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ABSTRACT

In this paper we compare two traffic models based on Markov modulated Poisson processes (MMPPs), that were designed
to capture self-similar behavior over multiple time scales. These models are both constructed by fitting the distribution of
packet counts in a number of time scales. The first model is a superposition of MMPPs where each MMPP describes a
different time scale. The second one is obtained as the equivalent to an hierarchical construction process that, starting at
the coarsest time scale, successively decomposes MMPP states into new MMPPs to incorporate the characteristics offered
by finner time scales. We evaluate the accuracy of the models by comparing the probability mass function at each time
scale, as well as the loss probability and average waiting time in queue, corresponding to measured traces and to traces
synthesized according to the proposed models. The analysis is based on three measured traffic traces exhibiting self-similar
behavior: the well-known pOct Bellcore trace and two traces measured in a Portuguese ISP. Based on the obtained results,
we conclude that both Markovian models have good and very similar performances in matching the characteristics of the
data traces over the relevant time scales. However, one advantage of the hierarchical approach is that the number of states
of the corresponding MMPP can be much smaller.
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1. INTRODUCTION

The growing diversity of services and applications for IP networks is driving a strong requirement to make frequent
measurements of packet flows and to describe them through appropriate traffic models. Since the work by Lelandet al.1

several studies have shown that network traffic may exhibit properties of self-similarity and/or long-range dependence
(LRD),1–5 which have significant impact on network performance. Self-similar traffic shows identical statistical
characteristics over a wide range of time scales. In general, self-similarity implies long-range dependence, and vice-versa.

Several works have addressed the impact of LRD on network performance. Some of the works5–8 study the case of a
single queue and conclude that the buffer occupancy is not affected by autocovariance lags that are beyond the so-called
critical time scale (CTS) or correlation horizon (CH), which depends on system parameters such as the buffer capacity.
Similar conclusions are observed for the case of tandem queues.9 Thus, matching the LRD is only required within the time
scales specific to the system under study. One of the consequences of this result is that more traditional traffic models, such
as Markov Modulated Poisson Processes (MMPPs), can still be used to model traffic exhibiting LRD. The use of MMPPs
also benefits from the existence of several tools for calculating the queuing behavior and the effective bandwidth.

In this paper we describe and compare two traffic models based on MMPPs, together with their associated parameter
fitting procedures, that are able to capture self-similar behavior over a range of time scales. We consider discrete-time
MMMPs (dMMPPs) instead of continuous-time MMPPs, since they are more natural model for data corresponding to the
number of arrivals in a sampling interval (the recording format that was used). Note that discrete-time and continuous-time
MMPPs are basically interchangeable (through a simple parameter rescaling) as models for arrival processes, whenever
the sampling interval used for the discrete-time version is small compared with the average sojourn times in the states
of the modulating Markov chain. The first traffic model is constructed from the superposition of dMMPPs, where each
dMMPP represents a specific time scale.10 The parameter fitting procedure matches, at each time scale, a dMMPP to
the empirical probability mass function characteristic of that time scale. The second traffic model is constructed using an
hierarchical procedure: it starts at the largest time scale by inferring a dMMPP that matches the empirical PMF of this time



scale and then successively decomposes the dMMPP states into new dMMPPs, refining the traffic process by incorporating
the characteristics offered by finer time scales.11 In this way, a child dMMPP gives a more detailed description of its
parent state PMF. The refinement process is iterated until a pre-defined number of time scales are integrated and, finally,
a dMMPP incorporating this hierarchical structure is derived. The comparison of the fitting procedures is performed by
applying them to several measured traffic traces that exhibit self-similar behavior: the well-known pOct Bellcore trace,
a trace of aggregated IP WAN traffic, and a trace corresponding to the file sharing application Kazaa. We selected the
Kazaa application given its present popularity in the Internet. We compare the probability mass function at each time scale,
and the queuing behavior (as assessed by the loss probability and average waiting time in queue), corresponding to the
measured and to synthetic traces generated from the inferred models.

Several fitting procedures have been proposed in the literature for estimating the parameters of MMPPs from empirical
data, but they mainly concentrate on matching first- and/or second-order statistics, without addressing directly the issue of
modeling on multiple time scales.12–18 Yoshiharaet al.17 developed a fitting method for self-similar traffic based on the
superposition of 2-MMPPs, that matches the variance at each time scale. In this way, the resulting MMPP reproduces the
variance-scale curve characteristic of self-similar processes. Our proposals,10, 11 that we compare in this paper, are able to
match the complete distribution at each time scale (and not only the variance) in order to reproduce accurately self-similar
behavior.

The paper is organized as follows. Section 2 introduces the concept of self-similarity, motivates the need for a traffic
model that matches the different time scales of the data and gives the required background on MMPPs. Section 3 presents
the proposed traffic models and their associated parameter fitting procedures. Section 4 briefly describes the data traces
used in the numerical evaluation and in Section 5 we discuss the obtained results. Finally, Section 6 presents the main
conclusions.

2. SELF-SIMILARITY AND MARKOV MODULATED POISSON PROCESSES

The two inference procedures that will be compared are closely related to the notion of distributional self-similarity.
Consider the continuous-time processY (t) representing the traffic volume (e.g. in bytes) from time 0 up to timet and
letX(t) = Y (t) − Y (t− 1) be the corresponding increment process (e.g. in bytes/second). Consider also the sequence

X(m)(k) =
1
m

m∑
i=1

X((k − 1)m+ i), k = 1, 2, ... (1)

obtained by averagingX(t) over non-overlapping blocks of lengthm. Y (t) is exactly self-similar when it is equivalent,
in the sense of finite-dimensional distributions, toa−HY (at), for all t > 0 anda > 0, whereH (0 < H < 1) is the
Hurst parameter. Clearly, the processY (t) can not be stationary. However, ifY (t) has stationary increments then again
X(k) = X(1)(k) is equivalent, in the sense of finite-dimensional distributions, tom1−HX(m)(k). This illustrates that a
traffic model developed for fitting self-similar behavior must preferably enable the matching of the distribution on several
time scales. Note also that, in general, self-similarity implies LRD, and vice-versa. An excellent overview of self-similarity
and LRD can be found in Park and Willinger.19

An (homogeneous) Markov chain(Y, J) = {(Yk, Jk), k = 0, 1, . . .} with state spaceIN0 × S is a dMMPP if and only
if Y has non-decreasing sample paths and

P (Yk+1 = m, Jk+1 = j|Yk = n, Jk = i) = pij e
−λiλm−n

i /(m− n)! (2)

for k = 0, 1, . . ., m,n ∈ IN0 with n ≤ m, andi, j ∈ S, whereλi, i ∈ S are nonnegative real constants andP = (pij) is
a stochastic matrix. In this case we say that(Y, J) is a dMMPP with set of modulating statesS and parameter (matrices)
P andΛ, and write(Y, J) ∼ dMMPPS(P,Λ), whereΛ = (λij) = (λiδij). The matrixP is the transition probability
matrix of the modulating Markov chainJ , whereasΛ is the matrix of Poisson arrival rates. IfS has cardinalityr, we say
that (Y, J) is a dMMPP of orderr (r-dMMPP). When, in particular,S = {1, 2, . . . , r} for somer ∈ IN , then we write
simply that(Y, J) ∼ dMMPPr(P,Λ) and letπ = [π1 π2, . . . πr] be the stationary distribution ofJ .



The superposition of independent dMMPPs is still an dMMPP. More precisely, if(Y (l), J (l)) ∼ dMMPPrl
(P(l),Λ(l)),

l = 1, 2, . . . , L, are independent, then their superposition(Y, J) = (
∑L

l=1 Y
(l), (J (1), J (2), . . . , J (L))) is a dMMPPS(P,Λ)

whereS = {1, 2, . . . , r1} × . . .× {1, 2, . . . , rL},

P = P(1) ⊗ P(2) ⊗ . . .⊗ P(L) and Λ = Λ(1) ⊕ Λ(2) ⊕ . . .⊕ Λ(L) (3)

with ⊕ and⊗ denoting the Kronecker sum and product, respectively.

3. DESCRIPTION OF THE PROPOSED MARKOVIAN TRAFFIC MODELS

The proposed dMMPP models are able to capture self-similar behavior over a range of time scales. In order to incorporate
the traffic characteristics over several time scales, we work with the probability mass function (PMF) of the number of
arrivals at each time scale. The number of time scales,L, is fixeda priori and the time scales are numbered in an increasing
way, froml = 1 (corresponding to the largest time scale) tol = L (corresponding to the smallest time scale).

The difference between the two proposals lies essentially in the construction procedure of the equivalent dMMPP. The
first traffic model is based on the superposition of dMMPPs, where each dMMPP represents a specific time scale, and will
be designated bysuperpositionmodel. Figure 1 illustrates the construction methodology of the dMMPP for the simple
case of three time scales and two-state dMMPPs in each time scale. The dMMPP associated with time scalel is denoted
by dMMPP(l) and the corresponding number of states byN(l).

The flowchart of the inference method is represented in Figure 3 where, basically, four steps can be identified:
(i) compute the data vectors (corresponding to the average number of arrivals per time interval) at each time scale;
(ii) calculate the empirical PMF at the largest time scale and infer the associated dMMPP;
(iii) for all other time scales (going from the largest to the smallest one), calculate the empirical PMF, deconvolve it

from the empirical PMF of the previous time scale and infer a dMMPP that matches the resulting PMF;
(iv) calculate the final dMMPP through superposition of the dMMPPs inferred for each time scale.

The second traffic model is constructed using an hierarchical procedure, that successively decomposes dMMPP states
into new dMMPPs, thus refining the traffic process by incorporating the characteristics offered by finer time scales. We
start at the largest time scale by inferring a dMMPP that matches the PMF of this time scale. As part of the parameter
fitting procedure, each time interval of the data sequence is assigned to a dMMPP state; in this way, a new PMF can be
associated with each dMMPP state. At the next finer time scale, each dMMPP state is decomposed into a new dMMPP
that matches the contribution of this time scale to the PMF of the state it descends from. In this way, a child dMMPP
gives a more detailed description of its parent state PMF. This refinement process is iterated until a pre-defined number of
time scales are integrated. Finally, a dMMPP incorporating this hierarchical structure is derived. This traffic model will be
designated byhierarchicalmodel.

The construction process of the hierarchical model can be described through a tree where, except for the root node,
each tree node corresponds to a dMMPP state and each tree level to a time scale (Figure 2). A dMMPP state will be
represented by a vector indicating the path in the tree from its higher level ancestor (i.e. the state it descends from at the
largest scale,l = 1) to itself. Thus, a state at time scalel will be represented by some vector�s = (s1, s2, ..., sl) , si ∈ IN .
Each dMMPP will be represented by the state that generated it (i.e. its parent state). We let dMMPP�s denote the dMMPP
generated by state�s and{1, 2, . . . , N�s} the corresponding states, whereN�s is the number of states. The root node of the
tree corresponds to a virtual state, denoted by�s = ∅, that is used to represent the dMMPP of the largest time scale,l = 1.
This dMMPP will be called the root dMMPP. Thus, the dMMPP states in the tree are characterized by

�s = (s1, s2, ..., sl) , l ∈ IN (4)

with si+1 ∈
{

1, 2, . . . , N�si]

}
, i = 0, 1, . . . , l − 1; here,�sj] denotes the sub-vector of�s given by (s1, s2, ..., sj), with

j < |�s|, and�s0] = ∅, where|�s| denotes the length of vector�s. Note that, using this notation, a vector�s can either represent
state�s or the dMMPP generated by�s. Also, the time scale of dMMPP�s is |�s| + 1.

Finally, letE�s denote the set of time intervals associated with state�s, i.e., with dMMPP�s. Using this notation, the set
associated with dMMPP∅ will be E∅ = {1, 2, ..., N}, whereN is the number of time intervals at the smallest time scale.
Starting fromE∅, the setsE�s are successively partitioned at each time scale in a hierarchical fashion. Thus, if states�s and
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Figure 1. Construction methodology of
the superposition dMMPP model.
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Figure 2. Construction methodology of the hierarchical dMMPP model.

�t are such that|�s| =
∣∣�t∣∣ = l and�s �= �t, thenE�s ∩ E�t = ∅ and

⋃
�s:|�s|=l

E�s = E∅. Moreover, if state�s is a parent of state�t,

that is�t = (�s, j), thenE�t ⊆ E�s and
⋃

j=1,...,N�s

E(�s,j) = E�s.

The inference procedure is represented schematically in the flowchart of Figure 4, where the following main steps can be
identified:

(i) calculation of the data sequences (corresponding to the average number of arrivals per time interval) for each time
scale, starting with the smallest one and going through an aggregation process up to the largest one.

(ii) inference of the dMMPP at the largest time scale,l = 1, that matches the empirical PMF at this time scale.
(iii) for all other time scales, in increasing order,l = 2, ..., L − 1, and for each parent dMMPP state, identification of

the time intervals assigned to the state, calculation of the corresponding PMF and inference of the dMMPP that matches
the contribution of the time scale to the state PMF;

(iv) finally, calculation of matricesΛ andP of the dMMPP incorporating the previous hierarchical structure.

Note that in both traffic models the number of states of all dMMPPs are computed as part of the fitting procedure. The
two inference procedures have some common steps. We will now describe in detail the common and the different steps of
the inference methods. The main difference regarding the construction of the two models is that in the superposition model
there is one dMMPP per time scale whereas in the hierarchical model there are several dMMPPs per time scale, one per
state of the immediately higher time scale.

3.1. Aggregation process

This is a preliminary step in both inference procedures. Having defined the time interval at the smallest time scale,∆t, the
number of time scales,L, and the level of aggregation,a, the aggregation process starts by computing the data sequence
corresponding to the average number of arrivals in the smallest time scale,D(L)(k), k = 1, 2, . . . , N . Then, it calculates
the data sequences of the remaining time scales,D(l)(k), l = L− 1, ..., 1, corresponding to the average number of arrivals
in intervals of length∆ta(L−l). This is given by

D(l)(k) =




Ψ
(

1
a

a−1∑
i=0

D(l+1)(k + iaL−l−1))
)
, k−1

aL−l ∈ IN0

D(l)(k − 1), k−1
aL−l /∈ IN0

(5)

whereΨ(x) represents round toward the integer nearestx. Note that the block length of equation (1) is related witha and
l bym = aL−l. Note also that all data sequences have the same lengthN and thatD(l)(k) is formed by sub-sequences of
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Figure 4. Flow diagram of the inference procedure of the
hierarchical model.

aL−l successive equal values; these sub-sequences will be calledl-sequences. The empirical distribution ofD(l)(k) will
be denoted bŷp(l) (x).

3.2. Inference of the partial dMMPPs

In both proposed traffic models, all partial dMMPPs are inferred in order to fit an empirical PMF. For the largest time
scale, it is the PMF of the most aggregated data sequence,D(1)(k). For all other time scalesl, l = 2, ..., L, the associated
dMMPPs will model only the traffic components due to that scale, but at this point both models diverge in the way partial
dMMPPs are calculated. In the superposition model, there will be only one dMMPP per time scale, inferred according to
the flowchart of Figure 3. In the hierarchical model, a dMMPP will be inferred for each state of the immediately higher
time scale. Thus, for each dMMPP and time scale the matched PMF represents the contribution of the time scale to the
PMF of its parent state. The parameter fitting procedure of each tree dMMPP comprises several steps, highlighted in the
flowchart of Figure 4 and explained in more detail in the next sub-sections.

3.2.1. Calculation of the empirical PMFs

The operations involved in this step are basically the same for both proposed traffic models, but the number of dMMPPs
per time scale (and of PMFs) are different in both cases. Each dMMPP will be inferred from a PMF that represents its
contribution to a particular time scale. For the largest time scale, this PMF is simply the empirical one for both traffic
models. For the other time scalesl, l = 2, ..., L, the PMFs calculated for each model are different.



In the superposition model, the traffic components due to time scalel, l = 2, ..., L, are obtained through deconvolution
of the empirical PMFs of this and the previous time scales, i.e.,f̂

(l)
p (x) = [p̂(l) ⊗−1 p̂(l−1)](x). However, this may result

in probability mass at negative arrival rates for the dMMPP(l), which will occur whenevermin
{
x : p̂(l−1) (x) > 0

}
<

min
{
x : p̂(l) (x) > 0

}
.

In the hierarchical model, the contribution of a dMMPP at time scalel generated from state�s corresponds also to the
deconvolution of empirical PMFs, but now calculated over the set of time intervalsE�s, at this time scalel = |�s| + 1 and
previous time scalel − 1 = |�s|, i.e., f̂�s

p (x) =
[
p̂�s,|�s|+1 ⊗−1 p̂�s,|�s|] (x), wherep̂�s,l represents the PMF obtained from the

data sequenceDl(k), k ∈ E�s. Note that the two empirical PMFs are obtained from the same set of time intervals but
aggregated at different levels. Once again, these operations may result in probability mass at negative arrival rates for the
dMMPP�s, which will occur whenevermin

{
x : p̂�s,|�s| (x) > 0

}
< min

{
x : p̂�s,|�s|+1 (x) > 0

}
.

To correct these results, the dMMPPχ will be fitted to

f̂χ (x) = f̂χ
p (x+ eχ) (6)

whereeχ = min
(
0,min

{
x : f̂χ

p (x) > 0
})

, which assureŝfχ (x) = 0, x < 0, considering that superscriptχ replaces

(l) in the superposition model description and�s in the hierarchical model description. The additional factors that now
introduced are removed in the final step of the inference procedure.

3.2.2. Inference of the parameters

In the next paragraphs we will maintain the notation introduced in the last sub-section, that is, superscriptχ will denote(l)
or �s, depending on whether we consider the superposition or the hierarchical traffic model.

The first step in the inference of the dMMPPχ parameters is the approximation off̂χ by a weighted sum of Poisson
probability functions. This is based on an algorithm that progressively subtracts a Poisson probability function fromf̂χ.18

The most important steps of this algorithm will be explained in the next paragraphs.

Let us represent thenth Poisson probability function, with meanϕχ
n, by gϕχ

n
(x) and definehχ

n(x) as the difference

betweenf̂χ(x) and the weighted sum of Poisson probability functions at thenth iteration. Initially, we sethχ
1 (x) = f̂χ(x)

and, in each step, we first detect the maximum ofhχ
n(x). The correspondingx-value,ϕn = arg max

x
h�s

n(x), will be

considered thenth Poisson rate of the dMMPPχ. We then calculate the weights of each Poisson probability function,
�wχ

n = [wχ
1n, w

χ
2n, ..., w

χ
nn], through the following set of linear equations:

f̂χ(ϕχ
m) =

n∑
j=1

wχ
jngϕχ

j
(ϕχ

m) (7)

for m = 1, ..., n. This assures that the fitting betweenf̂χ(x) and the weighted sum of Poisson probability functions is
exact atϕχ

m points, form = 1, 2, . . . , n. The final step in each iteration is the calculation of the new difference function

hχ
n+1 (x) = f̂χ (x) −

n∑
j=1

wχ
jngϕχ

j
(x). (8)

The algorithm stops when the maximum ofhχ
n(x) is lower than a pre-defined percentage of the maximum off̂χ(x). At

this point, the number of states of the dMMPPχ,Nχ, is made equal ton.

After Nχ has been determined, the parameters of the dMMPPχ, {(πχ
j , λ

χ
j ), j = 1, 2, . . . , Nχ}, are set equal to

πχ
j = wχ

jNχ
and λχ

j = ϕχ
j . (9)

Note that the number of states of each dMMPP depends on the level of accuracy employed in the approximation offχ

by the weighted sum of Poisson probability functions.



The next step of the parameter inference procedure is to associate, at each time scalel, one of the dMMPPχ states with
each time interval of the arriving process. Recall that the data sequences aggregated at time scalel haveaL−l successive
equal values called l-sequences. For the hierarchical model, the set of time intervals associated with dMMPP�s is E�s and
the goal here is to partitionE�s into subsetsE(�s,j), j = 1, ..., N�s. The state assignment process considers only the first time
interval of each l-sequence, defined byi = aL−χ′

(k−1)+1, k ∈ IN, i ∈ Eχ, whereχ′ equals(|χ|+1) for the hierarchical
model andl for the superposition model andEχ represents the set of time intervals associated with dMMPPχ. The state

that is assigned to l-sequencei is calculated randomly according to the probability vector�θχ (i) =
{
θχ
1 (i) , . . . , θχ

Nχ
(i)

}
,

with

θχ
n (i) =

gλχ
n

(
Dχ′

(i)
)

∑Nχ

j=1 gλχ
j

(Dχ′(i))
(10)

for n = 1, ..., Nχ, whereλχ
j represents the Poisson arrival rate of thejth state of dMMPPχ, andgλ (y) represents a

Poisson probability distribution function with meanλ. The elements of this vector represent the probability that the statej
had originated the number of arrivalsD(l)(k) at time intervalk from time scalel.

After this step, we infer the dMMPPχ transition probabilities,pχ
od, with o, d = 1, ..., Nχ, counting the number of

transitions between each pair of states. Ifnχ
od represents the number of transitions from stateo to stated of the dMPPPχ,

then

pχ
od =

nχ
od∑Nχ

m=1 n
χ
om

, o, d = 1, ..., Nχ (11)

The transition probability and the Poisson arrival rate matrices of the dMMPPχ are then given by

Pχ =



pχ
11 pχ

12 . . . pχ
1Nχ

pχ
21 pχ

22 . . . pχ
2Nχ

. . . . . . . . . . . .
pχ

Nχ1 pχ
Nχ2 . . . pχ

NχNχ


 and Λχ =



λχ

1 0 . . . 0
0 λχ

2 . . . 0
. . . . . . . . . . . .
0 0 . . . λχ

Nχ


 + eχI (12)

The diagonal matrix of the steady-state probabilities will be designated byΠχ.

3.3. Construction of the equivalent dMMPP model

Due to the construction procedure inherent to each proposed traffic model, this step in completely different for both
approaches. Taking the superposition model, for example, the equivalent dMMPP process is constructed using equation
(3), where matricesP(l) andΛ(l) , l = 1, ..., L, were calculated in the last subsection. However, the additional factors
introduced in sub-section 3.2.1 must be removed. Thus, the finalΛ(l) will be given by

Λ = Λ −
L∑

l=2

e(l) · I (13)

whereI is the identity matrix.

For the hierarchical model, we have to construct a dMMPP equivalent to the tree structure of dMMPPs derived in
previous sections. The goal is to incorporate in the model the level of detail given by the finer time scale, so the equivalent
dMMPP will have a number of states equal to the number of states in smallest time scale of the tree structure,L. These
can be identified by�s = (s1, s2, ..., sL); each state is associated with its ancestor states�si+1] = (s1, s2, ..., si+1), i =
0, 1, . . . , L− 1 of the dMMPP�si] .

Thus, the states of the equivalent dMMPP will have Poisson rates which are the sum of the Poisson rates of its ancestors
in the tree structure, i.e.,

λ�s =
L−1∑
j=0

λ
�s j]
sj+1 (14)



The transition between each pair of states is determined by the shortest path in the tree structure, going through the root
dMMPP, that joins the two states. Any pair of states descend from one or more common dMMPPs. The first one, at the
time scale with higherl, will be denoted by�s ∧ �t = (s1, s2, ..., sk) wherek = max {i : sj = tj , j = 1, 2, ..., i}.

We first consider the case of�s �= �t. The probability of transition from�s to �t, p�s,�t, is given by the product of three

factors. The first factor accounts for the time scales where�s and�t have the same associated states and is given by

φ�s,�t =




|�s∧�t|−1∏
j=0

p
�s j]
sj+1,sj+1 , |�s ∧ �t| �= 0

1, |�s ∧ �t| = 0
(15)

The second factor accounts for the transition in the time scale where�s and�t are associated to different states of the
same dMMPP, which corresponds top�s∧�t

s|�s∧�t|+1,t|�s∧�t|+1
. The third factor accounts for the steady-state probabilities of states

associated to�t in the time scales that are not common to�s and is given by

ψ�s,�t =
L−1∏

j=|�s∧�t|+1

π
�t j]
tj+1

(16)

where an empty product is equal to one.

Finally, for�s �= �t,
p�s,�t = φ�s,�tp

�s∧�t
s|�s∧�t|+1,t�s∧�t+1

ψ�s,�t (17)

In case�s = �t, it is simply
p�s,�t = φ�s,�t (18)

4. OVERVIEW OF THE TRAFFIC TRACES

Two traces of aggregated IP traffic were selected to test the accuracy and compare both fitting procedures: (i) the well
known and publicly available Bellcore pOct LAN trace1 and (ii) a trace measured at the backbone of a Portuguese ISP
ADSL network, characterizing the downstream Internet access traffic corresponding to approximately 65 simultaneous
users. A third trace was also considered, including the downstream traffic from 10 users of the file sharing application
Kazaa, a protocol running over TCP. This trace was measured at the premises of the same Portuguese ISP and its inclusion
is due to the fact that an increasing percentage of the overall Internet traffic belongs to peer-to-peer protocols of the same
type as Kazaa. For all our measurements, the traffic analyzer was a 1.2 GHz AMD Athlon PC, with 1.5 Gbytes of RAM
and running WinDump, and recorded the arrival instant and the IP header of each packet. The main characteristics of all
selected traces are described in Table 1.

All traces exhibit self-similar characteristics: taking trace Kazaa, for example, the analysis of its autocovariance
function (Figure 5) lead us to suspect that it exhibits LRD behavior, due to the slow decay for large time lags. This is
confirmed by the scaling analysis20 (Figure 6), that looks for alignment in the so-called Logscale Diagram (LD), which is
a log-log plot of the variance estimates of discrete wavelet transform coefficients, against scale, completed with confidence
intervals about these estimates at each scale. Traffic is said to be LRD if, within the limits of the confidence intervals, the
log of the variance estimates fall on a straight line, in a range of scales from some initial valuej1 (octave 8 in this case)
up to the largest one present in data (octave 12). A similar analysis was made for the other traces, also revealing the same
LRD behavior.

Trace name Capture period Trace size (pkts) Mean rate (byte/s) Mean pkt size (bytes)
pOct Bellcore trace 0.5 million 322790 568
ISP 10.26pm to 10.49pm, October18th2002 0.5 million 583470 797
Kazaa 10.26pm to 11.31pm, October18th2002 0.5 million 131140 1029

Table 1. Main characteristics of measured traces.
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scale, trace Kazaa.

5. NUMERICAL RESULTS

We assess the accuracy and compare the dMMPP fitting procedures using several criteria: (i) comparing the Hurst
parameters of the original and synthesized (according to the parameters inferred for the resulting dMMPPs) data traces; (ii)
comparing the PMFs of the average number of arrivals in different time scales, obtained for the original and synthesized
traces and (iii) comparing the queuing behavior, in terms of packet loss ratio (PLR) and average waiting time in queue
(AWT), through a trace-driven simulation using those traces as inputs. All simulations were carried out using a fixed
packet length equal to the mean packet length of the trace. For all traces, the sampling interval of the counting process was
chosen to be 0.1s and three different time scales were considered: 0.1s, 0.2s and 0.4s. Larger aggregation levels were also
considered, with good fitting results. For each trace, the estimation procedure took less than 1 minute for the superposition
model and 2 minutes for the hierarchical model, using a MATLAB implementation running in the PC described above,
which shows that both procedures are computationally very efficient.

In order to verify that both fitting approaches capture the traffic LRD behavior, we compare in Table 1 the Hurst
parameters estimated (using the LD estimator) for the original and fitted traffic, for both traffic models and for each one
of the three selected data traces. Table 1 also includes the range of time scales where the wavelet coefficients follow a
straight line, written in parenthesis near to the corresponding Hurst parameter value. As we can see, there is a very good
agreement between the Hurst parameter values of the original and fitted (according to both inference procedures) traffic,
so LRD behavior seems to be well captured by the fitting approaches.

The next evaluation criteria is based on the comparison between the PMFs of the original and dMMPP fitted traces, for
different time scales. Considering trace Kazaa, we can see from figures 7, 8 and 9 that there is a good agreement between
all the PMFs corresponding to the original and dMMPP fitted traces, for the smallest, intermediate and largest time scales.
This is achieved with the resulting dMMPPs having about 288 states in the superposition model and 38 states in the
hierarchical model. For traces pOct and ISP similar analysis were made, also revealing very good agreements between the
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Figure 10. Packet loss ratio, trace pOct.
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Figure 11. Average waiting time in queue, trace pOct.
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Figure 12. Packet loss ratio, trace Kazaa.

PMFs of the original and dMMPP fitted traces, for both traffic models and all the considered time scales. The performance
of both models is very similar but the resulting number of states is much higher in the superposition model case: for trace
pOct the number of states was equal to 344 for the superposition model and 81 for the hierarchical model, whereas for trace
ISP the inferred dMMPPs had 245 states using the superposition approach and 74 sates using the hierarchical approach.

We now verify if the close match obtained in the Hurst parameter values and in the PMFs at each time scale is enough to
guarantee a similar queuing behavior between the original traffic and the fitted models. Considering queuing performance,
for each selected trace we compare the PLR and AWT values obtained through a trace-driven simulation of the original
and dMMPP fitted traces. Two different sets of utilization ratios were used in the simulations: for traces pOct and Kazaa,
we usedρ = 0.7 andρ = 0.8 and for trace ISP the selected values wereρ = 0.8 andρ = 0.9. This is due to the lower
burstiness of the ISP traffic, which leads to lower packet losses for the same link utilization. From figures 10 and 11 it is
possible to see that, for trace pOct, PLR behavior is very well approximated by the equivalent dMMPPs for both utilization
ratios, while the agreement of the AWT curves is less accurate specially for higher utilization ratios. For trace Kazaa the
results are depicted in figures 12 and 13 and for trace ISP the results are illustrated in figures 14 and 15. For both traces,
the agreement between the PLR curves corresponding to the original and fitted traces is good. However, as the utilization
ratio increases the deviation slightly increases, because the sensitivity of the metrics variation to a slight difference in the
compared traces is higher. Regarding AWT, the agreement between the curves corresponding to the original and fitted

Trace original superposition fitted hierarchical fitted
pOct 0.846 (4,11) 0.859 (4,11) 0.851 (4,11)
ISP 0.954 (4,10) 0.956 (4,10) 0.952 (5,10)

Kazaa 0.917 (8,12) 0.897 (6,12) 0.901 (6,12)

Table 2. Comparison between Hurst parameter values
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Figure 14. Packet loss ratio, trace ISP.
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Figure 15. Average waiting time in queue, trace ISP.

traces is also good, for both utilization ratios.

Thus, we conclude that the proposed fitting approaches provide a close match of the Hurst parameters and PMFs at
each time scale, and this agreement reveals itself sufficient to drive a good queuing performance in terms of packet loss
ratio and average waiting time in queue. Moreover, the computational complexity of both fitting methods is small. Note
that this complexity, as well as the number of states of the resulting dMMPPs, is directly related to the level of accuracy
used to approximate the empirical PMFs at each time scale by weighted sums of Poisson probability functions

The performance of both inference procedures is very similar. Thus, it is not easy to recommend one of approaches
over the other based solely on their associated performances. One argument that clearly favors the hierarchical approach
is that the numbers of states of the resulting dMMPPs are smaller than the corresponding numbers for the superposition
approach. This may be due to the fact that in the hierarchical approach and as the time scale increases, dMMPPs are
fitted to successively smaller sets of intervals whose arrivals characteristics tend to increase in homogeneity and, thus, tend
to have associated a smaller number of states than the dMMPP fitted through the superposition approach for the same
time scale. However, the contribution of each time scale for the characterization of the aggregate traffic characteristics is
interpreted in an easier and more natural way through the superposition approach. Note also that, for the same number of
states, a smaller number of dMMPPs and corresponding parameters tend to be needed to compute the final dMMPP using
the superposition approach than using the hierarchical approach.

6. CONCLUSIONS

In this paper we compared two traffic models based on Markov Modulated Poisson Processes (MMPPs), which are able
to capture self-similarity over a range of time scales. It is known that this characteristic has significant impact on network
performance; therefore, it must be taken into account for an accurate prediction of network performance. The first model
is a superposition of MMPPs, where each MMPP describes a different time scale, and the second one is obtained as the
equivalent to an hierarchical construction process that, starting at the coarsest time scale, successively decomposes MMPP
states into new MMPPs in order to incorporate the characteristics offered by finner time scales. The accuracy of the models



was evaluated by comparing the probability mass function at each time scale, as well as the loss probability and average
waiting time in queue, corresponding to measured traces and to traces synthesized according to the proposed models. The
analysis was based on three measured traffic traces exhibiting self-similar behavior and the results show that both MMPPs
have good and very similar performances in matching the characteristics of the data traces over the time scales of interest.
However, one advantage of the hierarchical approach is that the number of states of the corresponding MMPP can be much
smaller.

Acknowledgements: This research was supported in part by Fundac¸ão para a Cîencia e a Tecnologia, the project
POSI/42069/CPS/2001, and the grant BD/19781/99.

REFERENCES
1. W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar nature of Ethernet traffic (extended version),”

IEEE/ACM Transactions on Networking2, pp. 1–15, Feb. 1994.
2. J. Beran, R. Sherman, M. Taqqu, and W. Willinger, “Long-range dependence in variable-bit rate video traffic,”IEEE

Transactions on Communications43(2/3/4), pp. 1566–1579, 1995.
3. M. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes,”IEEE/ACM

Transactions on Networking5, pp. 835–846, Dec. 1997.
4. V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poisson modeling,”IEEE/ACM Transactions on Networking

3, pp. 226–244, June 1995.
5. B. Ryu and A. Elwalid, “The importance of long-range dependence of VBR video traffic in ATM traffic engineering:

Myths and realities,”ACM Computer Communication Review26, pp. 3–14, Oct. 1996.
6. D. Heyman and T. Lakshman, “What are the implications of long range dependence for VBR video traffic

engineering?,”IEEE/ACM Transactions on Networking4, pp. 301–317, June 1996.
7. A. Neidhardt and J. Wang, “The concept of relevant time scales and its application to queuing analysis of self-similar

traffic,” in Proceedings of SIGMETRICS’1998/PERFORMANCE’1998, pp. 222–232, 1998.
8. M. Grossglauser and J. C. Bolot, “On the relevance of long-range dependence in network traffic,”IEEE/ACM

Transactions on Networking7, pp. 629–640, Oct. 1999.
9. A. Nogueira and R. Valadas, “Analyzing the relevant time scales in a network of queues,” inSPIE’s International

Symposium ITCOM 2001, Aug. 2001.
10. A. Nogueira, P. Salvador, R. Valadas, and A. Pacheco, “Modeling self-similar traffic through markov modulated

poisson processes over multiple time scales,” inProceedings of the 6th IEEE International Conference on High
Speed Networks and Multimedia Communications (HSNMC’03), July 2003.

11. A. Nogueira, P. Salvador, R. Valadas, and A. Pacheco, “A hierarchical approach based on MMPPs for modeling
self-similar traffic over multiple time scales,” inProceedings of the First International Working Conference on
Performance Modeling and Evaluation of Heterogeneous Networks (HET-NETs’03), July 2003.

12. K. Meier-Hellstern, “A fitting algorithm for Markov-modulated Poisson process having two arrival rates,”European
Journal of Operational Research29, 1987.

13. P. Skelly, M. Schwartz, and S. Dixit, “A histogram-based model for video traffic behaviour in an ATM multiplexer,”
IEEE/ACM Transactions on Networking, pp. 446–458, Aug. 1993.

14. S. Li and C. Hwang, “On the convergence of traffic measurement and queuing analysis: A statistical-match and
queuing (SMAQ) tool,”IEEE/ACM Transactions on Networking, pp. 95–110, Feb. 1997.

15. A. Andersen and B. Nielsen, “A Markovian approach for modeling packet traffic with long-range dependence,”IEEE
Journal on Selected Areas in Communications16, pp. 719–732, June 1998.

16. C. Nunes and A. Pacheco, “Parametric estimation in MMPP(2) using time discretization,”Proceedings of the 2nd
International Symposium on Semi-Markov Models: Theory and Applications, Dec. 1998.

17. T. Yoshihara, S. Kasahara, and Y. Takahashi, “Practical time-scale fitting of self-similar traffic with Markov-
modulated Poisson process,”Telecommunication Systems17(1-2), pp. 185–211, 2001.

18. P. Salvador, R. Valadas, and A. Pacheco, “Multiscale fitting procedure using Markov modulated Poisson processes,”
Telecommunications Systems23, pp. 123–148, June 2003.

19. K. Park and W. Willinger, “Self-similar network traffic: an overview,” inSelf-Similar Network Traffic and
Performance Evaluation, K. Park and W. Willinger, eds., Wiley-Interscience, 2000.

20. D. Veitch and P. Abry, “A wavelet based joint estimator for the parameters of LRD,”IEEE Transactions on
Information Theory45, Apr. 1999.


