AA Performance enabled by

....

communications

SKA Top-level description

A large radio telescope for transformational science

- Up to 1 million m² collecting area
- Operating from 70 MHz to 10 GHz (4m-2)
- Two or more detector technology
- Connected to a signal
 Computing superformance
 - sitivity of the EVLA, and
- up to 100,000 x survey speed

Pr

SKA-AAVP

5C

AA Communications

AA Communications

AA Communications

Dense: Element spacing ≤ λ/2 Fully sampled wavefront Regular layout pattern

Constant A_{eff}

Excellent side lobe control Beam performance equiv to the best dish design

Sparse: Element spacing $>\lambda/2$

Layout irregular to control grating lobes

 A_{eff} increases as λ^2 (~ $\lambda^2/4$)

Increased skynoise from grating lobes Possible dynamic range issues

AA Communications

Portugal

- Unsurpassed ability to create **Field of View** through multiple beams
- Extremely flexible in observational parameters e.g. Sky area vs. bandwidth
- Can run **multiple experiments** concurrently
- Using a large amount of up front processing they reduce the backend processing load
- Can tune imaging coverage, beam size, post-processing load etc.

ICT based AAs provide many new opportunities

An SKA collector summary

SKA₁

SQUARE KILOMETRE ARRAY

Freq. Range	Collector	Sensitivity	Number / size	Distribution
70 MHz	AA-low	1,000 m²/K at	50 arrays, Diameter	
to 450 MHz	Sparse AA	100 MHz	180 m	70% within 5 km dia.,
300 MHz to 3 GHz	Dishes with single pixel feed	1,000 m²/K at 1.4 GHz	250 dishes Diameter 15 m	30 % along 3 spiral arms out to 100 km radius

SKA₂

Freq. Range	Collector	Sensitivity	Number / size	Distribution
70 MHz	AA-low	4,000 m²/K at	250 arrays,	66% within 5 km dia., 34% along 5 spiral arms out to
to 450 MHz	Sparse AA	100 MHz	Diameter 180 m	
400 MHz	AA-mid	10,000 m ² /K at	250 arrays,	
to 1.45 GHz	Dense AA	800 MHz	Diameter 56 m	180 km radius
300/1000 MHz to 10 GHz	Dishes with single pixel feed + PAF	10,000 m²/K at 1.4 GHz	2000 – 3000 dishes Diameter 15 m	50% within 5 km dia,
				30% 5km - 180 km
				20% 180 km-3,000 km.

SKA₂ wide area data flow

SQUARE KILOMETRE ARRAY

AA Communications

Portugal

Total data rate for a fixed survey speed is *independent* of # of stations (fixed A_{eff} & Bandwidth)

AA Communications

AA-low element development

BLU antenna: Bow-tie Low Freq. Ultra-Wideband antenna

Toothed logperiodic antennas for pattern improvement

SKA-AAVP

May 2011

QUARE KILOMETRE ARRAY

AA Communications 200

AA Communications

LWA element: mechanical example

Electronics at top – well away from floods etc.

SKA-AAVP

Simple "skeleton" elements (delivered flat)

Clamp type rotational adjustment

Single pole fixing – just sunk into ground

Buried cables

Cheap mesh groundplane

Easy and quick deployment

KILOMETRE ARRAY

AA Communications

AA Communications

AA-mid elements and array

Vivaldi array - EMBRACE

Dense array design, largely decided, select:

- Element pitch for frequency range & element type
- Element type and construction technique
- LNA: differential or single ended

ORA array - SKADS

SKA-AAVP

KILOMETRE ARRAY

AA Communications

AA Communications

Two stage beamforming

May 2011

AA Communications

Portugal

AA Communications

SULARE KILDMEIRE ARRAY OUtput data rate & array performance -AAVP

- The output data rate **defines** the performance of the array
- A better measure than "beams" since it considers flexible use of data between bandwidth and direction.
- Front end analogue beamforming restricts areas of sky that can be observed concurrently
- Changing the number of bits/sample for different observation types
 maximises performance
- Not a problem for the correlator which only "sees" total data rate
- Post-processor needs to interpret blocks of data

Build flexibility into the Station processor

- 1. There are 11,264 dual polarisation elements in a station;
- 2. Station diameter is 180m;
- 3. There is no analogue beamforming, every element is digitised;
- 4. The digitisation is in 44 Tiles of 256 elements each;
- 5. Data rate off each digitisation box set at 240Gb/s, after some beamforming;
- 6. The full active bandwidth from the digitisers is returned to the central processor;
- 7. A station has 22,400 digital receiver channels.

AA-low station signal path SKA-AAVP SQUARE KILOMETRE ARRAY Element assembly **Digitisation box** Station Processing ADC – Processor comms Antenna Secondary Station Processing ADC Primary Station Processing Digitisation Processing Р -0 Correlator -0 Gain LNA Analog Block conditioning Control Processor Clock Signal Tile - station processor Wide area optical Distribution Transport optical comms interconnect optical comms **Optical: Optical:** Copper: <20m, ≥120Gb/s ~20m, 500MHz ~200m, ≥10Gb/s

May 2011

AA Communications

Integrated single unit No copper connection Easy to deploy Minimum RFI Lightning "immunity"

Low total power Integration Manufacturability Packaging

No need for digitisation boxes

May 2011

AA Communications

- 1. The element pitch is 15 cm (λ /2 at 1GHz);
- 2. Station diameter is 56m, or ~2500m²;
- 3. Analogue beamform 4 elements;
- 4. Tiles are 16x16 dual polarisation elements (2.4m square);
- 5. Tiles have 128 digitisation channels (256*2/4);
- 6. Data rate off each Tile set at 120Gb/s
- 7. A Station has 430 Tiles or 110,000 elements or 220,000 receiver chains.
- 8. A station has 55,000 digital receiver channels.

SOUARE KILOMETRE ARRAY AA-mid proposed signal path

- Overall requires multi-km, 100's m, & 10's m range comms
- AAs *depend* on high speed comms and processing
- More communications gives more performance
- Increasing comms rate and more processing is a clear upgrade path
- AA-mid is very challenging....