An Experimental Study of Probing-Based
Admission Control for DiffServ Architectures

Susana Sargento!, Roger Salgado!, Miguel Carmo®, Victor Marques?, Rui
Valadas!, and Edward Knightly®

! University of Aveiro/Institute of Telecommunications, 3810 Aveiro, Portugal,
susana@ua.pt, roger@av.it.pt, etmacQua.pt and rvQua.pt
2 Portugal Telecom Inovagio, 3810 Aveiro, Portugal,
victor-m-marques@ptinovacao.pt,
3 ECE Dept., MS380, Rice University, Houston, TX 77005, USA,
knightlyQece.rice.edu

Abstract. Probing is a well-known admission control technique that can
achieve high utilization and per-flow quality of service in a scalable way.
We have recently introduced an extension to the basic probing technique,
called e-probing, to overcome a resource stealing problem that impairs
the use of probing in systems with multiple service classes. In this paper
we describe an experimental system that was designed to evaluate the ef-
fectiveness of both probing and e-probing techniques. We have developed
a software module that implements the probing functionality, which can
be inserted in end hosts or edge routers. Several tests were carried out
to study the effect of various system parameters in the performance of
the probing techniques. The results clearly show that both probing tech-
niques are able to accurately perform admission control while achieving
high utilization. Moreover, they also show that in environments with mul-
tiple service classes such as DiffServ, e-probing can eliminate the resource
stealing problem, providing an effective solution to support per flow QoS
without signaling and without maintaining flow state at core routers.
Key words: Call Admission Control, DiffServ, QoS, Test-bed.

1 Introduction

The Integrated Services (IntServ) architecture of the IETF provides a mechanism
for supporting quality-of-service for real-time flows. Two important components
of this architecture are admission control [3], [10] and signaling [5]: the former
ensures that sufficient network resources are available for each new flow, and the
latter communicates such resource demands to each router along the flow’s path.
However, the demand for high-speed core routers to process per-flow reservation
requests introduces scalability limitations in this architecture.

In contrast, the Differentiated Services (DiffServ) architecture [6], [2] achieves
scalability by limiting quality-of-service functionalities to class-based priority
mechanisms together with service level agreements. However, without per-flow
admission control, such an approach necessarily weakens the service model as
compared to IntServ, namely bandwidth or loss guarantees are not assured to
individual flows.

A key challenge addressed in recent research is how to simultaneously achieve
the scalability of DiffServ and the per-flow QoS assurance of IntServ. Towards
this end, several novel architectures and algorithms have been proposed, which
require always some specific functionality to be employed at edge and/or core
nodes. In probing schemes ([1], [8], [9]), these functionalities are not required:
there is no signaling protocol and no special packet processing within core nodes,
and still a per-flow QoS is assured. With such a scheme, the endpoints perform
admission control by assessing the congestion state of the network, transmitting
a sequence of probe packets and measuring the corresponding performance. If the
performance (e.g., loss ratio) of the probes is acceptable, the flow is admitted;
otherwise it is rejected. More specifically, to establish a real-time flow between
two hosts, the sender host transmits a sequence of probes into the network at
the desired rate and flow behavior. If the loss ratio of the probes is below a pre-
established threshold for the traffic class, then the flow is admitted, and otherwise
it is rejected. Scalability is achieved in such a framework by pushing all quality-of-
service functionality to end-hosts, indeed removing the need for any signaling or
storage of per-flow state. Moreover, [4] found that such an architecture is indeed
able to provide a single controlled-load like service as defined in [11].

However, when host-controlled probing schemes are generalized to support
multiple service classes, a resource stealing problem, first described in [4], may
occur. To illustrate the resource stealing problem, consider the example of a Class-
Based Weighted Fair Queuing (CBQ) scheduler, where each of two classes is as-
signed a weight of 50%. Assume that the offered load is initially 0.8C in class 1
and 0.2C in class 2, where C' is the link capacity. Due to the work conserving
nature of the scheduler, class 1 can borrow class 2 resources and utilize up to 80%
of the link capacity without loss. If now class 2 probes the link for an additional
offered load of 0.3C, class 2 flows will be admitted and served without loss. How-
ever, the service rate of class 1 will decrease to 0.5C and 30% of class 1 packets
(which belong to already admitted flows) will be dropped. Thus the admission of
new flows in class 2 forced class 1 into a situation of QoS violations that can not
be detected by the probing flow. Such resource stealing arises from a fundamen-
tal observability issue in a multi-class system: the performance isolation property
provided by CBQ schedulers also inhibits flows from assessing their performance
impact on other classes.

In [7] we proposed e-probing as a probing scheme designed to eliminate steal-
ing in CBQ schedulers in a minimally invasive way. The goal of e-probing is to
enable inter-class resource sharing to the maximal extent allowed by the system
architecture. In e-probing, a new flow requesting admission in a class transmits a
probe in the desired class and, simultaneously, a probe with a small bandwidth
€ in all other classes. The motivating design principle is that the impact of the
new flow on all classes must be observed, so that the new flow is only admitted
if all probes, including the e-probes, are admitted. Consider again the previous
example of the CBQ scheduler. With e-probing, when class 2 is probed for the
additional 0.3C, class 1 is also probed with e-probes. The probing in class 2 is
successful but the e-probing in class 1 will not, since class 1 is not allowed to
use more bandwidth. Class 2 flows will not be admitted until class 1 releases
bandwidth and no resource stealing will occur.

We developed an experimental system with a DiffServ architecture that in-
cludes both probing and e-probing admission control algorithms. The performance
of these algorithms is studied through a number of experiments.

The paper is organized as follows. In section 2 we present the experimental
system architecture. In sections 3 and 4 we describe two software modules, the
traffic generator and the probing module, which were developed as part of the
overall experimental system. Section 5 presents the actual experimental set-up
used to carry out the experiments. In section 6 we discuss the experimental results.
Finally, in section 7 we conclude the paper.

2 Experimental System Architecture

In this section, we describe the experimental system that is designed to evaluate
the efficiency of the proposed e-probing technique, while closely replicating an
operational DiffServ network.

The goal in our experimental studies is to observe the behavior of the probing
and e-probing techniques on a congested network. It would be impractical to
have the overall traffic demand generated by many different hosts, as it will be
the situation in an operational DiffServ network. Instead we have developed a
traffic generator software module that, for each Class of Service (CoS), generates
traffic at both flow level and packet level. Due to performance reasons, in the
actual experimental set-up we use one host for each CoS.

The probing functionality was implemented in a probing software module,
which probes on behalf of a set of users. The probing module can be inserted in
end-hosts or edge routers. In the actual experimental set-up the probing module
is installed in a dedicated PC, called the probing server, which is connected to a
local network delimited by two routers, an access router and an edge router. In this
configuration, it can be seen as extending the capabilities of current low-cost edge
routers to support probing based admission control. The probing module operates
in promiscuous mode, by listening to all packets injected into this local network.
It accepts flow set-up requests and performs admission control by probing the
DiffServ network; it is also responsible for marking the data packets sent by the
traffic generators according to requested CoS. The edge router performs packet
classification and scheduling, functions that are found in current low-cost routers.
The access router is only used for traffic isolation. Thus, the set of two routers plus
probing server emulates a DiffServ edge router that includes admission control
based on e-probing.

Access Network . . Access Network
Probing Probing

Network

Router Router Router Router

Fig. 1. Experimental system architecture.

The interaction between the various network elements is performed by special
purpose application layer protocols. The exchange of control information between
the traffic generator and the probing module is done using TCP. An alternative
here could be the use of RSVP. The exchange of control information between
probing modules and the data transport is done using UDP.

The message flow is the following (Figure 2). The traffic generator asks for the
admission of a new flow by opening a TCP connection with the probing module
and sending a REQUEST message. The REQUEST message includes the source
and destination IP addresses, the source and destination UDP/TCP ports, the
protocol type and the desired class of service. This information is required in
order to completely identify the flow at the probing module. Upon receiving the
REQUEST message, the ingress probing module initiates the probing process. It
sends a PROBE START message, followed by several probe packets, ending with
a PROBE STOP message. All these messages are addressed to the destination
host and transported over UDP. As mentioned before, there are two types of
probe packets: regular probes, sent on the desired class of service, and e-probes
sent on the remaining classes. The egress probing module listens promiscuously to
these control messages and probing packets, and counts the number of probes re-
ceived in each class between PROBE START and PROBE STOP. When it hears
the PROBE STOP message it sends a STATISTICS message back to the ingress
probing module with this information. If the STATISTICS message is not received
within a pre-defined timeout the flow is rejected, and the TCP connection with
the traffic generator is closed. Otherwise, the probing module performs an admis-
sion control decision based on the counts of probes and e-probes carried in the
STATISTICS message and on the target loss ratio. If the flow is accepted it sends
an AUTHORIZE message and closes the TCP connection with the traffic gener-
ator; otherwise it sends a REJECT message, also closing the TCP connection. If
the flow is accepted the traffic module starts sending data packets (transported
over UDP). To signal the end of data transmission, the traffic generator module
opens a new TCP connection with the ingress probing module and sends a END
SESSION message.

The REQUEST and END SESSION messages have the same format, and are
identified by a flag. The AUTHORIZE message corresponds to ”0” and the RE-
JECT message to ”1”, both coded as unsigned int. The probe control messages,
PROBE START, PROBE STOP and STATISTICS, include three fields: the first
field identifies each message; the second indicates the CoS; the third is used to
transport, in the STATISTICS message, the counts of probes in each class. Note
that the information exchanged at the application layer is not sufficient to com-
pletely identify a flow. The IP addresses and UDP/TCP ports are also required.
This option had the purpose of minimizing the overhead.

All sockets used in the communication between probing modules are of type
raw sockets. As will be detailed in section 4, this type of sockets allows operation
in promiscuous mode and manipulation of the header fields from lower layers.

We use the IP TOS byte field to differentiate among classes of service and
priorities. It is assumed that control messages injected into the DiffServ network
have higher priority. The precedence bits of the TOS byte are used to differentiate
between control, probe, e-probe and data packets. Specifically, we assign 110 to
control packets, 010 to probe packets, 100 to e-probe packets and 000 to data

Ingress Egress

Traffic Probing Probing Traffic
Generator Module Module Generator
STOpen TCP Socket——»>
"7 REQUEST----___ -
~ —— PROBESTART— —p |
——————Probe————pp [PROBESTART — —p
s o Probe \»
=== Probe e
~— —— -PROBESTOP — — | Probe
|7 —— “PROBESTOP — —
<« —— STATISTICS ™ >
<~ -AUTHORIZE-~~"""~
<——<Close TCP Socket—p>
T ————Dan —_
E— DT —_— Data —_—
T — —Dbata——
€——Open TCP Socket——> — ——Data —_
~~--END SESSION- - - - - _ >
<€—<Close TCP Socket—p>

DiffServ Network

Fig. 2. Message flow between traffic generator and probing modules.

packets. The differentiation between CoS is carried out using the TOS bits of the
TOS byte. We leave to the probing module the role of manipulating the TOS
byte. All data packets sent by the traffic generator have a TOS byte of zero and
are marked according to their class of service at the probing module.

Both the traffic generator and probing modules are developed to run under
Microsoft Windows 2000. The software is developed using Microsoft Visual C++,
Windows Sockets 2.0 and resorts to multi-thread programming techniques. In our
implementation each flow is a thread and, inside each flow’s thread, tasks that can
be executed concurrently give rise to new threads. The use of Windows Sockets
2.0 and Microsoft SDK make possible the implementation of the promiscuous
mode operation at the probing module. Note that the same type of facilities were
available for a Unix development.

In the next two sections we will describe with more detail the traffic generator
and the probing modules.

3 Traffic Generator Module

The traffic generator module generates the traffic of each CoS at two levels, flow
and packet level. It generates new flows according to a Poisson process. The
admitted flows have a duration characterized by an exponential distribution. For
each flow, the traffic generator creates the corresponding packet stream. Several
models are available for the packet arrival process and for the packet length. The
arrival process can be Constant Bit Rate (CBR) or ON-OFF with exponential or
Pareto ON and OFF durations. CBR sources are only characterized by the packet
arrival rate. ON-OFF sources require the specification of the average ON and OFF
times and of the packet arrival rate in the ON state. The Pareto distribution

requires an additional parameter called shape. The packet length may be fixed,
exponential or Pareto.

The traffic generator handles two types of sockets: a TCP socket for the ex-
change of control information with the probing module, and a UDP socket for
data transmission. There is also a thread per CoS that schedules the arrival of
the next flow and determines its duration. When a flow starts, another thread
is created, which is responsible for the generation of packets for that flow, and
of the control messages exchanged between the traffic generator and the probing
module.

4 Probing Module

The probing module is responsible for handling the probing process and for packet
marking. As mentioned above, the probing module listens promiscuously to the
packets that are injected into its local network. This mode is implemented using
raw sockets, which allows the manipulation of the IP header fields. At the ingress
side, the probing module captures the data packets and re-injects them into its
local network after changing the TOS and checksum fields of the IP header. Since
Microsoft Windows 2000 does not support natively the manipulation of the TOS
byte, we developed a patch for this purpose. Besides the raw sockets, the probing
module handles a TCP socket for the exchange of control information with the
probing module and UDP sockets for the transmission of data packets, probes and
e-probes and probe control messages. There is a thread permanently listening for
new flow set-up requests, at a specific port. When the probing module receives a
request from the traffic generator, this thread will produce a new one that will
handle the flow. To increase the performance of the system, we use asynchronous
UDP sockets to prevent the permanent polling of the socket state. The TCP
sockets used in the implementation are of blocking type. In this case, the program
suspends the execution of other tasks until the socket operation is finished.

The main window allows the configuration of several parameters: the server
port for communication with the traffic generator, the gateways towards the access
network or the DiffServ network, the probing duration and timeout, and the link
capacity. Note that the link capacity is only required for the computation of some
parameters (wrong decisions and stolen bandwidth). The timeout indicates the
maximum time interval after sending PROBE STOP that the module waits for
the STATISTICS message.

Two other windows can be opened from the main one, called probing traf-
fic and statistics, respectively. There is one statistics window for each CoS. The
probing traffic window (Figure 3) is where the traffic models and parameters
for the generation of probes and e-probes are configured. It also includes the
target loss ratio for probes and e-probes, and an option for deactivation of e-
probes. The statistics windows includes, for each CoS, statistics such as the num-
ber of data packets, probes and e-probes received and sent, the number of blocked
and accepted flows, the number of wrong decisions and the percentage of stolen
bandwidth. The window also displays a curve of the evolution of the blocking
probability over time. All these parameters are updated in real time. Also, the
configuration of the experiment’s length and of the warm-up time for statistics
collection are performed in this window.

T
IC\ass‘I Class 2 ChssSl de:moﬁﬂasscsl I_

Probe Epsilon Probe
e Packel Size Packet Size
Dptions Mean [125 Byes) Mean 125 (Bytes)
Conhbg Clas ses Shape | Shape | 1
o Distibution Fued = Distibution Fixed -
Packet Arivals Facket Arivals
Aot On On ot

oK
Men [tooo|[oool| || Imem om0
swape | T 1| [|[[seee [T T 7
Distribstion E xpane 'I E xpore "l Distribution 1CDntinu "I m
Rate 40000 Rate | 10000

Target Loss 4 =) Target Loss 4 (%) W Activated

ok | cancel | apoh

Fig. 3. Probing traffic window of the probing module.

5 Experimental Set-Up

We perform experiments both with two CoS. All sets of experiments resort to
the set-up depicted in Figure 4. Each source host A and B generates traffic in a
different CoS. Traffic generator modules are plugged in both source hosts A and
B. Hosts A and B are 120 MHz Pentium PCs with 64 Mbytes of RAM. Because
of performance reasons two probing servers are used at the ingress side. Probing
server A is a 350 MHz Pentium II with 128 Mbytes of RAM, and probing server
B is a 733 MHz Pentium III with 256 Mbytes of RAM. The probing server at the
egress side is a 933 MHz Pentium IIT with 256 Mbytes of RAM. The Operating
System (OS) of the source and destination hosts A and B is Windows NT 4.0,
and the OS of the probing servers is Windows 2000 Professional.

All routers used in the experiments are Cisco 1605 R, running IOS version
12.0(7)T. The ingress and egress edge routers are connected through a serial
link, because it offers great flexibility in controlling the link’s bandwidth. Our
experiments with two CoS resort to Cisco’s Custom Queuing. This mechanism
works with a maximum of 16 queues, that can be divided in two groups, where
one group uses strict priority scheduling and the other uses deficit round-robin
scheduling; the latter group has a lower strict priority. In our case, we configure
one queue with strict priority (for the control traffic) and two queues with deficit
round robin (for the data and probing traffic). Classification at the edge routers
is based on the analysis of the precedence and TOS bits and resorts to Cisco’s
Access Lists. An Ethernet switch (Baystack 310-24T) is used to multiplex the
traffic from hosts A and B at the ingress side.

As referred in [4], the probing schemes are able to guarantee a per-flow QoS
to controlled load services. The best-effort and the guaranteed services are not
considered here, because there will be a different priority for each type of services

Source A

Destination A

Probing
Server

Probing Server

Probing
Server

Baystack
310-24T

Source B

Fig. 4. Experimental Set-Up.

and a rate limiter will be associated with the guaranteed traffic. Then, our study
can be based only on the controlled load services.

6 Experimental Results and Discussion

In this section we present and discuss two sets of experiments. The first set con-
siders two CoS and a constant offered load. The second set considers also two
CoS but a time-varying offered load.

The traffic sources used in the experiments are always CBR. The arrival and
departure rates are adjusted to give blocking probabilities near 0.2 (corresponding
to an offered traffic that is approximately 120% of the link capacity). The mean
number of active flows in a traffic class is p = A/p, where X and p are respectively
the mean flow arrival and depart rates. The offered load is given by the mean
number of flows (p) multiplied by its bandwidth. Unless otherwise specified, the
link capacity is 1 Mb/sec, the packet length is 125 bytes, the buffer size of the
queues is 24000 bytes and the length of each experiment is 1200 seconds. A warm-
up time is used in all experiments, which is at least two times the highest value
of the flow’s average duration. Note that the probing bandwidth always equals
the flow bandwidth. Each experiment described bellow is repeated five times and
the results represent the corresponding average values.

6.1 Experiments with two CoS and a constant offered load

This set of experiments addresses two traffic CoS and a constant offered load,
i.e., the arrival rate and mean duration of the flows do not vary during the ex-
periments. The goal here is to address the resource stealing problem and analyze
the behavior of e-probing. In all experiments, the target loss ratio of the probes
and e-probes is 5%. The flow’s bandwidth is 40 Kb/sec in class 1 and 64 Kb/sec

in class 2. The flow’s p is 4 in class 1 and 11 in class 2. The weight assigned to
class 1 is 20% and the weight assigned to class 2 is 80%.

Probing duration In this experiment the bandwidth of the e-probes in both
classes is 20 Kb/sec and the bandwidth of the probes in each class equals that of
the flows requesting admission. Figure 5(a) shows the data and probe loss ratios
in each class, as a function of the probing duration. Figure 5(b) shows the corre-
sponding blocking probabilities. The data and probe loss ratios are always below
the target, showing that the probing-based admission control operates correctly.
The blocking probabilities increase and there is also a slight increase in the probe
loss ratio, as the probing duration increases. Except for small probing durations,
the data loss is always below the probe loss since not all flows are admitted. For
small probing durations, the data loss in class 2 is larger than the correspond-
ing probe loss, which can be explained by lack of accuracy due to insufficient
probing duration. The data loss decreases for probing durations between 0.5 and
4 seconds. One might expect that a larger probing time would produce a more
accurate estimation of the data loss ratio, i.e., a measured data loss ratio closer
to the target (which is 5% in both classes). However, due to the overhead intro-
duced by longer probing times, the effect is the opposite. The same behavior is
observed via discrete-event simulation in [4]. For probing durations greater than
4 seconds the data loss ratio increases because the probing traffic gets significant
contributing itself to the degradation of the data loss ratio. The loss ratio in class
2 is higher because since class 2 flows have higher bandwidth more probes are
generated in the same probing duration.

25 T T T T T T T T 225

Loss (%)

+—+ DataLoss - Class 1
1F | =—= Data Loss - Class 2
+ -+ Probe Loss - Class 1
x x Probe Loss - Class g

0.5t \\‘\\/ o

L L
0.5 1 1.5

N
=)
T

©
3
T

Blocking Probability (%)

.
2 25 3 35 4 45 5 0.5 1 15 2 25 3 35 4 45 5
Probing Duration (sec) Probing Duration (sec)

(a) (b)

Fig. 5. Effect of probing duration on (a) data and probe loss, and (b) blocking
probability.

Mismatch between offered load and CBQ weight In this experiment we
introduce a mismatch between the offered load and the CBQ weight of class 1.
The weight is kept as before at 20%; the offered load is increased from 20% to ap-
proximately 50% of the link capacity (by increasing p from 4 to 11). In class 2 we

keep everything as before. In Figure 6 we show the data and probe loss ratios ver-
sus the bandwidth of e-probes. With no e-probing (a null e-probe bandwidth) the
data loss in class 2 is almost 8%, which is larger than the threshold. This behavior
is maintained for e-probe bandwidths bellow 4 Kb/sec, and can be attributed to
resource stealing. In fact, whenever class 2 goes into underload, class 1 flows will
try to use some of the fair-share bandwidth of class 2 with success. Class 1 flows
will then experience resource stealing because in this situation, and since probing
is only in the requested class, new requests for class 2 flows will be accepted (at
the cost of stealing bandwidth to already accepted class 1 flows). Figure 6 also
shows that the probing loss in class 2 increases with the e-probe bandwidth. This
increase is responsible for blocking more class 2 flows when class 1 is using some
of the fair-share bandwidth of class 2, which reduces the bandwidth stealing in
class 1.

+—+ DataLoss - Class 1
7 »— Data Loss - Class 2
+ + Probe Loss - Class 1
I x x Probe Loss - Class g

0 16 20 30 4‘0 5;0 66 70

Bandwidth of Epsilon Probes (Kb/s)

Fig. 6. Effect of mismatch between offered load and CBQ weights on data and
probe loss.

6.2 Experiment with two CoS and a time-varying offered load

In this experiment we consider a time-varying offered load. The motivation here
is to increase the potential for resource stealing, in order to study the effectiveness
of the e-probing scheme. Specifically, we increase the traffic intensity of class 1
during the experiment at a specific time instant, coinciding with the start of data
collection for the purpose of statistics computation. Before this perturbation, the
offered load is 20% of the link capacity in class 1 and 80% in class 2. Since each
class is assigned a weight of 50%, class 1 will be underloaded and class 2 will be
overloaded. The experiment consists in increasing the offered load of class 1, to
force the bandwidth stealing of already accepted flows from class 2. The offered
load in class 2 corresponds to 64 Kb/s of flow bandwidth and a mean number of
flows p of 11. Before the perturbation, the offered load in class 1 corresponds to
64 Kb/s of flow bandwidth and a mean number of flows p of 4.

The probing duration is kept constant at 2 seconds. The model of the traffic
source is CBR in all cases. The target loss ratio of probes and e-probes is 5%. In

10

the actual experiment, the increase in traffic intensity of class 1 is implemented
by two traffic generators. Both generators have a constant offered load, but the
second one is only activated later in the experiment. We consider two cases for the
perturbation: the second generator has (i) an arrival rate of 0.5sec™! and p of 10;
(ii) an arrival rate of 0.33sec™! and also a p of 10; the flow bandwidth is kept at
64 Kb/sec in both cases. The goal is to keep the traffic intensity approximately
constant while increasing the arrival rate. Given that we want to analyze the
transient behavior of the system, i.e., when a perturbation arises, the length of
the experiment was constrained to 200 sec (from the start of the second generator),
to avoid averaging out the stealing effects.

To analyze the results of the experiment we use two performance metrics:
the percentage of wrong decisions and the percentage of stolen bandwidth. The
former is the percentage of flows that are accepted when the bandwidth of all
admitted flows is higher than the link capacity. The latter is the percentage of
bandwidth that is stolen by the admission of new flows when this admission is
a wrong decision. The computation of these metrics is done as follows: whenever
there is a positive admission decision, we calculate the bandwidth occupied by
all admitted flows, based on the number of flows and on the flow’s bandwidth. If
this bandwidth is larger than the link capacity (including the tolerance given by
the loss target), the decision is computed as a wrong decision. In this case, the
difference between the bandwidth of the admitted flows and the link capacity is
the stolen bandwidth.

n @
@ 1=}
T T
~
T

n

=]

(%)
T

=
T
Stolen Bandwidth (%)

=)
T
S
T

Wrong Acceptance Decisions (%)

&
T

o
o

10 15 10 15 20
& —Probes Bandwidth (Kb/s) & —Probes Bandwidth (Kb/s)

(a) (b)

Fig. 7. Effect of time-varying offered load on (a) wrong decisions and (b) stolen
bandwidth.

Figure 7(a) and (b) show that without e-probing the percentage of wrong
decisions and of stolen bandwidth is very high (wrong decisions are 38% with
the first perturbation and 20% with the second one; stolen bandwidth is more
than 5% in the first perturbation and almost 2% in the second one). This is
due to resource stealing, when class 1 recovers its bandwidth after the system’s
perturbation. Both metrics decrease rapidly with the e-probe bandwidth: with
only 2 Kb/sec the stolen bandwidth values decrease almost to one half, and with

11

10 Kb/sec (less than 1/6 of the bandwidth of admitted flows) the stealing is
almost insignificant. A comparison of the two curves in each figure shows that a
larger arrival rate provokes more stealing. Thus, the results of this experiment
where resource stealing is intentionally aggravated, clearly show that e-probing is
able to eliminate this problem.

7 Conclusions

Placing admission control functions at the network’s endpoints has been proposed
as a mechanism for achieving per-flow quality of service in a scalable way. In this
paper we have described an experimental system with a DiffServ architecture that
includes both probing and e-probing admission control algorithms. The e-probing
technique was introduced to overcome the so-called resource stealing problem that
impairs multi-class systems based on simple probing. A number of experiments
was carried out to study the performance of these admission control algorithms.
The results clearly show that the probing schemes are able to accurately perform
admission control while achieving high utilization. Moreover, they also show that
in multi-class environments such as DiffServ, e-probing can eliminate the resource
stealing problem. For example, it was shown that the resource stealing problem
can be virtually eliminated by using e-probes with a bandwidth higher than 1/6
of the flows’ bandwidth. Thus, the e-probing scheme is able to provide an effective
solution to support per- flow QoS without signaling and without maintaining any
flow state at core routers.

References

1. G. Bianchi et al. Throughput analysis of end-to-end measurement-based admission
control in ip. In Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, March
2000.

2. K. Nichols et al. Two-bit differentiated services architecture for the Internet. Internet
RFC 2638, 1999.

3. L. Breslau et al. Comments on the performance of measurement-based admission
control algorithms. In Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, March
2000.

4. L. Breslau et al. Endpoint admission control: Architectural issues and performance.
In Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden, August 2000.

5. L. Zhang et al. Rsvp: A new resource reservation protocol. In IEEE Network,
volume 7, pages 8-18, September 1993.

6. S. Blake et al. An architecture for differentiated services. Internet RFC 2475, 1998.

7. S. Sargento et al. Resource stealing in endpoint controlled multi-class networks. In
Proceedings of International Workshop on Digital Communications (Invited Paper),
Taormina, Italy, September 2001.

8. V. Elek et al. Admission control based on end-to-end measurements. In Proceedings
of IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

9. R. Gibbens and F. Kelly. Distributed connection acceptance control for a connec-
tionless network. In Proceedings of ITC °99, Edinburgh, UK, June 1999.

10. E. Knightly and N. Shroff. Admission control for statistical qos: Theory and practice.
In IEEE Network, volume 13, pages 20-29, March 1999.

11. J. Wroclawski. Specification of the controlled-load network element service. Internet
RFC 2211, 1997.

12

