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Abstract. This paper proposes a parameter fitting procedure using Markov lsteduPois-
son Processes (MMPPs) that leads to accurate estimates of queuangobdbr network
traffic exhibiting LRD behavior. The procedure matches both the autsizmce and marginal
distribution of the counting process. A major feature is that the numbeatfssis not fixed a
priori, and can be adapted to the particular trace being modeled. The NBv®Rstructed as
a superposition of, 2-MMPPs and one M-MMPP. The 2-MMPPs are designed to match the
autocovariance and the M-MMPP to match the marginal distribution. E&dMPP models
a specific time-scale of the data. The procedure starts by approximagiagtibcovariance by
a weighted sum of exponential functions that model the autocovaridtice 2-MMPPs. The
autocovariance tail can be adjusted to capture the long-range dependwaracteristics of
the traffic, up to the time-scales of interest to the system under study.robedure then fits
the M-MMPP parameters in order to match the marginal distribution, within ehstcaints
imposed by the autocovariance matching. The number of states is alsmiteit as part of
this step. The final MMPP with BI* states is obtained by superposing th@-MMPPs and
the M-MMPP. We apply the inference procedure to traffic traces exhiliimgrrange depen-
dence and evaluate its queuing behavior through simulation. Very gsatts@re obtained,
both in terms of queuing behavior and number of states, for the traedswhich include the
well-known Bellcore traces.

Keywords: Traffic modeling, autocorrelation, self-similar, long-range depeaceeMMPP.

1. Introduction

Since the work by Lelandt al. [1] several studies have shown that network
traffic may exhibit properties of self-similarity and long-range depenglenc
(LRD) [1-7]. These characteristics have significant impact on netpeifor-
mance. However, as pointed out in [8,9], matching the LRD is only required
within the time-scales of interest to the system under study. For example, in
order to analyze the queuing behavior, the selected traffic model nelyds o
capture the correlation structure of the source up to the so-called critical time
scale or correlation horizon, which is directly related to the maximum buffer
size. One of the consequences of this result is that more traditional traffic
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2 Salvador, Valadas and Pacheco

models such as Markov Modulated Poisson Processes (MMPPSs) can still
be used to model traffic exhibiting long-range dependence [10-13]e-Mor
over, providing a good match of the LRD behavior (through an accurate
fitting of the autocovariance tail) is not enough for accurate prediction of
the queuing behavior. For example, the work in [14] discusses the limita-
tions of using only the mean and the autocorrelation function as statistical
descriptors of the input process for the purpose of analyzing qugeirigr-
mance. The authors show that the mean queue length can vary substantially
when the parameters of the input process are varied, subject to the same
mean and autocorrelation function. Thus, in general, accurate predadtion
gueuing behavior requires detailed modeling of the first-order statistits, no
just the mean. While this issue is of major importance, we believe it remains
largely neglected. The limitations of matching only the LRD are also in line
with recent suggestions that multifractal models [15-17], or eventuallsidhyb
models combining multifractal and self-similar behavior [18], may be more
appropriate than self-similar ones for certain types of network trafficeys th
allow for incorporating time-dependent scaling laws.

The main goal of the present work is to develop a parameter fitting pro-
cedure using Markov Modulated Poisson Processes (MMPPSs) that tead
accurate estimates of queuing behavior for network traffic exhibiting LRD
behavior. In order to achieve this goal, the procedure matches closily bo
the autocovariance and the marginal distribution of the counting process.
The consideration of MMPPs is motivated by the availability of theoretical
results for analyzing the queuing behavior [19] and for determining e
bandwidths [20,21]. The work also seeks minimizing the number of states
of the underlying model so as to reduce the complexity associated with the
calculation of the performance metrics of interest. MMPPs have deserved
considerable attention in the literature (see, e.g., [10-13,22-31]).

Matching simultaneously the autocovariance and the marginal distribution
is a difficult task since every MMPP parameter has an influence on both
characteristics. With the purpose of achieving some degree of decoupling
when matching these two statistics, we construct the MMPP as a superpo-
sition of two MMPPs, where one MMPP (wittf states) is used to adjust the
autocovariance and the other (with states) is used to adjust the marginal
distribution, taking into account the contribution of the first MMPP. We will
denote the resulting process a2MMMPP. The2Z-MMPP matching the
autocovariance is a superpositionloR-MMPPs. Given that the autocovari-
ance of a 2-MMPP is a single exponential, this approach allows matching
the empirical autocovariance based on prior approximation by a weighted
sum of exponentials, which results in a simple and accurate procedwee. Th
M-MMPP matching the marginal distribution is forced to have null autoco-
variance at positive lags, to assure that the autocovariance oftheMiIPP
equals that of the superposition of tlhe2-MMPPs; the marginal distribu-
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tion of the M-MMPP is obtained through deconvolution of th&-MMPPs

and M2L-MMPP marginal distributions, thus ensuring that the contribution
of the L 2-MMPPs is taken into account. The autocovariance modeling is
such that each 2-MMPP (in the set bf2-MMPPs) models a specific time-
scale. Thus, in this work, the concept of time-scale is defined in the context
of second-order statistics: each time-scale is associated with a chatecteris
time constant of the autocovariance function. An important feature of the
procedure is that both and M need not to be defined a priori, since they are
determined as part of the procedure.

We note that, in order to boost the computational efficiency of the fit-
ting procedure, th@-MMPPs used to fit the autocovariance function are
interrupted Poisson processes, and that the valug/ aff the AM/-MMPP
is chosen as the smallest value that provides a given degree of matching
between the data and the marginal probability function of the fitted model.
Moreover, the assumed independence betweedfHdMPP and thel 2-
MMPPs introduces further constraints on the parametric form of the fitted
M2L-MMPP.

When measuring network traffic data, we can either record the individual
arrival instants or the number of arrivals in a predefined sampling (time)
interval. The former approach brings more detail but the latter one has the
advantage of producing a fixed amount of data that is known in advahise.
allows the recording of longer traces, which clearly pays off the losgtaid
in data recording, if the sampling interval is chosen appropriately. In this
work, we consider discrete time MMPPs (dMMPPSs) instead of continuous
time MMPPs, since they are more natural models for data corresponding
to the number of arrivals in a sampling interval. We note that discrete time
and continuous time MMPPs are basically interchangeable (through a simple
parameter rescaling) as models for arrival processes, whenevaartiing
interval used for the discrete time version is small compared with the average
sojourn times in the states of the modulating Markov chain.

The fitting procedure starts by approximating the autocovariance by a
weighted sum of exponential functions. As part of this step, the rel¢vaet
scales of the data are identified. After this, the procedure fits the M-dMMPP
parameters in order to match the probability function, within the constraints
imposed by the autocovariance matching. The finaf MIMMPP is obtained
by superposing thé 2-dMMPPs and the M-dMMPP.

We apply the fitting procedure to traffic traces exhibiting LRD, including
the well known, publicly available, Bellcore traces. The LRD charactesistic
are analyzed using the wavelet based estimator of [32]. Results shatehat
MMPPs obtained through the fitting procedure are capable of modeling the
LRD behavior present in data. The fitting procedure is also assessethm te
of queuing behavior. Results show a very good agreement betweeadket p
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loss ratio obtained with the original data traces and with traces generated fro
the fitted MMPPs.

This paper is organized as follows. Section 2 gives some background on
discrete MMPPs. In section 3 we describe the fitting procedure. Section 4
presents the numerical results, which include applying the fitting procedure
to measured traffic traces. In section 5 our work is compared with prdyious
published ones. Finally, in section 6 we conclude the paper.

2. Background

The discrete time Markov Modulated Poisson Process (AMMPP) is the dis-
crete time version of the popular (continuous time) MMPP and may be re-
garded as a Markov random walk where the increments in each instangdhav
Poisson distribution whose parameter is a function of the state of the modula-
tor Markov chain. More precisely, the (homogeneous) Markov ch¥in/) =

{(Xk, Jk), k =0,1,...} with state spacéV, x S is a dMMPP if and only if
fork=0,1,...,

P(Xgy1=m, Jpp1 = jl Xk =n, Jp=1) =
0 m<n (1)
= AT
Dij € )\ZW m>n

for all m,n € INy andi,j € S, with \;, i € S, being nonnegative real
constants and® = (p;;) being a irreducible stochastic matrix. Note that
the distribution ofX;; — X;, given J, = j is Poisson with mean;, so
that \; represents the mean increment of the procEswhen the modu-
lating Markov chain is in statg. The dMMPP is a particular case of the
dBMAP (discrete time batch Markovian arrival process proposed bgdsto
and Casals [33] and that has received some attention (see, e.g.,]|[24€37
references therein). In the dBMAP the distribution of the increments of the
process at each time instant may depend on the state visited at the previous
instant in addition to the current state.

Whenever (1) holds, we say th@X, J) is a dMMPP with set of modulat-
ing statesS and parameter (matriceB)and A, and write

(X,J) ~ dMMPPs(P, A) (2
whereA = (X;;) = (X\idi;). The matrixP is the transition probability matrix

of the modulating Markov chaid, whereas\ is the matrix of Poisson arrival
rates. IfS has cardinalityr, we say tha{ X, J) is a dMMPP of order- (r-
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dMMPP). When, in particulas = {1,2,...,r} for somer € IN, then

P11 P12 ... Pir A0 .00
P= P21 P22 ... P2r andA — 0 )\2 ... 0 (3)
rl Dr2 ... Prr 0 0 ... )\r
and we write simply thatX, J) ~ dMMPP,.(P, A).
We will consider the superposition of (independefi)-dMMPPs
(XD, g0y ~ dMMPR,(PW ADY 1=1,2,... L (4)
and oneM -dMMPP
(X(L—i-l), J(L—‘rl)) ~ dMMPPM(P(L+1),A(L+1)). (5)
Note that, in particular, fotr=1,2,..., L,
n l
pl — lp% p% AD — lAg) (()l)] ©
Dai P22 0 A

and we assume that) + p{) < 1. In addition, we considegd®, J®,
.., JU&*D to be ergodic chains in steady-state. Foe= 1,2,...,L we

denote byr() = {wil) wgl)} the stationary distribution of . Similarly, we
denote byr(E+D) = [r{EF) 7D 7 LHD) the stationary distribution of
JLA1L)

The result of the superposition is the process

L+1
(X,J) = (Z X0, (J<1>,J<2>,...,J<L+1>)> ~ dMMPPs(P,A) (7)
=1

where
S = {1,2}F x {1,2,..., M} (8)
P =PYgP?g. gplt) 9)
A=AVgAD g g ATD (10)

with & and ® denoting the Kronecker sum and the Kronecker product, re-
spectively. Note that Markov chaid is also in steady-state. We refer to
(X, .J) as being the\/2-dMMPP. The superposition of aw-dMMPP and
L 2-dMMPPs is depicted in Figure 1.

In our approach. and M are not fixeda priori but instead are computed
as part of the fitting procedure. However, in the rest of this section they
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& &

Figure 1. Superposition of an M-dMMPP antd 2-dMMPP models.

may be thought as being fixed. We want the2-dMMPPs to capture the
autocovariance function of the increments of the arrival proc&9gs Also,
discounting for the effect of thé 2-dMMPPs, we want thé/-dMMPP to
approximate the distribution of the increments of the arrival process. To ex-
plain how this may be accomplished, it is convenient to define the increment
processes associatedXd?), X(@) ... X+ andX, which we denote by
Yy y®@ . yE+D) andY, respectively. Thus,

vy W =xl -xPi=12..,L+1 (11)
and
Yie = Xp1 — Xi (12)
for k = 0,1,.... Note thatY}, is the (total) number of arrivals at sampling

interval k and Yk(l) is the number of arrivals that are due to thth arrival
process, so that, in particular,

L+1
=Y k=o012... (13)
Moreovery M) y(@) y(+1) andY, are stationary sequences.

In order to characterize the marginal distributions of the proceg$es
Y@, ... Y+ andy, we denote, respectively, By (k), k =0,1,2,...},
l=1,2,...,L+1,and{f(k), k =0,1,2,...}, their (marginal) probability
functions. As the univariate distributions B, Y@ .. Y+ are mix-
tures of Poisson distributions, we denote the probability function of a Aoisso
random variable with mean by {g,(k), k = 0,1,2,...}, for u € [0, +00),
so that

k
gu(k‘):e_“%, k=0,1,2,.... (14)

For! = 1,2..., L, the marginal distribution ot"() (that is, the distri-
bution of Yk(l), fork = 0,1,...) is a mixture of two Poisson distributions
with meansAgl) and )\g) and weightsﬂl) and wél), respectively. Thus the
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Multiscale Fitting Procedure using Markov Modulated Pois®rocesses 7
probability functions oy ) 1 = 1,2, ..., L, are given by
filk) =7 9,0 (k) + 73 g, 0 (k). k = 0,1,2,... (15)
and their autocovariance functions are
A = cov(¥ ", vy = 7D 2D AP AOR ek g =0,1,2,... (16)

where¢; = In (1 — p“; — p;’f ). Note that, in particular, the autocovariance
functions ofy’ (1), Y(Q%, ..., Y L) exhibit an exponential decay to zero.

As we want theM -dMMPP to approximate the distribution of the incre-
ments of the arrival process but to have no contribution to the autocoearia
function of the increments of the M-dMMPP, we choose to makg&L+1) a
Markov chain with no memory whatsoever. This is accomplished by choosing

(L+1) _(L+1) (L+1)
m o) SV
L L L
pry _ |mD afD gy 17)
P LR (20

Note that this implies that’(“*1) is an independent and identically dis-
tributed sequence of random variables whose distribution is a mixture of

M Poisson random variables with mea?dgﬂ) and weightst“ !, fori =
1,2,..., M. As a consequence, the probability functiontof-+1) is given
by
M
frak) =Y m Y g iy (k). k=0,1,2,.. (18)
J

=1

and the autocovariance functionf“+1) is null for all positive lags; i.e.,
WY = cov(y{" TV vy =0, k> 1. (19)

Taking into account (13), it follows that the probability functionYofis
given by:
JRY=(f/i®fo®...® fr41) (k) (20)

whered denotes the convolution of probability functionsis a sequence of
random variables whose distribution is a mixture of Poisson random vesiable
(note that the sum of independent mixtures of Poisson random variables is
also a mixture of Poisson random variables), and the probability function of
Y may be written in the following way

2 2 2 M L+1 :
=Y .3 3 (H w]g)) i1 Ax)(k;). (21)

n=lje=1 jr=1jr41=1 \i=1
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Moreover, from (13) and taking into account (16) and (19), we kalecthat
the autocovariance function &f is given by

L+1
0 @
_ _
vk = Cov(Yy, Yy) = ;COV(YO Y, ) (22)

1=
D (1)@ l .
= b 0 D O ek

fork=1,2,....

3. Inference Procedure

In the rest of the paper we will referi6™, Y, ... Y1) as the2-dMMPPs,
to Y(L+1) as theM -dMMPP, and td"” as the ML-dMMPP.

The inference procedure can be divided in four steps: (i) approximafio
the empirical autocovariance by a weighted sum of exponentials and identi-
fication of time-scales, (ii) inference of the M-dMMPP probability function
and of the 2-dMMPPs parameters, (iii) inference of the M-dMMPP Poisson
arrival rates and transition probabilities and (iv) calculation of the finzd M
dMMPP parameters. The flow diagram of this procedure is represented in
Figure 2. In the following subsections we describe these steps in detail.

3.1. AUTOCOVARIANCE APPROXIMATION AND TIME-SCALES
IDENTIFICATION

Our approach is to approximate the autocovariance by a large number of
exponentials and then aggregate exponentials with a similar decay into the
same time-scale. This is close to the approaches considered in [10,13,38].
As a first step, we approximate the empirical autocovariance by a sum of
K exponentials with real positive weights and negative real time constants.
We choseK asv/kmaz, Wherek,,.... represents the number of points of the
empirical autocovariance. This is accomplished through a modified Prony
algorithm [39]. The Prony algorithm returns two vectors,

5:[a1 aK] g:[bl bK]

which correspond to the approximating function
o K
Cx (a, b) =Y ae vk, k=1,2,3,.. (23)
=1

At this point we identify the components of the autocovariance that char-
acterize the different time-scales. We defindifferent time-scales, in which
the autocovariance decays,i = 1, ..., K, fall in the same logarithmic scale.
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v
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[or

Figure 2. Flow diagram of the inference procedure.

A0 pO

To explain how this is accomplished it is useful to assumetthat b1, 1 <

j < K —1,and][...] represents the integer round towards plus infinity. The
value L is computed through the following iterative process. Starting with
[ = 1 andi; = 1 computei;;; through

irp1 = min {K + 1,inf {j : 4; < j < K A [logyg (b;)] > [logy (bj—1)]}}-

If ;.1 > K then makel = [ and stop; otherwise incremehby one and
repeat the process. Note that, in particular,

[logy (bi)] = [logig (biy+1)] = - .. = [logig (biy,,-1)]

but, if i1, < K,
Hoglo (bilﬂ < HOglo (bi1+1)-| :

Tel Sys_ MF-PMWPP. t ex; 29/01/2003; 16:36; p.9
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Forj = 1,2,..., L, we consider that the decays to b; , 1 characterize
the same traffic time scale and we aggregatenihe |i;,1 — 7;| components
in one component with the following parameters:

ip1—1
ip1—1 k; arby,
o) = Z ag and = —WT. (24)

k=i,

Taking in account (16), (23) and (24), these parameters are useddthe fi
autocovariance function of the 2-dMMPPY), Through these relations, it
results that

= d?wil)wél) and G =¢ (25)

whered; = ])\gl) — )\gl)\, i.e., the fitted autocovariance function¥of + Y5 +
...+ Yis

L
Zalekﬁl, k=1,2,.... (26)
=1

3.2. INFERENCE OF THEM-DMMPP PROBABILITY FUNCTION AND OF
THE L 2-DMMPP PARAMETERS

The next step is the inference of the M-dMMPP probability function from the
empirical probability function of the original data trace. The relation between
the probability functions of the-dMMPPs, theM/-dMMPP and the M-
dMMPP is defined by (20).

In order to simplify the deconvolution of;+, (k) and f;(k),l =1, ..., L,
we consider that the Poisson arrival rate is zero in one state of eadVRE
source; that is)\gl) =0 and)\g) =d, forl =1,..., L. From (25),

d = % 1=1,2,.... L. (27)
T T

The probability function of thé/-dMMPP, f1 . 1, is inferred from the em-
pirical probability function of the data, denoted Iy, and theL 2-dMMPP
probability functions, denoted by;, I = 1,2,..., L, based on the fitted

parameters, after fixing the probabilitieg), l=1,2,..., L, through (20).

More precisely,fr.+1 is fitted jointly with the parameters%l), l=1,.. L,
through the following constrained minimization process:

min Z o° (k)| (28)
{(mD,1=1,0 Ly { Ly (k) k=0,1,..}

where

(k) = fe(k) — (fl D..0 fL <5 fL+1) (k) (29)

Tel Sys_ MFPMWPP. t ex; 29/01/2003; 16:36; p.10
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subject to (25) and

o<rl<1,1=1,2,... I,
fL+1(k)>07k:0717"'7 (30)
and  >°7%0 frii(k) = 1.

We denote byf; ., the fitted probability function of the M-dMMPP. Note

thatwgl) is not allowed to be 0 or 1 because, in both cases/!the-dMMPP
would degenerate into a Poisson process. The constrained minimization pro-
cess given by (28)—(30) is a non-linear programming problem and irrgiene
it is computationally demanding to obtain the global optimal solution. Ac-
cordingly, to solve this problem we consider two approximations: (i) we make
WP = ﬁ””, l=1,...,L—1and (ii) we restrict the range of possibiél)
solutions to be discrete and such thélt) = 0.001%k, k =1,...,999. Then
a search process is used to find the minimum value of the objective function.
These approximations have had negligible impact on the results obtained so
far with the fitting procedure, in particular on those presented in section 4.

At this point all parameters of the 2-dMMPRs(), Y@ . YL have
been determined and their corresponding 2-dMMPP matrices

{PO A 1=1,2,...,L}

can be constructed in the following way:

p _ [1-m (1 —e?)  a(1—et)
B W(l)(l —ef)y 11— TF(l)(l — )
1 1

and

3.3. INFERENCE OFM-DMMPP PARAMETERS

The next step is the inference of the number of states and Poissor rates

of the M/ -dMMPP from f7.,. To do this we inferf;; as a weighted sum
of Poisson probability functions, i.e., as the probability function of a finite
Poisson mixture with an unknown number of components.

The matching is carried out through an algorithm that progressively sub-
tracts a Poisson probability function froifi;, which is described in the
flowchart of Figure 3. We represent tf{é Poisson probability function with
meany; by g, (k). We defineh(!)(k) as the difference betweefy, (k)
and the weighted sum of Poisson probability functions atitheteration.
Initially, we seth® (k) = fr.1(k). In each step, we first detect the maxi-

mum of 1) (k). The corresponding-value,; = [h()]~! (max h(®) (k)),

Tel Sys_ MFPMWPP. t ex; 29/01/2003; 16:36; p.11



12 Salvador, Valadas and Pacheco

h® (k) = fAL+1 (k)

6, = h(i)—l[ma){h(i)(k)}] <
Iy
fAL+1(¢|) :leji 9y, (@).1=1..,i

o =]

b (k) = ,?Lﬂ(k)—izi:;wji gy, (k)

computerr-* and A

Figure 3. Algorithm for calculation of the number of states and Poisson arrivas rafi¢he
M-dMMPP.

will be considered theé!” Poisson rate of the M-dMMPP. We then calculate
the weights of each Poisson probability functia#}, = [w1;, wa;, ..., wii],
through the following set of linear equations:

[
fre1(er) = Y wjige, (1), l=1,..1.
j=1

This assures that the fitting betweﬁml(k) and the weighted sum of Pois-
son probability functions is exact af points, forl = 1,2,...,4. The final
step in each iteration is the calculation of the new difference function

R (k) = froq1 (k) — zz:wjiggoj (k).
j=1

Tel Sys_ MFPMWPP. t ex; 29/ 01/2003; 16:36; p.12
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The algorithm stops when the maximunvaéf) (k) is lower than a pre-defined
percentage of the maximum 9§£+1(k) and M is made equal to.

Other methods for parameter estimation of finite Poisson mixtures with an
unknown number of components, have been proposed, e.g., basedmamino
estimation or maximum likelihood (see, e.g., [40] and references therein).
These methods lead to the solution of a system of nonlinear equations with a
number of variables equal to twice the number of components of the Poisson
mixture model. By contrast, in the algorithm described above the rates of the
Poisson mixture model are fitted directly and the weights are fitted by solving
a system of linear equations with the weights as variables, thus obtaining a
more computationally effective procedure. Moreover, the proposszbdure
leads to the fitting of a small number of components for the fitted IP traces.
Note also that the proposed procedure is in line with the global heuristic
approach followed in the paper, which seeks a fast method to fit a particula
class of MMPPs instead of a purely statistical fitting of an MMPP.

After M has been determined, the parameters of the M-dMMPP,

{(alD A G = 1,2,..., M}, are then set equal to

7T](-L+1) = WjM and A§-L+1) = ;.

3.4. M2L-DMMPP MODEL CONSTRUCTION

Finally, the M2L-dMMPP process can be constructed using the equations (9)
and (10), where\ L+ P+ A andP (), ; = 1, ..., L, were calculated
in the last two subsections.

4, Numerical Results

We apply our fitting procedure to several traffic traces: (i) the publiciilav
able Bellcore LAN traces [1] and (ii) a set of traces of IP traffic measure
at the University of Aveiro (UA). The UA traces are representativénef
ternet access traffic produced within a University campus environmeaht, a
span over five different day periods. The UA network provides ectian
between the 29 campus buildings, and includes three backbone techaplogie
() an old 10Base5 Ethernet, (ii) an optical fiber FDDI ring and (iii) an optica
fiber ATM network. The interconnection is provided by 15 IP/IPX routers
spread over the campus. The network allows asynchronous actressdke
exterior, using modems (analogue/ISDN), which provides Internetsadoe
external users. The UA network is connected to the Internet througii lsin
connection at 10 Mbits/sec. The measurements were carried out in a ¥80 Mb
Ethernet LAN on the back of the Internet access router. The mainabkara
istics of the UA traces are described in Table I. Each UA trace correspon
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to a different day period. All measurements captured 20 million packets.
However, to assure stationarity, traces UA6b and UA10b were truntated
10 million packets. The traffic analyzer was a 1.2 GHz AMD Athlon PC,
with 1.5 Gbytes of RAM, running WinDump. The measurements recorded the
arrival instant and the IP header of each packet. The UA traces ariittiing
software, which is based on MATLAB, are available at http://www.av.it.pt.

We assess the fitting procedure by comparing the empirical probability
and autocovariance functions of the original data traces and the thabretic
ones corresponding to the fitted dMMPPs.

We analyze the presence of LRD behavior, in both the original and the
fitted data traces, using the method described in [32]. This method resorts to
the so-called Logscale Diagram which consists in the grapjy efainsty,
together with confidence intervals about fyewherey; is a function of the
wavelet discrete transform coefficients at sgal€raffic is said to be LRD if,
within the limits of the confidence intervals, the fall on a straight line, in
a range of scales from some initial valgieup to the largest one present in
data.

Table Il summarizes some of the characteristics and results of the fit-
ting process. For each trace, it indicates the number of states of the fitted
dMMPP, the stationary probabilities of 2-MMPPs’ first state)( the number
of 2-dMMPPs modeling the autocovariance (L), the computational effigienc
measured both in terms of time and floating point operations (FLOPS), ob-
tained with MATLAB, and the errors relative to the fitting of the probability
function (PF) and of the autocovariance function (AF). The fitting eisor
defined in terms of the Inequality Coefficient (IC). The results indicateahat
close match was obtained in all cases.

We also analyze the queuing behavior by comparing the packet loss ratio,
obtained through trace-driven simulation, using the original data tracks an
simulated traces obtained from the fitted dMMPPs. To calculate the packet
loss ratio, we assume a fixed packet size equal to the mean packet ®ze. Th
sampling interval of the counting process was 0.1 seconds for all triaces.
each case, results are shown for two average link utilization values.

To determine if the fitted dMMPPs are able to capture the LRD behavior
up to the time-scales of interest, we calculate the so-called correlation horizon
(CH), using the method of [8]. The CH is the autocovariance lag that sepa-
rates relevant and irrelevant time-scales for the purpose of assessinog
behavior, and is a function of the input data characteristics and of titensys
parameters.
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Table I. Main characteristics of measured traces.

Trace Capture date Capture interval | Trace size | Mean rate| Mean pkt
name (pkts) (pkts/sec)| size (bytes)
UA17 | Thu, Juner® 2001 | 2.40pmto 6.10pm| 20 millions 1114 536
UAlb | Tue, July3'™ 2001 | 8.00pm to 3.15am| 20 millions 766 598
UABb | Thu, July5*® 2001 | 3.58amto 9.11am| 10 millions 533 692
UA10b | Fri, July6™ 2001 | 12.41pmto 3.16pm 10 millions 1074 600
UA19b | Tue, July10*® 2001 | 10.15am to 3.08pm 20 millions 1138 557

Table II. Fitting results for the packet arrival process.

Trace Inferred model| 71 | L | MFLOPS | Fittingtime | PFIC | AFIC
name (sec) (%) (%)

pAug 56-dMMPP | 0.1 | 3 95.35 38.25 7.25 | 29.05
pOct 28-dMMPP 04| 2 28.41 50.67 9.21 7.37
UA17 12-dMMPP | 0.2 | 2 78.24 14.49 774 | 8.24
UAlb 24-dMMPP | 0.1 | 3 74.33 15.12 10.02 | 7.31
UAG6b 12-dMMPP | 0.2 | 2 67.99 12.52 13.62 | 5.70
UA10b 16-dMMPP | 0.1 | 2 130.06 21.93 9.70 | 17.88
UA19b 12-dMMPP | 0.2 | 2 95.51 13.72 10.75| 5.23

4.1. BELLCORE TRACES

The fitting procedure was applied to the Bellcore traces pOct.TL and pAug.TL
both with 1 million samples. These traces were fitted to a 28-dMMPP and a
56-dMMPP respectively.

The pOct.TL trace autocovariance was fitted by two exponential func-
tions with parameters: = [185.9 180.8] andj = [-3.51 x 1072 —

3.27 x 1074], and the pAug.TL trace autocovariance by three exponentials
with parametersi = [75.3 91.57 43.78] andj3 = [-8.43 x 101 —

9.15 x 1072 — 1.2 x 1073]. Thus, in these traces, the number of identified
time-scales was twd( = 2) and three [ = 3), respectively.

Figure 4 shows the fitting results for the probability function (pOct.TL
trace). In this case, the fitting was performed with a very small approximation
error. From Figure 5 it can be seen that the autocovariance of the fittdel mo
is able to reproduce the average behavior of the empirical autocova(iaunc
not its oscillatory behavior).
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Figure 5. Autocovariance, pOct.TL.

In order to analyze the queuing behavior we considered a queue with two
service rates, 517 KBytes/s and 452 KBytes/s, corresponding teshgc
to link utilizations of p = 0.7 andp = 0.8. The buffer size was varied
from 1 to 25000 packets. The average packet size for this trace isyé&8 b
Figure 6 shows that the packet loss ratios of original and fitted traces are
quite close for all buffer sizes and both link utilizations. This confirms the
good matching obtained in both first and second order statistics. It alassho
that the oscillatory behavior of the autocovariance has negligible impact on
the queuing behavior. Figure 7 shows that the fitted trace exhibits LRI sinc
they; values are aligned between octave 9 and octave 11, the highest octave
present in data. The estimated Hurst parametéAlf is 0.838.
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Figure 7. Scaling analysis, pOct.TL fitted.

The correlation horizon (CH) for the pOct.TL trace, with a buffer size of
5000 packets and a link utilization of 0.8 (the largest one considered in the
gueuing behavior study) is 31.1 seconds. As shown in Figure 5, this igalue
well bellow the maximum autocovariance lag that is matched by our fitting
procedure, thus confirming its ability to capture the LRD behavior up to the
time-scales of interest to the system under study.

The fitting results for the pAug.TL trace are similar to the ones obtained
with the pOct.TL trace, as can be seen in Figure 8 and Figure 9. The fitting of
the probability function is slightly better, but the fitting of the autocovariance
function is worse. The relatively high fitting error obtained in this case is
due to the strong oscillatory behavior of the empirical autocovariance. The
packet loss ratios of original and fitted traces, shown in Figure 10/ m@sa
coincident for all buffer sizes and link utilizations. In this case the simula-
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tions were performed with service rates of 197 KBytes/s and 172 KBytes/s,
corresponding again to link utilizations pf= 0.7 andp = 0.8. The buffer

size was varied from 1 to 5000 packets. The average packet sizésfinaite

is 434 bytes. Again, the fitted trace exhibits LRD, since ghevalues are
aligned between octave 6 and octave 11, the highest octave presetat,iasla
shown in Figure 11. The estimated Hurst parametéf is- 0.714. The CH

for the maximum buffer size (5000 packets) and maximum link utilization
(0.8) is 15.5 seconds, and Figure 9 shows that, as in the pOct.TL case, this
value is bellow the maximum autocovariance lag that is matched by the fitting
procedure.
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4.2. INTERNET TRACES MEASURED AT THEUNIVERSITY OF AVEIRO

The inference procedure was also applied to the UA19b trace, a 5 thaces
with approximately 20 million packets (much larger and longer than the Bell-
core traces). The procedure fitted the trace to a 12-dMMPP model. Only two
relevant time-scales were identified, which explains the smaller number of
states of the fitted dMMPP, when comparing with the Bellcore traces. The
parameters of the two exponentials are= [1.00 x 10> 6.87 x 10!] and

3 = [-6.91 x 107° —1.28 x 1072]. As in the Bellcore traces, there was

a close fitting of both the probability function (Figure 12) and the autoco-
variance (Figure 13). The packet loss ratio curves (Figure 17)Ispevary
close. The service rates were 685 KBytes/s and 629 KBytes/s, congisg
respectively to link utilizations op = 0.9 andp = 0.98. The reason for
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Figure 12. Probability function, UA19b trace.

using link utilizations higher than with the Bellcore traces, is due to the lower
burstiness of the UA traffic which leads to lower packet losses for the same
link utilization. The buffer size was varied from 1 to 9000 packets. The-ave
age packet size of this trace is 557 bytes. The CH is 14.5 seconds ftiea bu
size of 9000 packets and a link utilization of 0.98, which is again bellow the
maximum autocovariance lag matched by the fitting procedure. Figure 14 and
Figure 15 show that both traces exhibit LRD, sinceghealues are aligned
between a medium octave (7 for the original data trace, 5 for the fitted data
trace) and the highest octave present in data. The estimated Hurst fasame
are H = 0.952 for the original data trace anf = 0.935 for the fitted data
trace.

The results obtained with the remaining four UA traces are similar. The
gueuing results are shown in Figures 17, 18, 19 and 20. The link utilizations
were agairp = 0.9 andp = 0.98 for all traces. In all cases the buffer size
was varied from 100 packets to 12000 packets.

5. Related work

In this section, we restrict our attention to fitting procedures for MMPPs. We
start by noting that most published procedures only apply to 2-MMPRs [24
27]. While 2-MMPPs can capture traffic burstiness, the number of states is
in general not enough to provide a good match of the marginal distribution
when the traffic shows variability on a wide range of arrival rates.

Skelly et al. [28] propose a method for estimating the parameters of a
generic MMPP that only matches the first-order statistics: the Poissoalarriv
rates are inferred from the empirical density function and the state transi-
tion rates from a direct measurement of the observed trace. We use a similar
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method in the steps of our procedure described in subsection 3.3. Hpaeve
limitation in [28] is that the number of states results from arbitrating the num-
ber of bins for constructing the empirical density function and the length of
these bins determines the Poisson arrival rates. This results in equalgdspa
Poisson arrival rates. In our case, we approximate the empirical lgfitypa
function by a weighted sum of Poisson distributions. This allows for a better
selection of the Poisson arrival rates, resulting in a lower number of states
when compared with [28], adapted to the particular characteristics of thee tra
being modeled.

The work by Li and Hwang [29] is closely related to ours, in that it also
matches both the autocovariance and the marginal distribution. The fitting
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Figure 16. Packet loss ratio, UA19b trace.

procedure applies to CMPPs, which are a special case of MMPPs where
the steady-state probabilities are the same for all states. The structure of the
CMPP allows circumventing the so-called inverse eigenvalue problem, which
is associated with the need of inverting the exponential of the infinitesimal
generator matrix to obtain the transition rates from the fitted autocovariance.
As opposed to ours, the fitting procedure is able to capture pseuddperiod
components present in data (which shows up in the Bellcore traces), since
the infinitesimal generator matrix of a CMPP can have complex eigenvalues.
However, our experiments indicate that the pseudoperiodic componemsts ha
a small importance in what concerns queuing performance. Moreoy28]in
there is less flexibility in adjusting the marginal distribution, since the CMPP
states are equiprobable. In particular, with this procedure it is more diifficu
to detect low probability peaks on the arrival rate. If these peaks @tdugh
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Figure 18. Packet loss ratio, UAlb trace.

arrival rates the queuing behavior can be significantly affected. 9ptf#
detection resolution can only be improved by increasing the number of states.
Our procedure is well adapted to this case, since the method for matching the
empirical probability function is specifically based on detection of local peak

arrival rates.

As in our approach, Andersen and Nielsen [13] use a superpositidn of
MMPPs to model the different time-scales of the autocovariance. Eack of th
time-scales in the autocorrelation function is fitted to an exponential func-
tion, using a procedure similar to that of [38]. However, the time-scales are
defined a priori, whereas in our case a procedure to determine the sighific
time scales was implemented. Moreover, in [13] the fitting of the first-order
statistics is very poor, since only the mean is matched.

Deng and Mark [30] propose a method for estimating the parameters of a
MMPP with any number of states, based on the maximum-likelihood princi-
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Figure 19. Packet loss ratio, UAGb trace.
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Figure 20. Packet loss ratio, UA10b trace.

ple. The same principle was also used in [26,27] in the context of 2-MMPPs.
As referred in [27], the method of [30] is quite sensitive to the choice of
the sampling interval and can lead to an exceedingly high number of states.
These works do not directly address the issue of matching statistics of ob-
served data. Instead, they are targeted to minimizing the estimation error,
under the assumption that the underlying process is an MMPP with a number
of states known a priori. These assumptions severely weaken the applicatio
of these methods in the area of traffic modeling. In fact, the main challenge
in traffic modeling is the discovery of models and associated parameter esti-
mation procedures that provide flexible means of capturing the statistics of
observed data that have more impact on network performance. While the
MMPP model provides such framework, the performance of the parameter
estimation procedure should not be dependent on the assumption that the
underlying population is indeed of the MMPP type.
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6. Conclusions

This paper proposed a parameter fitting procedure using Markov Medula
Poisson Processes (MMPPSs) that leads to accurate estimates of queuing b
havior for network traffic exhibiting LRD behavior. Traffic models areey k
element in network traffic engineering, since they enable efficient resou
allocation (e.g by exploiting potential multiplexing gains through effective
bandwidths) and optimal configurations of the network operational parame
ters (e.g. the queue weights at packet schedulers). The considefddtPPs

is motivated by the availability of theoretical results for analyzing the queu-
ing behavior and for determining effective bandwidths. The procedsed

to fit an MMPP matches both the autocovariance and marginal distribution
of the counting process. The MMPP is constructed as superpositidn of
2-MMPPs and one M-MMPP. The M-MMPP is designed to match the prob-
ability function and thel. 2-MMPPs to match the autocovariance function.
A major feature is that the number of states is not fixed a priori, and can be
adapted to the particular trace being modeled. Our numerical results, which
include fitting traffic traces that exhibit long-range dependence, shawttt
procedure matches closely the autocovariance and probability funciibas.
gueuing behavior, as assessed by the packet loss ratio suffered et
sured and the fitted traces, also shows a very good agreement. Fumdermo
the results illustrate that MMPP models, although not being intrinsically long-
range dependent, can capture this type of behavior up to the time-scales of
interest to the system under study.
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