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Abstract. This paper proposes a parameter fitting procedure using Markov Modulated Pois-
son Processes (MMPPs) that leads to accurate estimates of queuing behavior for network
traffic exhibiting LRD behavior. The procedure matches both the autocovariance and marginal
distribution of the counting process. A major feature is that the number of states is not fixed a
priori, and can be adapted to the particular trace being modeled. The MMPPis constructed as
a superposition ofL 2-MMPPs and one M-MMPP. The 2-MMPPs are designed to match the
autocovariance and the M-MMPP to match the marginal distribution. Each 2-MMPP models
a specific time-scale of the data. The procedure starts by approximating the autocovariance by
a weighted sum of exponential functions that model the autocovariance of the 2-MMPPs. The
autocovariance tail can be adjusted to capture the long-range dependence characteristics of
the traffic, up to the time-scales of interest to the system under study. The procedure then fits
the M-MMPP parameters in order to match the marginal distribution, within the constraints
imposed by the autocovariance matching. The number of states is also determined as part of
this step. The final MMPP with M2L states is obtained by superposing theL 2-MMPPs and
the M-MMPP. We apply the inference procedure to traffic traces exhibitinglong-range depen-
dence and evaluate its queuing behavior through simulation. Very good results are obtained,
both in terms of queuing behavior and number of states, for the traces used, which include the
well-known Bellcore traces.

Keywords: Traffic modeling, autocorrelation, self-similar, long-range dependence, MMPP.

1. Introduction

Since the work by Lelandet al. [1] several studies have shown that network
traffic may exhibit properties of self-similarity and long-range dependence
(LRD) [1–7]. These characteristics have significant impact on networkperfor-
mance. However, as pointed out in [8,9], matching the LRD is only required
within the time-scales of interest to the system under study. For example, in
order to analyze the queuing behavior, the selected traffic model needs only to
capture the correlation structure of the source up to the so-called critical time-
scale or correlation horizon, which is directly related to the maximum buffer
size. One of the consequences of this result is that more traditional traffic
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models such as Markov Modulated Poisson Processes (MMPPs) can still
be used to model traffic exhibiting long-range dependence [10–13]. More-
over, providing a good match of the LRD behavior (through an accurate
fitting of the autocovariance tail) is not enough for accurate prediction of
the queuing behavior. For example, the work in [14] discusses the limita-
tions of using only the mean and the autocorrelation function as statistical
descriptors of the input process for the purpose of analyzing queuingperfor-
mance. The authors show that the mean queue length can vary substantially
when the parameters of the input process are varied, subject to the same
mean and autocorrelation function. Thus, in general, accurate predictionof
queuing behavior requires detailed modeling of the first-order statistics, not
just the mean. While this issue is of major importance, we believe it remains
largely neglected. The limitations of matching only the LRD are also in line
with recent suggestions that multifractal models [15–17], or eventually hybrid
models combining multifractal and self-similar behavior [18], may be more
appropriate than self-similar ones for certain types of network traffic as they
allow for incorporating time-dependent scaling laws.

The main goal of the present work is to develop a parameter fitting pro-
cedure using Markov Modulated Poisson Processes (MMPPs) that leads to
accurate estimates of queuing behavior for network traffic exhibiting LRD
behavior. In order to achieve this goal, the procedure matches closely both
the autocovariance and the marginal distribution of the counting process.
The consideration of MMPPs is motivated by the availability of theoretical
results for analyzing the queuing behavior [19] and for determining effective
bandwidths [20,21]. The work also seeks minimizing the number of states
of the underlying model so as to reduce the complexity associated with the
calculation of the performance metrics of interest. MMPPs have deserved
considerable attention in the literature (see, e.g., [10–13,22–31]).

Matching simultaneously the autocovariance and the marginal distribution
is a difficult task since every MMPP parameter has an influence on both
characteristics. With the purpose of achieving some degree of decoupling
when matching these two statistics, we construct the MMPP as a superpo-
sition of two MMPPs, where one MMPP (with2L states) is used to adjust the
autocovariance and the other (withM states) is used to adjust the marginal
distribution, taking into account the contribution of the first MMPP. We will
denote the resulting process as M2L-MMPP. The2L-MMPP matching the
autocovariance is a superposition ofL 2-MMPPs. Given that the autocovari-
ance of a 2-MMPP is a single exponential, this approach allows matching
the empirical autocovariance based on prior approximation by a weighted
sum of exponentials, which results in a simple and accurate procedure. The
M-MMPP matching the marginal distribution is forced to have null autoco-
variance at positive lags, to assure that the autocovariance of the M2L-MMPP
equals that of the superposition of theL 2-MMPPs; the marginal distribu-
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tion of the M-MMPP is obtained through deconvolution of theL 2-MMPPs
and M2L-MMPP marginal distributions, thus ensuring that the contribution
of the L 2-MMPPs is taken into account. The autocovariance modeling is
such that each 2-MMPP (in the set ofL 2-MMPPs) models a specific time-
scale. Thus, in this work, the concept of time-scale is defined in the context
of second-order statistics: each time-scale is associated with a characteristic
time constant of the autocovariance function. An important feature of the
procedure is that bothL andM need not to be defined a priori, since they are
determined as part of the procedure.

We note that, in order to boost the computational efficiency of the fit-
ting procedure, the2-MMPPs used to fit the autocovariance function are
interrupted Poisson processes, and that the value ofM of the M -MMPP
is chosen as the smallest value that provides a given degree of matching
between the data and the marginal probability function of the fitted model.
Moreover, the assumed independence between theM -MMPP and theL 2-
MMPPs introduces further constraints on the parametric form of the fitted
M2L-MMPP.

When measuring network traffic data, we can either record the individual
arrival instants or the number of arrivals in a predefined sampling (time)
interval. The former approach brings more detail but the latter one has the
advantage of producing a fixed amount of data that is known in advance.This
allows the recording of longer traces, which clearly pays off the loss of detail
in data recording, if the sampling interval is chosen appropriately. In this
work, we consider discrete time MMPPs (dMMPPs) instead of continuous
time MMPPs, since they are more natural models for data corresponding
to the number of arrivals in a sampling interval. We note that discrete time
and continuous time MMPPs are basically interchangeable (through a simple
parameter rescaling) as models for arrival processes, whenever thesampling
interval used for the discrete time version is small compared with the average
sojourn times in the states of the modulating Markov chain.

The fitting procedure starts by approximating the autocovariance by a
weighted sum of exponential functions. As part of this step, the relevanttime-
scales of the data are identified. After this, the procedure fits the M-dMMPP
parameters in order to match the probability function, within the constraints
imposed by the autocovariance matching. The final M2L-dMMPP is obtained
by superposing theL 2-dMMPPs and the M-dMMPP.

We apply the fitting procedure to traffic traces exhibiting LRD, including
the well known, publicly available, Bellcore traces. The LRD characteristics
are analyzed using the wavelet based estimator of [32]. Results show thatthe
MMPPs obtained through the fitting procedure are capable of modeling the
LRD behavior present in data. The fitting procedure is also assessed in terms
of queuing behavior. Results show a very good agreement between the packet
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loss ratio obtained with the original data traces and with traces generated from
the fitted MMPPs.

This paper is organized as follows. Section 2 gives some background on
discrete MMPPs. In section 3 we describe the fitting procedure. Section 4
presents the numerical results, which include applying the fitting procedure
to measured traffic traces. In section 5 our work is compared with previously
published ones. Finally, in section 6 we conclude the paper.

2. Background

The discrete time Markov Modulated Poisson Process (dMMPP) is the dis-
crete time version of the popular (continuous time) MMPP and may be re-
garded as a Markov random walk where the increments in each instant have a
Poisson distribution whose parameter is a function of the state of the modula-
tor Markov chain. More precisely, the (homogeneous) Markov chain(X, J) =
{(Xk, Jk), k = 0, 1, . . .} with state spaceIN0 ×S is a dMMPP if and only if
for k = 0, 1, . . .,

P (Xk+1 = m, Jk+1 = j|Xk = n, Jk = i) =

=





0 m < n

pij e−λi
λm−n

i

(m−n)! m ≥ n

(1)

for all m, n ∈ IN0 and i, j ∈ S, with λi, i ∈ S, being nonnegative real
constants andP = (pij) being a irreducible stochastic matrix. Note that
the distribution ofXk+1 − Xk given Jk = j is Poisson with meanλj , so
that λj represents the mean increment of the processX when the modu-
lating Markov chain is in statej. The dMMPP is a particular case of the
dBMAP (discrete time batch Markovian arrival process proposed by Blondia
and Casals [33] and that has received some attention (see, e.g., [34–37] and
references therein). In the dBMAP the distribution of the increments of the
process at each time instant may depend on the state visited at the previous
instant in addition to the current state.

Whenever (1) holds, we say that(X, J) is a dMMPP with set of modulat-
ing statesS and parameter (matrices)P andΛ, and write

(X, J) ∼ dMMPPS(P,Λ) (2)

whereΛ = (λij) = (λiδij). The matrixP is the transition probability matrix
of the modulating Markov chainJ , whereasΛ is the matrix of Poisson arrival
rates. IfS has cardinalityr, we say that(X, J) is a dMMPP of orderr (r-
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dMMPP). When, in particular,S = {1, 2, . . . , r} for somer ∈ IN , then

P =





p11 p12 . . . p1r

p21 p22 . . . p2r

. . . . . . . . . . . .

pr1 pr2 . . . prr



 andΛ =





λ1 0 . . . 0
0 λ2 . . . 0

. . . . . . . . . . . .

0 0 . . . λr



 (3)

and we write simply that(X, J) ∼ dMMPPr(P,Λ).
We will consider the superposition of (independent)L 2-dMMPPs

(X(l), J (l)) ∼ dMMPP2(P
(l),Λ(l)), l = 1, 2, . . . , L (4)

and oneM -dMMPP

(X(L+1), J (L+1)) ∼ dMMPPM (P(L+1),Λ(L+1)). (5)

Note that, in particular, forl = 1, 2, . . . , L,

P
(l) =

[
p
(l)
11 p

(l)
12

p
(l)
21 p

(l)
22

]

, Λ
(l) =

[
λ

(l)
1 0

0 λ
(l)
2

]

(6)

and we assume thatp(l)
12 + p

(l)
21 < 1. In addition, we considerJ (1), J (2),

. . . , J (L+1) to be ergodic chains in steady-state. Forl = 1, 2, . . . , L we
denote byπ(l) =

[
π

(l)
1 π

(l)
2

]
the stationary distribution ofJ (l). Similarly, we

denote byπ(L+1) = [π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M ] the stationary distribution of

J (L+1).
The result of the superposition is the process

(X, J) =

(
L+1∑

l=1

X(l), (J (1), J (2), . . . , J (L+1))

)

∼ dMMPPS(P,Λ) (7)

where

S = {1, 2}L × {1, 2, . . . , M} (8)

P = P
(1) ⊗ P

(2) ⊗ . . . ⊗ P
(L+1) (9)

Λ = Λ
(1) ⊕ Λ

(2) ⊕ . . . ⊕ Λ
(L+1) (10)

with ⊕ and⊗ denoting the Kronecker sum and the Kronecker product, re-
spectively. Note that Markov chainJ is also in steady-state. We refer to
(X, J) as being theM2L-dMMPP. The superposition of anM -dMMPP and
L 2-dMMPPs is depicted in Figure 1.

In our approachL andM are not fixeda priori but instead are computed
as part of the fitting procedure. However, in the rest of this section they
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Figure 1. Superposition of an M-dMMPP andL 2-dMMPP models.

may be thought as being fixed. We want theL 2-dMMPPs to capture the
autocovariance function of the increments of the arrival process (X). Also,
discounting for the effect of theL 2-dMMPPs, we want theM -dMMPP to
approximate the distribution of the increments of the arrival process. To ex-
plain how this may be accomplished, it is convenient to define the increment
processes associated toX(1), X(2), . . . , X(L+1), andX, which we denote by
Y (1), Y (2), . . . , Y (L+1), andY , respectively. Thus,

Y
(l)
k = X

(l)
k+1 − X

(l)
k , l = 1, 2, . . . , L + 1 (11)

and
Yk = Xk+1 − Xk (12)

for k = 0, 1, . . .. Note thatYk is the (total) number of arrivals at sampling
interval k andY

(l)
k is the number of arrivals that are due to thel-th arrival

process, so that, in particular,

Yk =
L+1∑

l=1

Y
(l)
k , k = 0, 1, 2, . . . . (13)

MoreoverY (1), Y (2), . . . , Y (L+1), andY , are stationary sequences.
In order to characterize the marginal distributions of the processesY (1),

Y (2), . . . , Y (L+1), andY , we denote, respectively, by{fl(k), k = 0, 1, 2, . . .},
l = 1, 2, . . . , L + 1, and{f(k), k = 0, 1, 2, . . .}, their (marginal) probability
functions. As the univariate distributions ofY (1), Y (2), . . . , Y (L+1) are mix-
tures of Poisson distributions, we denote the probability function of a Poisson
random variable with meanµ by {gµ(k), k = 0, 1, 2, . . .}, for µ ∈ [0, +∞),
so that

gµ(k) = e−µ µk

k!
, k = 0, 1, 2, . . . . (14)

For l = 1, 2 . . . , L, the marginal distribution ofY (l) (that is, the distri-
bution of Y (l)

k , for k = 0, 1, . . .) is a mixture of two Poisson distributions

with meansλ(l)
1 and λ

(l)
2 and weightsπ(l)

1 and π
(l)
2 , respectively. Thus the
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Multiscale Fitting Procedure using Markov Modulated Poisson Processes 7

probability functions ofY (l), l = 1, 2, . . . , L, are given by

fl(k) = π
(l)
1 g

λ
(l)
1

(k) + π
(l)
2 g

λ
(l)
2

(k), k = 0, 1, 2, . . . (15)

and their autocovariance functions are

γ
(l)
k = Cov(Y

(l)
0 , Y

(l)
k ) = π

(l)
1 π

(l)
2 |λ(l)

2 −λ
(l)
1 |2 ekcl , k = 0, 1, 2, . . . (16)

wherecl = ln (1 − p
(l)
12 − p

(l)
21). Note that, in particular, the autocovariance

functions ofY (1), Y (2), . . . , Y (L) exhibit an exponential decay to zero.
As we want theM -dMMPP to approximate the distribution of the incre-

ments of the arrival process but to have no contribution to the autocovariance
function of the increments of the M2L-dMMPP, we choose to makeJ (L+1) a
Markov chain with no memory whatsoever. This is accomplished by choosing

P
(L+1) =





π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M

π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M

. . . . . . . . . . . .

π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M




. (17)

Note that this implies thatY (L+1) is an independent and identically dis-
tributed sequence of random variables whose distribution is a mixture of
M Poisson random variables with meansλ

(L+1)
i and weightsπL+1

i , for i =

1, 2, . . . , M . As a consequence, the probability function ofY (L+1) is given
by

fL+1(k) =
M∑

j=1

π
(L+1)
j g

λ
(L+1)
j

(k), k = 0, 1, 2, . . . (18)

and the autocovariance function ofY (L+1) is null for all positive lags; i.e.,

γ
(L+1)
k = Cov(Y

(L+1)
0 , Y

(L+1)
k ) = 0, k ≥ 1. (19)

Taking into account (13), it follows that the probability function ofY is
given by:

f(k) = (f1 ⊕ f2 ⊕ . . . ⊕ fL+1) (k) (20)

where⊕ denotes the convolution of probability functions.Y is a sequence of
random variables whose distribution is a mixture of Poisson random variables
(note that the sum of independent mixtures of Poisson random variables is
also a mixture of Poisson random variables), and the probability function of
Y may be written in the following way

f(k) =
2∑

j1=1

2∑

j2=1

. . .
2∑

jL=1

M∑

jL+1=1

(
L+1∏

l=1

π
(l)
jl

)

g∑L+1

l=1
λ
(l)
jl

(k). (21)
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Moreover, from (13) and taking into account (16) and (19), we conclude that
the autocovariance function ofY is given by

γk = Cov(Y0, Yk) =
L+1∑

l=1
Cov

(
Y

(l)
0 , Y

(l)
k

)

=
∑L

l=1 π
(l)
1 π

(l)
2 |λ(l)

2 − λ
(l)
1 |2 ekcl

(22)

for k = 1, 2, . . ..

3. Inference Procedure

In the rest of the paper we will refer toY (1), Y (2), . . . , Y (L) as the2-dMMPPs,
to Y (L+1) as theM -dMMPP, and toY as the M2L-dMMPP.

The inference procedure can be divided in four steps: (i) approximation of
the empirical autocovariance by a weighted sum of exponentials and identi-
fication of time-scales, (ii) inference of the M-dMMPP probability function
and of the 2-dMMPPs parameters, (iii) inference of the M-dMMPP Poisson
arrival rates and transition probabilities and (iv) calculation of the final M2L-
dMMPP parameters. The flow diagram of this procedure is represented in
Figure 2. In the following subsections we describe these steps in detail.

3.1. AUTOCOVARIANCE APPROXIMATION AND TIME-SCALES

IDENTIFICATION

Our approach is to approximate the autocovariance by a large number of
exponentials and then aggregate exponentials with a similar decay into the
same time-scale. This is close to the approaches considered in [10,13,38].
As a first step, we approximate the empirical autocovariance by a sum of
K exponentials with real positive weights and negative real time constants.
We choseK as

√
kmax, wherekmax represents the number of points of the

empirical autocovariance. This is accomplished through a modified Prony
algorithm [39]. The Prony algorithm returns two vectors,

~a =
[
a1 ... aK

]
~b =

[
b1 ... bK

]

which correspond to the approximating function

CK

(
~a,~b

)
=

K∑

i=1

aie
−bik, k = 1, 2, 3, ... (23)

At this point we identify the components of the autocovariance that char-
acterize the different time-scales. We defineL different time-scales, in which
the autocovariance decays,bi, i = 1, ..., K, fall in the same logarithmic scale.
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��
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βα
��
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Figure 2. Flow diagram of the inference procedure.

To explain how this is accomplished it is useful to assume thatbj ≤ bj+1, 1 ≤
j ≤ K − 1, andd. . .e represents the integer round towards plus infinity. The
valueL is computed through the following iterative process. Starting with
l = 1 andil = 1 computeil+1 through

il+1 = min {K + 1, inf {j : il < j ≤ K ∧ dlog10 (bj)e > dlog10 (bj−1)e}} .

If il+1 > K then makeL = l and stop; otherwise incrementl by one and
repeat the process. Note that, in particular,

dlog10 (bil)e = dlog10 (bil+1)e = . . . =
⌈
log10

(
bil+1−1

)⌉

but, if il+1 ≤ K,
dlog10 (bil)e <

⌈
log10

(
bil+1

)⌉
.
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For j = 1, 2, . . . , L, we consider that the decaysbil to bil+1−1 characterize
the same traffic time scale and we aggregate thenl = |il+1 − il| components
in one component with the following parameters:

αl =

il+1−1∑

k=il

ak and βl = −

il+1−1∑

k=il

akbk

αl

. (24)

Taking in account (16), (23) and (24), these parameters are used to fit the
autocovariance function of the 2-dMMPPY (l). Through these relations, it
results that

αl = d2
l π

(l)
1 π

(l)
2 and βl = cl (25)

wheredl = |λ(l)
2 − λ

(l)
1 |, i.e., the fitted autocovariance function ofY1 + Y2 +

. . . + YL is
L∑

l=1

αle
kβl , k = 1, 2, . . . . (26)

3.2. INFERENCE OF THEM-DMMPP PROBABILITY FUNCTION AND OF

THE L 2-DMMPP PARAMETERS

The next step is the inference of the M-dMMPP probability function from the
empirical probability function of the original data trace. The relation between
the probability functions of the2-dMMPPs, theM -dMMPP and the M2L-
dMMPP is defined by (20).

In order to simplify the deconvolution offL+1(k) andfl(k), l = 1, ..., L,
we consider that the Poisson arrival rate is zero in one state of each 2-dMMPP
source; that is,λ(l)

1 = 0 andλ
(l)
2 = dl, for l = 1, ..., L. From (25),

dl =

√
αl

π
(l)
1 π

(l)
2

, l = 1, 2, . . . , L. (27)

The probability function of theM -dMMPP,fL+1, is inferred from the em-
pirical probability function of the data, denoted byfe, and theL 2-dMMPP
probability functions, denoted bŷfl, l = 1, 2, . . . , L, based on the fitted
parameters, after fixing the probabilitiesπ

(l)
1 , l = 1, 2, . . . , L, through (20).

More precisely,fL+1 is fitted jointly with the parametersπ(l)
1 , l = 1, ..., L,

through the following constrained minimization process:

min
{π

(l)
1 , l=1,...,L},{fL+1(k), k=0,1,...}

∑

k

|oe(k)| (28)

where
oe(k) = fe(k) −

(
f̂1 ⊕ ... ⊕ f̂L ⊕ fL+1

)
(k) (29)
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subject to (25) and

0 < π
(l)
1 < 1, l = 1, 2, . . . , L,

fL+1(k) > 0, k = 0, 1, . . . ,

and
∑+∞

k=0 fL+1(k) = 1.

(30)

We denote byf̂L+1 the fitted probability function of the M-dMMPP. Note

thatπ(l)
1 is not allowed to be 0 or 1 because, in both cases, thelth 2-dMMPP

would degenerate into a Poisson process. The constrained minimization pro-
cess given by (28)–(30) is a non-linear programming problem and in general,
it is computationally demanding to obtain the global optimal solution. Ac-
cordingly, to solve this problem we consider two approximations: (i) we make
π

(l)
1 = π

(l+1)
1 , l = 1, . . . , L − 1 and (ii) we restrict the range of possibleπ

(l)
1

solutions to be discrete and such thatπ
(l)
1 = 0.001k, k = 1, . . . , 999. Then

a search process is used to find the minimum value of the objective function.
These approximations have had negligible impact on the results obtained so
far with the fitting procedure, in particular on those presented in section 4.

At this point all parameters of the 2-dMMPPs,Y (1), Y (2), . . . , Y (L), have
been determined and their corresponding 2-dMMPP matrices

{(P(l),Λ(l)), l = 1, 2, . . . , L}

can be constructed in the following way:

P
(l) =

[
1 − π

(l)
2 (1 − eβl) π

(l)
2 (1 − eβl)

π
(l)
1 (1 − eβl) 1 − π

(l)
1 (1 − eβl)

]

and

Λ
(l) =

[
0 0
0 dl

]
.

3.3. INFERENCE OFM-DMMPP PARAMETERS

The next step is the inference of the number of states and Poisson arrival rates
of theM -dMMPP from f̂L+1. To do this we inferf̂L+1 as a weighted sum
of Poisson probability functions, i.e., as the probability function of a finite
Poisson mixture with an unknown number of components.

The matching is carried out through an algorithm that progressively sub-
tracts a Poisson probability function from̂fL+1, which is described in the
flowchart of Figure 3. We represent theith Poisson probability function with
meanϕi by gϕi

(k). We defineh(i)(k) as the difference between̂fL+1(k)
and the weighted sum of Poisson probability functions at theith iteration.
Initially, we seth(1)(k) = f̂L+1(k). In each step, we first detect the maxi-

mum of h(i)(k). The correspondingk-value,ϕi = [h(i)]−1
(
max h(i) (k)

)
,
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Figure 3. Algorithm for calculation of the number of states and Poisson arrival rates of the
M-dMMPP.

will be considered theith Poisson rate of the M-dMMPP. We then calculate
the weights of each Poisson probability function,~wi = [w1i, w2i, ..., wii],
through the following set of linear equations:

f̂L+1(ϕl) =
i∑

j=1

wjigϕj
(ϕl), l = 1, ..., i.

This assures that the fitting betweenf̂L+1(k) and the weighted sum of Pois-
son probability functions is exact atϕl points, forl = 1, 2, . . . , i. The final
step in each iteration is the calculation of the new difference function

h(i) (k) = f̂L+1 (k) −
i∑

j=1

wjigϕj
(k).

TelSys_MFPMMPP.tex; 29/01/2003; 16:36; p.12



Multiscale Fitting Procedure using Markov Modulated Poisson Processes 13

The algorithm stops when the maximum ofh(i)(k) is lower than a pre-defined
percentage of the maximum of̂fL+1(k) andM is made equal toi.

Other methods for parameter estimation of finite Poisson mixtures with an
unknown number of components, have been proposed, e.g., based on moment
estimation or maximum likelihood (see, e.g., [40] and references therein).
These methods lead to the solution of a system of nonlinear equations with a
number of variables equal to twice the number of components of the Poisson
mixture model. By contrast, in the algorithm described above the rates of the
Poisson mixture model are fitted directly and the weights are fitted by solving
a system of linear equations with the weights as variables, thus obtaining a
more computationally effective procedure. Moreover, the proposed procedure
leads to the fitting of a small number of components for the fitted IP traces.
Note also that the proposed procedure is in line with the global heuristic
approach followed in the paper, which seeks a fast method to fit a particular
class of MMPPs instead of a purely statistical fitting of an MMPP.

After M has been determined, the parameters of the M-dMMPP,
{(π(L+1)

j , λ
(L+1)
j ), j = 1, 2, . . . , M}, are then set equal to

π
(L+1)
j = wjM and λ

(L+1)
j = ϕj .

3.4. M2L-DMMPP MODEL CONSTRUCTION

Finally, the M2L-dMMPP process can be constructed using the equations (9)
and (10), whereΛ(L+1), P(L+1), Λ(i) andP

(i), i = 1, ..., L, were calculated
in the last two subsections.

4. Numerical Results

We apply our fitting procedure to several traffic traces: (i) the publicly avail-
able Bellcore LAN traces [1] and (ii) a set of traces of IP traffic measured
at the University of Aveiro (UA). The UA traces are representative ofIn-
ternet access traffic produced within a University campus environment, and
span over five different day periods. The UA network provides connection
between the 29 campus buildings, and includes three backbone technologies:
(i) an old 10Base5 Ethernet, (ii) an optical fiber FDDI ring and (iii) an optical
fiber ATM network. The interconnection is provided by 15 IP/IPX routers
spread over the campus. The network allows asynchronous accessesfrom the
exterior, using modems (analogue/ISDN), which provides Internet access to
external users. The UA network is connected to the Internet through anATM
connection at 10 Mbits/sec. The measurements were carried out in a 100 Mb/s
Ethernet LAN on the back of the Internet access router. The main character-
istics of the UA traces are described in Table I. Each UA trace corresponds

TelSys_MFPMMPP.tex; 29/01/2003; 16:36; p.13
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to a different day period. All measurements captured 20 million packets.
However, to assure stationarity, traces UA6b and UA10b were truncatedto
10 million packets. The traffic analyzer was a 1.2 GHz AMD Athlon PC,
with 1.5 Gbytes of RAM, running WinDump. The measurements recorded the
arrival instant and the IP header of each packet. The UA traces and the fitting
software, which is based on MATLAB, are available at http://www.av.it.pt.

We assess the fitting procedure by comparing the empirical probability
and autocovariance functions of the original data traces and the theoretical
ones corresponding to the fitted dMMPPs.

We analyze the presence of LRD behavior, in both the original and the
fitted data traces, using the method described in [32]. This method resorts to
the so-called Logscale Diagram which consists in the graph ofyj againstj,
together with confidence intervals about theyj , whereyj is a function of the
wavelet discrete transform coefficients at scalej. Traffic is said to be LRD if,
within the limits of the confidence intervals, theyj fall on a straight line, in
a range of scales from some initial valuej1 up to the largest one present in
data.

Table II summarizes some of the characteristics and results of the fit-
ting process. For each trace, it indicates the number of states of the fitted
dMMPP, the stationary probabilities of 2-MMPPs’ first state (π1), the number
of 2-dMMPPs modeling the autocovariance (L), the computational efficiency
measured both in terms of time and floating point operations (FLOPS), ob-
tained with MATLAB, and the errors relative to the fitting of the probability
function (PF) and of the autocovariance function (AF). The fitting erroris
defined in terms of the Inequality Coefficient (IC). The results indicate thata
close match was obtained in all cases.

We also analyze the queuing behavior by comparing the packet loss ratio,
obtained through trace-driven simulation, using the original data traces and
simulated traces obtained from the fitted dMMPPs. To calculate the packet
loss ratio, we assume a fixed packet size equal to the mean packet size. The
sampling interval of the counting process was 0.1 seconds for all traces.In
each case, results are shown for two average link utilization values.

To determine if the fitted dMMPPs are able to capture the LRD behavior
up to the time-scales of interest, we calculate the so-called correlation horizon
(CH), using the method of [8]. The CH is the autocovariance lag that sepa-
rates relevant and irrelevant time-scales for the purpose of assessingqueuing
behavior, and is a function of the input data characteristics and of the system
parameters.

TelSys_MFPMMPP.tex; 29/01/2003; 16:36; p.14
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Table I. Main characteristics of measured traces.

Trace Capture date Capture interval Trace size Mean rate Mean pkt

name (pkts) (pkts/sec) size (bytes)

UA17 Thu, June7th 2001 2.40pm to 6.10pm 20 millions 1114 536

UA1b Tue, July3th 2001 8.00pm to 3.15am 20 millions 766 598

UA6b Thu, July5
th 2001 3.58am to 9.11am 10 millions 533 692

UA10b Fri, July6
th 2001 12.41pm to 3.16pm 10 millions 1074 600

UA19b Tue, July10
th 2001 10.15am to 3.08pm 20 millions 1138 557

Table II. Fitting results for the packet arrival process.

Trace Inferred model π1 L MFLOPS Fitting time PF IC AF IC

name (sec) (%) (%)

pAug 56-dMMPP 0.1 3 95.35 38.25 7.25 29.05

pOct 28-dMMPP 0.4 2 28.41 50.67 9.21 7.37

UA17 12-dMMPP 0.2 2 78.24 14.49 7.74 8.24

UA1b 24-dMMPP 0.1 3 74.33 15.12 10.02 7.31

UA6b 12-dMMPP 0.2 2 67.99 12.52 13.62 5.70

UA10b 16-dMMPP 0.1 2 130.06 21.93 9.70 17.88

UA19b 12-dMMPP 0.2 2 95.51 13.72 10.75 5.23

4.1. BELLCORE TRACES

The fitting procedure was applied to the Bellcore traces pOct.TL and pAug.TL,
both with 1 million samples. These traces were fitted to a 28-dMMPP and a
56-dMMPP respectively.

The pOct.TL trace autocovariance was fitted by two exponential func-
tions with parameters~α = [185.9 180.8] and ~β = [−3.51 × 10−2 −
3.27 × 10−4], and the pAug.TL trace autocovariance by three exponentials
with parameters~α = [75.3 91.57 43.78] and ~β = [−8.43 × 10−1 −
9.15× 10−2 − 1.2× 10−3]. Thus, in these traces, the number of identified
time-scales was two (L = 2) and three (L = 3), respectively.

Figure 4 shows the fitting results for the probability function (pOct.TL
trace). In this case, the fitting was performed with a very small approximation
error. From Figure 5 it can be seen that the autocovariance of the fitted model
is able to reproduce the average behavior of the empirical autocovariance (but
not its oscillatory behavior).
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Figure 4. Probability function, pOct.TL.
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Figure 5. Autocovariance, pOct.TL.

In order to analyze the queuing behavior we considered a queue with two
service rates, 517 KBytes/s and 452 KBytes/s, corresponding respectively
to link utilizations of ρ = 0.7 and ρ = 0.8. The buffer size was varied
from 1 to 25000 packets. The average packet size for this trace is 638 bytes.
Figure 6 shows that the packet loss ratios of original and fitted traces are
quite close for all buffer sizes and both link utilizations. This confirms the
good matching obtained in both first and second order statistics. It also shows
that the oscillatory behavior of the autocovariance has negligible impact on
the queuing behavior. Figure 7 shows that the fitted trace exhibits LRD, since
theyj values are aligned between octave 9 and octave 11, the highest octave
present in data. The estimated Hurst parameter isĤ = 0.838.
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Figure 6. Packet loss ratio, pOct.TL.
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Figure 7. Scaling analysis, pOct.TL fitted.

The correlation horizon (CH) for the pOct.TL trace, with a buffer size of
5000 packets and a link utilization of 0.8 (the largest one considered in the
queuing behavior study) is 31.1 seconds. As shown in Figure 5, this valueis
well bellow the maximum autocovariance lag that is matched by our fitting
procedure, thus confirming its ability to capture the LRD behavior up to the
time-scales of interest to the system under study.

The fitting results for the pAug.TL trace are similar to the ones obtained
with the pOct.TL trace, as can be seen in Figure 8 and Figure 9. The fitting of
the probability function is slightly better, but the fitting of the autocovariance
function is worse. The relatively high fitting error obtained in this case is
due to the strong oscillatory behavior of the empirical autocovariance. The
packet loss ratios of original and fitted traces, shown in Figure 10, are almost
coincident for all buffer sizes and link utilizations. In this case the simula-
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Figure 8. Probability function, pAug.TL.

10
−1

10
0

10
1

10
2

0

50

100

150

200

250

sec

au
to

co
va

ria
nc

e

original traffic
fitted model    

Figure 9. Autocovariance, pAug.TL.

tions were performed with service rates of 197 KBytes/s and 172 KBytes/s,
corresponding again to link utilizations ofρ = 0.7 andρ = 0.8. The buffer
size was varied from 1 to 5000 packets. The average packet size for this trace
is 434 bytes. Again, the fitted trace exhibits LRD, since theyj values are
aligned between octave 6 and octave 11, the highest octave present in data, as
shown in Figure 11. The estimated Hurst parameter isĤ = 0.714. The CH
for the maximum buffer size (5000 packets) and maximum link utilization
(0.8) is 15.5 seconds, and Figure 9 shows that, as in the pOct.TL case, this
value is bellow the maximum autocovariance lag that is matched by the fitting
procedure.
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Figure 10. Packet loss ratio, pAug.TL.
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Figure 11. Scaling analysis, pAug.TL fitted.

4.2. INTERNET TRACES MEASURED AT THEUNIVERSITY OF AVEIRO

The inference procedure was also applied to the UA19b trace, a 5 hourstrace
with approximately 20 million packets (much larger and longer than the Bell-
core traces). The procedure fitted the trace to a 12-dMMPP model. Only two
relevant time-scales were identified, which explains the smaller number of
states of the fitted dMMPP, when comparing with the Bellcore traces. The
parameters of the two exponentials are~α = [1.00 × 102 6.87 × 101] and
~β = [−6.91 × 10−5 −1.28 × 10−2]. As in the Bellcore traces, there was
a close fitting of both the probability function (Figure 12) and the autoco-
variance (Figure 13). The packet loss ratio curves (Figure 17) are also very
close. The service rates were 685 KBytes/s and 629 KBytes/s, corresponding
respectively to link utilizations ofρ = 0.9 andρ = 0.98. The reason for
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Figure 12. Probability function, UA19b trace.

using link utilizations higher than with the Bellcore traces, is due to the lower
burstiness of the UA traffic which leads to lower packet losses for the same
link utilization. The buffer size was varied from 1 to 9000 packets. The aver-
age packet size of this trace is 557 bytes. The CH is 14.5 seconds for a buffer
size of 9000 packets and a link utilization of 0.98, which is again bellow the
maximum autocovariance lag matched by the fitting procedure. Figure 14 and
Figure 15 show that both traces exhibit LRD, since theyj values are aligned
between a medium octave (7 for the original data trace, 5 for the fitted data
trace) and the highest octave present in data. The estimated Hurst parameters
areĤ = 0.952 for the original data trace and̂H = 0.935 for the fitted data
trace.

The results obtained with the remaining four UA traces are similar. The
queuing results are shown in Figures 17, 18, 19 and 20. The link utilizations
were againρ = 0.9 andρ = 0.98 for all traces. In all cases the buffer size
was varied from 100 packets to 12000 packets.

5. Related work

In this section, we restrict our attention to fitting procedures for MMPPs. We
start by noting that most published procedures only apply to 2-MMPPs [24–
27]. While 2-MMPPs can capture traffic burstiness, the number of states is
in general not enough to provide a good match of the marginal distribution
when the traffic shows variability on a wide range of arrival rates.

Skelly et al. [28] propose a method for estimating the parameters of a
generic MMPP that only matches the first-order statistics: the Poisson arrival
rates are inferred from the empirical density function and the state transi-
tion rates from a direct measurement of the observed trace. We use a similar
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Figure 13. Autocovariance, UA19b trace.
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Figure 14. Scaling analysis, UA19b trace original

method in the steps of our procedure described in subsection 3.3. However, a
limitation in [28] is that the number of states results from arbitrating the num-
ber of bins for constructing the empirical density function and the length of
these bins determines the Poisson arrival rates. This results in equally spaced
Poisson arrival rates. In our case, we approximate the empirical probability
function by a weighted sum of Poisson distributions. This allows for a better
selection of the Poisson arrival rates, resulting in a lower number of states,
when compared with [28], adapted to the particular characteristics of the trace
being modeled.

The work by Li and Hwang [29] is closely related to ours, in that it also
matches both the autocovariance and the marginal distribution. The fitting
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Figure 15. Scaling analysis, UA19b trace fitted.
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Figure 16. Packet loss ratio, UA19b trace.

procedure applies to CMPPs, which are a special case of MMPPs where
the steady-state probabilities are the same for all states. The structure of the
CMPP allows circumventing the so-called inverse eigenvalue problem, which
is associated with the need of inverting the exponential of the infinitesimal
generator matrix to obtain the transition rates from the fitted autocovariance.
As opposed to ours, the fitting procedure is able to capture pseudoperiodic
components present in data (which shows up in the Bellcore traces), since
the infinitesimal generator matrix of a CMPP can have complex eigenvalues.
However, our experiments indicate that the pseudoperiodic components have
a small importance in what concerns queuing performance. Moreover, in[29]
there is less flexibility in adjusting the marginal distribution, since the CMPP
states are equiprobable. In particular, with this procedure it is more difficult
to detect low probability peaks on the arrival rate. If these peaks occurat high
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Figure 17. Packet loss ratio, UA17 trace.
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Figure 18. Packet loss ratio, UA1b trace.

arrival rates the queuing behavior can be significantly affected. In [29] the
detection resolution can only be improved by increasing the number of states.
Our procedure is well adapted to this case, since the method for matching the
empirical probability function is specifically based on detection of local peak
arrival rates.

As in our approach, Andersen and Nielsen [13] use a superposition of2-
MMPPs to model the different time-scales of the autocovariance. Each of the
time-scales in the autocorrelation function is fitted to an exponential func-
tion, using a procedure similar to that of [38]. However, the time-scales are
defined a priori, whereas in our case a procedure to determine the significant
time scales was implemented. Moreover, in [13] the fitting of the first-order
statistics is very poor, since only the mean is matched.

Deng and Mark [30] propose a method for estimating the parameters of a
MMPP with any number of states, based on the maximum-likelihood princi-
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Figure 19. Packet loss ratio, UA6b trace.
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Figure 20. Packet loss ratio, UA10b trace.

ple. The same principle was also used in [26,27] in the context of 2-MMPPs.
As referred in [27], the method of [30] is quite sensitive to the choice of
the sampling interval and can lead to an exceedingly high number of states.
These works do not directly address the issue of matching statistics of ob-
served data. Instead, they are targeted to minimizing the estimation error,
under the assumption that the underlying process is an MMPP with a number
of states known a priori. These assumptions severely weaken the application
of these methods in the area of traffic modeling. In fact, the main challenge
in traffic modeling is the discovery of models and associated parameter esti-
mation procedures that provide flexible means of capturing the statistics of
observed data that have more impact on network performance. While the
MMPP model provides such framework, the performance of the parameter
estimation procedure should not be dependent on the assumption that the
underlying population is indeed of the MMPP type.
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6. Conclusions

This paper proposed a parameter fitting procedure using Markov Modulated
Poisson Processes (MMPPs) that leads to accurate estimates of queuing be-
havior for network traffic exhibiting LRD behavior. Traffic models are a key
element in network traffic engineering, since they enable efficient resource
allocation (e.g by exploiting potential multiplexing gains through effective
bandwidths) and optimal configurations of the network operational parame-
ters (e.g. the queue weights at packet schedulers). The considerationof MMPPs
is motivated by the availability of theoretical results for analyzing the queu-
ing behavior and for determining effective bandwidths. The procedureused
to fit an MMPP matches both the autocovariance and marginal distribution
of the counting process. The MMPP is constructed as superposition ofL

2-MMPPs and one M-MMPP. The M-MMPP is designed to match the prob-
ability function and theL 2-MMPPs to match the autocovariance function.
A major feature is that the number of states is not fixed a priori, and can be
adapted to the particular trace being modeled. Our numerical results, which
include fitting traffic traces that exhibit long-range dependence, show that the
procedure matches closely the autocovariance and probability functions.The
queuing behavior, as assessed by the packet loss ratio suffered by the mea-
sured and the fitted traces, also shows a very good agreement. Furthermore,
the results illustrate that MMPP models, although not being intrinsically long-
range dependent, can capture this type of behavior up to the time-scales of
interest to the system under study.
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nologia, the project POSI/42069/CPS/2001, and the grants BD/19781/99 and
SFRH/BSAB/251/01.

References

1. W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar nature of
ethernet traffic (extended version),”IEEE/ACM Transactions on Networking, vol. 2,
no. 1, pp. 1–15, Feb. 1994.

2. J. Beran, R. Sherman, M. Taqqu, and W. Willinger, “Long-range dependence in variable-
bit rate video traffic,” IEEE Transactions on Communications, vol. 43, no. 2/3/4, pp.
1566–1579, 1995.

TelSys_MFPMMPP.tex; 29/01/2003; 16:36; p.25



26 Salvador, Valadas and Pacheco

3. M. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic:Evidence and
possible causes,”IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 835–846,
Dec. 1997.

4. V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poissonmodeling,”
IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226–244, Jun. 1995.

5. B. Ryu and A. Elwalid, “The importance of long-range dependenceof VBR video
traffic in ATM traffic engineering: Myths and realities,”ACM Computer Communication
Review, vol. 26, pp. 3–14, Oct. 1996.

6. W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-similarity through high-
variability: Statistical analysis of ethernet LAN traffic at the source level,”IEEE/ACM
Transactions on Networking, vol. 5, no. 1, pp. 71–86, Feb. 1997.

7. W. Willinger, V. Paxson, and M. Taqqu,Self-similarity and Heavy Tails: Structural
Modeling of Network Traffic, A Practical Guide to Heavy Tails: Statistical Techniques
and Applications. Birkhauser, 1998.

8. M. Grossglauser and J. C. Bolot, “On the relevance of long-range dependence in network
traffic,” IEEE/ACM Transactions on Networking, vol. 7, no. 5, pp. 629–640, Oct. 1999.

9. A. Nogueira and R. Valadas, “Analyzing the relevant time scales in a network of queues,”
in Proceedings of Internet Performance and Control of Network Systems II, ITCom 2001,
SPIE vol. 4523, Aug. 2001, pp. 243–252.

10. T. Yoshihara, S. Kasahara, and Y. Takahashi, “Practical time-scale fitting of self-similar
traffic with Markov-modulated Poisson process,”Telecommunication Systems, vol. 17,
no. 1-2, pp. 185–211, May/Jun 2001.

11. P. Salvador and R.Valadas, “Framework based on Markov modulated Poisson processes
for modeling traffic with long-range dependence,” inProceedings of Internet Perfor-
mance and Control of Network Systems II, ITCom 2001, SPIE vol. 4523, Aug. 2001, pp.
221–232.

12. P. Salvador and R. Valadas, “A fitting procedure for Markov modulated Poisson pro-
cesses with an adaptive number of states,” inProceedings of the 9th IFIP Working
Conference on Performance Modelling and Evaluation of ATM & IP Networks, Jun.
2001.

13. A. Andersen and B. Nielsen, “A Markovian approach for modelingpacket traffic with
long-range dependence,”IEEE Journal on Selected Areas in Communications, vol. 16,
no. 5, pp. 719–732, Jun. 1998.

14. B. Hajek and L. He, “On variations of queue response for inputs withthe same mean
and autocorrelation function,”IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp.
588–598, 1998.

15. A. Feldmann, A.C. Gilbert, and W. Willinger, “Data networks as cascades: Investigating
the multifractal nature of internet WAN traffic,” inProceedings of SIGCOMM 98, 1998,
pp. 42–55.

16. A. Feldmann, A.C. Gilbert, P. Huang, and W. Willinger, “Dynamics ofIP traffic: A study
of the role of variability and the impact of control,” inProceedings of SIGCOMM 99,
1999, pp. 301–313.

17. R. Riedi and J. L. V́ehel, “Multifractal properties of TCP traffic: a numerical study,”
Technical Report No 3129, INRIA Rocquencourt, France, Feb. 1997, Available at
www.dsp.rice.edu/∼riedi.

18. A. Erramilli, O. Narayan, A. Neidhardt, and I. Saniee, “Performance impacts of multi-
scaling in wide area TCP/IP traffic,” inProceedings of INFOCOM 2000, 2000.

19. D.M. Lucantoni, “The BMAP/G/1 queue: A tutorial,” inModels and Techniques for
Performance Evaluation of Computer and Communication Systems, L. Donatiello and
R. Nelson, Eds., pp. 330–358. Springer Verlag, 1993.

TelSys_MFPMMPP.tex; 29/01/2003; 16:36; p.26



Multiscale Fitting Procedure using Markov Modulated Poisson Processes 27

20. A. Elwalid and D. Mitra, “Effective bandwidth of general Markovian traffic sources and
admission control of high speed networks,”IEEE/ACM Transactions on Networking,
vol. 1, no. 3, pp. 329–343, Jun. 1993.

21. G. Kesidis, J. Walrand, and C. Chang, “Effective bandwidths formulticlass Markov
fluids and other ATM sources,”IEEE/ACM Transactions on Networking, vol. 1, no. 4,
pp. 424–428, Aug. 1993.

22. W. Fischer and K. Meier-Hellstern, “The Markov-modulated Poisson process (MMPP)
cookbook,”Performance Evaluation, vol. 18, no. 2, pp. 149–171, 1993.

23. S. Shah-Heydari and T. Le-Ngoc, “MMPP models for multimedia traffic,” Telecommu-
nication Systems, vol. 15, no. 3-4, pp. 273–293, Jan. 2000.

24. R. Gr̈unenfelder and S. Robert, “Which arrival law parameters are decisive for queueing
system performance,” inProceedings of ITC 14, 1994.

25. S. Kang and D Sung, “Two-state MMPP modelling of ATM superposedtraffic streams
based on the characterisation of correlated interarrival times,” inProceedings of IEEE
GLOBECOM 95, Nov. 1995, pp. 1422–1426.

26. K. Meier-Hellstern, “A fitting algorithm for Markov-modulated Poissonprocess having
two arrival rates,”European Journal of Operational Research, vol. 29, 1987.

27. C. Nunes and A. Pacheco, “Parametric estimation in MMPP(2) using time discretiza-
tion,” in Proceedings of the 2nd Internation Symposium on Semi-Markov Models:Theory
and Applications, Dec. 1998.

28. P. Skelly, M. Schwartz, and S. Dixit, “A histogram-based model forvideo traffic be-
haviour in an ATM multiplexer,”IEEE/ACM Transactions on Networking, pp. 446–458,
Aug. 1993.

29. S. Li and C. Hwang, “On the convergence of traffic measurement and queuing analysis:
A statistical-match and queuing (SMAQ) tool,”IEEE/ACM Transactions on Networking,
pp. 95–110, Feb. 1997.

30. L. Deng and J. Mark, “Parameter estimation for Markov modulated Poisson processes
via the EM algorithm with time discretization,”Telecommunication Systems, vol. 1, pp.
321–338, 1993.

31. S. Robert and J. Le Boudec, “New models for self-similar traffic,” Performance
Evaluation, vol. 30, no. 1-2, Jul. 1997.

32. D. Veitch and P. Abry, “A wavelet based joint estimator for the parameters of LRD,”
IEEE Transactions on Information Theory, vol. 45, no. 3, Apr. 1999.

33. C. Blondia and O. Casals, “Statistical multiplexing of VBR sources: A matrix-analytic
approach,”Performance Evaluation, vol. 16, no. 1-3, pp. 5–20, 1992.

34. C. Blondia, “A discrete-time batch Markovian arrival process as B-ISDN traffic model,”
Belgian Journal of Operations Research, Statistics and Computer Science, vol. 32, pp.
3–23, 1993.

35. N. Rananand, “Markov approximations to D-BMAPs: information-theoretic bounds on
queueing performance,”Stochastic Models, vol. 11, no. 4, pp. 713–734, 1995.

36. F. Geerts and C. Blondia, “Superposition of Markov sources and long range depen-
dence,” inProceedings of the IFIP/ICCC International Conference on Information
Network and Data Communication, 1996.

37. Ad Ridder, “Fast simulation of discrete time queues with Markov modulated batch
arrivals and batch departures,”AEU International Journal of Electronics and Communi-
cations, vol. 52, pp. 127–132, 1998.

38. A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-tail distributions
to analyze network performance models,”Performance Evaluation, vol. 31, no. 3-4, pp.
245–279, 1997.

39. M. Osborne and G. Smyth, “A modified Prony algorithm for fitting sumsof exponential
functions,” SIAM Journal of Scientific Computing, vol. 16, pp. 119–138, 1995.

TelSys_MFPMMPP.tex; 29/01/2003; 16:36; p.27



28 Salvador, Valadas and Pacheco

40. D. Karlis and E. Xekalaki, “Robust inference for finite Poisson mixtures,” Journal of
Statistical Planning and Inference, vol. 93, pp. 93–115, 2001.

TelSys_MFPMMPP.tex; 29/01/2003; 16:36; p.28


