors for
Scale-Out Systems”, In [EEE High-Performance and Power-Aware Computing (HPPAC 2011).
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Application-Driven Whole-System Power Analysis

Power Dissipation (W)

@ Serial workload
Essentially tied between ARM (30.8kJ) and Atom (33.1kJ): 7.8% difference

P. Stanley-Marbell and V. Caparrés Cabezas “Performance, Power, and Thermal Analysis of Low-Power Processors for

T1 DM3730 (ARM Cortex A8 + DSP), Linux, 16 app. run (serial), Ethernet Link

!
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Intel Atom D510 (dual x86—-64), Linux, 16 app. run (serial), Ethernet Link

Etotal

Paverage =13.0132 W, Eipio = 104.2 kJ

104 K]

33 kJ =16.0719 W, Etotal 33.11 kJ
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Time (seconds)

Freescale P2020 (dual PPC e500), Linux, 16 app. run (serial), Ethernet Link

Time (seconds)

6000 8000

Scale-Out Systems”, In [EEE High-Performance and Power-Aware Computing (HPPAC 2011).
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Application-Driven Whole-System Power Analysis

Intel Atom D510 Linux, 16 app. run (parallel), Ethernet Link

% avera e =18. 5.27 W, Eiotal = = 15.38 kJ
m?%w iy
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—
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@ Throughput” workload
— All 16 applications launched simultaneously; on Atom and PPC, utilize 2 cores
— PPC: has limited FPU; perf. limited by floating-point-intensive Equake benchmark

@ Highest-average-power system is the most energy-efficient
— Atom platform uses least energy (15.4kJ), vs. ARM (30.8kJ) and PPC (86.8kJ)

15 Aveiro, Portugal © 2011 IBM Corporation
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Appllcatlon -Driven Whole-System Power Analysis
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Intel Atom D510 Linux, 16 app run (parallel), Ethernet Link
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® “Throughput” workload

All 16 applications launched simultaneously; on Atom and PPC, utilize 2 cores
PPC: has limited FPU; perf. limited by floating-point-intensive Equake benchmark

® Highest-average-power system is the most energy-efficient

15

Atom platform uses least energy (15.4kJ), vs. ARM (30.8kJ) and PPC (86.8kJ)
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Outline

@ Concurrency Limits and Performance Beyond Parallelism

®@ Summary
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Interplay Between Power and Bandwidth: Pins

1>5<888 - . @ :MeanValues -

1000
500" .o}
100 Total Pin Count = 1Q0-0476779 year-92.6952

50 & o %

Total Pin Count
(]

980 1990 2000 2010 2020
Year

Data: from an analysis of ~150 HW publications in IEEE ISSCC and
IEEE JSSC Journal, from 1980-2010
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Interplay Between Power and Bandwidth: Pins

5000,

1000
500 -

100
50
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® o
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Qo1
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@ Bandwidth and power are both limiters; both require more pins

— Limited pin count growth (doubling every ~6 years)

— Supply pin count growing more rapidly than total pin count
— Tradeoff b/n more supply pins for lower resistive losses, but restricted 1/O bandwidth

17 Aveiro, Portugal
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Interplay Between Power and Bandwidth: Pins
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@ Projections
— From hardware trends of previous slide, and application memory reference analyses

@ lakeaway message

— In addition to constraints on available parallelism in applications, existing packaging
techniques and their improvement trends may not support >1000 cores circa 2020

P. Stanley-Marbell, V. Caparrés Cabezas, and R. Luijten “Pinned to the Walls—Impact of Packaging on the Memory and Power
Walls”, to appear, IEEE/ACM International Symposium on Low-Power Electronics and Design (ISLPED 2011).
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Beyond Parallelism: Algorithms versus Compute Problems

Old: “Binaries” capture algorithms

Application specifies an algorithm for
solving problem, without being specific
about what compute problem is

P. Stanley-Marbell “Sal/'Svm—An Assembly Language and Virtual Machine for Computing with Non-Enumerated Sets”,
ACM Virtual Machines and Intermediate Languages (VMIL 2010).
19 i ' Aveiro, Portugal
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Beyond Parallelism: Algorithms versus Compute Problems

Old: “Binaries” capture algorithms

Application specifies an algorithm for
solving problem, without being specific
about what compute problem is

Compile

P. Stanley-Marbell “Sal/'Svm—An Assembly Language and Virtual Machine for Computing with Non-Enumerated Sets”,
ACM Virtual Machines and Intermediate Languages (VMIL 2010).
19 Aveiro, Portugal
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Beyond Parallelism: Algorithms versus Compute Problems
Old: “Binaries” capture algorithms

Application specifies an algorithm for
solving problem, without being specific
about what compute problem is

Compile

v

Instruction sequence for

000000000
011001010

wme|  Stored-program computer
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Beyond Parallelism: Algorithms versus Compute Problems
Old: “Binaries” capture algorithms

Application specifies an algorithm for
solving problem, without being specific
about what compute problem is

Compile

v

Instruction sequence for

000000000
011001010

wme|  Stored-program computer

v
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Beyond Parallelism: Algorithms versus Compute Problems
New: “Binaries” capture compute problems

Problem Specification (Sal)

Set's universe / type
Set's predicate expression =3 l

St = (x:Ui[1] #1) : Uy.

T T T— free variable's type
Set free variable
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Problem Specification (Sal)

Set's universe / type
Set's predicate expression =3 l

St = (x:Ui[1] #1) : Uy.
T T T—free variable's type

Set free variable

(via Salc Compiler)
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Beyond Parallelism: Algorithms versus Compute Problems
New: “Binaries” capture compute problems

Problem Specification (Sal)

Set's universe / type
Set's predicate expression =3 l

St = (x:Ui[1] #1) : Uy.
T T T—free variable's type

Set free variable

(via Salc Compiler)
Svm Machine State Representing Problem

P Registers S Registers U Registers  Runtime Symbol Table

e P1:U3 <1,5, ..., 94> Variable & Value  Scope
o (P11P7): U1 <"en", ..., "bij"> | | gx 2 14
true:U2 {21, ..., -1.3} mquantvar | "hello" 2
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Beyond Parallelism: Algorithms versus Compute Problems
New: “Binaries” capture compute problems

Problem Specification (Sal)

Set's universe / type
Set's predicate expression =3 l

St = (x:Ui[1] #1) : Uy.
T T T—free variable's type

Set free variable

(via Salc Compiler)
Svm Machine State Representing Problem

P Registers S Registers U Registers  Runtime Symbol Table

e P1:U3 <1,5, ..., 94> Variable @ Value | Scope
(M) (P11P7):U1 | | <"en", ..., "bij"> | |gx 2 14
true:U2 {21, ..., -1.3} mquantvar | "hello" 2
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Summary

@ Context
— Continued performance increases desirable for, e.g., future SKA backend

@ Tlechnology trends
— Performance growth no longer through clock speed increases; power-limited

@ Parallelism as a performance vehicle
— Presented framework for characterizing available parallelism (ILP, TLP) in applications

@ Parallelism, performance, and low-power tradeoffs
— Characterization of not just average power, but energy-to-solution for whole systems

@ Potential limits to scaling via parallelism
— New approaches desirable for improved bandwidth to support parallelism
— Alternatives to single-algorithm scaling: algorithmic choice
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