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Abstract. Endpoint admission control is a mechanism for achieving scalable ser-
vices by pushing quality-of-service functionality to end hosts. In particular, hosts
probe the network for available service and are admitted or rejected by the host
itself according to the performance of the probes. While particular algorithms
have been successfully developed to provide a single service, a fundamental re-
source stealing problem is encountered in multi-class systems. In particular, if
the core network provides even rudimentary differentiation in packet forwarding
(such as multiple priority levels in a strict priority scheduler), probing flows may
infer that the quality-of-service in their own priority level is satisfactory, but may
inadvertently and adversely affect the performance of other classes, stealing re-
sources and forcing them into quality-of-service violations. This issue is closely
linked to the network scheduler as the performance isolation property provided
by multi-class schedulers also introduces limits on observability, or a flow’s abil-
ity to assess its impact on other traffic classes. In this paper, we study the problem
of resource stealing in multi-class networks with end-point probing. For this scal-
able architecture, we describe the challenge of simultaneously achieving multiple
service levels, high utilization, and a strong service model without stealing. We
propose a probing algorithm termed � -probing which enables observation of other
traffic classes’ performance with minimal additional overhead. We next develop
a simple but illustrative Markov model to characterize the behavior of a number
of schedulers and network elements, including flow-based fair queueing, class-
based weighted fair queueing and rate limiters. Finally, we perform an extensive
set of simulation experiments to study the performance tradeoffs of such archi-
tectures, and to evaluate the effectiveness of � -probing.

1 Introduction

The Integrated Services (IntServ) architecture of the IETF provides a mecha-
nism for supporting quality-of-service for real-time flows. Two important com-
ponents of this architecture are admission control [3, 8] and signaling [14]: the
former ensures that sufficient network resources are available for each new flow,
and the latter communicates such resource demands to each router along the
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flow’s path. However, the demand for high-speed core routers to process per-
flow reservation requests introduces scalability and deployability limitations of
this architecture without further enhancements.

In contrast, the Differentiated Services (DiffServ) architecture [2, 9] achieves
scalability by limiting quality-of-service functionalities to class-based priority
mechanisms together with service level agreements. However, without per-flow
admission control, such an approach necessarily weakens the service model as
compared to IntServ, namely individual flows are not assured of a bandwidth or
loss guarantee.

A key challenge addressed in recent research is how to simultaneously ach-
ieve the scalability of DiffServ and the strong service model of IntServ. Towards
this end, several novel architectures and algorithms have been proposed. For
example, architectures for scalable deterministic services were developed in [12,
15]. In [12], a technique termed Dynamic Packet State is developed in which
inserting state information into packet headers overcomes the need for per-flow
signaling and state management. In [15], a bandwidth broker is employed to
manage deterministic services without explicit coordination among core nodes.
A scheme that provides scalable statistical services is developed in [5], whereby
only a flow’s egress node performs admission control via continuous passive
monitoring of the available service on a path.

While such approaches are able to achieve scalability and strong service
models, they do so while requiring specific functionality to be employed at edge
and/or core nodes. For example, [5] requires packet time stamping and egress
nodes to process signaling messages; [12] requires rate monitoring and state
packet insertion at ingress points and special schedulers at core nodes. Thus,
despite that such edge/core router modifications may indeed be feasible, an al-
ternate and equally compelling problem is to ask whether the same goals can be
achieved without any changes to core or edge routers, or at most with routers
providing simplistic prioritized forwarding as envisioned by DiffServ extensions
such as class based queueing or prioritized dropping policies.

This design constraint is quite severe: it precludes use of a signaling proto-
col as well as any special packet processing within core nodes. Such a constraint
naturally leads to probing schemes in which end hosts perform admission con-
trol by assessing the state of the network by transmitting a sequence of probe
packets and measuring the corresponding performance. If the performance (e.g.,
loss rate) of the probes is acceptable, the flow is admitted, otherwise it is re-
jected. Design and analysis of several such schemes can be found in [1, 6, 7].
Such approaches achieve scalability by pushing quality-of-service functionali-
ties to the end system and indeed removing the need for a signaling protocol or
any special-purpose edge or core router functions. Moreover, [4] found that such



an architecture is indeed able to provide a single controlled-load like service as
defined in [13].

However, can host-controlled probing schemes be generalized to support
multiple service classes as achieved by both IntServ and DiffServ? In particular,
DiffServ supports multiple service classes differentiated by simple aggregate
scheduling policies (per-hop behaviors); DiffServ’s Service Level Agreements
(SLAs) provide aggregate bandwidth guarantees to traffic classes; IntServ pro-
vides mechanisms to associate different quality-of-service parameters (e.g., loss
rate, bandwidth, and delay) with different traffic classes. Can such multi-class
service models co-exist with the host-controlled architecture?

Unfortunately, a resource stealing problem, first described in [4], can oc-
cur in multi-class systems. In particular, the problem occurs when a user probes
within its desired class and, upon obtaining no loss (or loss below the class’
threshold), infers that sufficient capacity is available, which indeed it may be
within the class. However, in some cases, admission of the new probing flow
would force other classes into a situation of quality-of-service violations, un-
beknownst to the probing flow. Such resource stealing, described in detail in
Section 2, arises from a fundamental observability issue in a multi-class sys-
tem: the performance isolation property provided by multi-class networks also
inhibits flows from assessing their performance impact on other classes.

The goal of this paper is to investigate host probing in multi-class networks.
Addressing the problem of resource stealing, our contribution is threefold. First,
we study architectural issues and show how service disciplines and the work
conservation property have important roles in the performance of probing sys-
tems. For example, while a non-work-conserving service discipline can pro-
hibit resource borrowing across classes and remove the stealing problem, such
rigid partitioning of system resources limits resource utilization. Second, we de-
velop a probing algorithm which simultaneously achieves high utilization and
a strong service model without stealing. The algorithm, termed � -probing, pro-
vides a minimally invasive mechanism to enable flows to assess their impact on
other traffic classes in Class-Based Fair Queueing (CBQ) and strict priority sys-
tems. Finally, we introduce a simple but illustrative analytical model based on
Markov Chains. Using the model, we precisely identify stealing states, compar-
atively analyze several probing architectures, and quantify the aforementioned
tradeoffs.

In all cases, we use an extensive set of simulations to evaluate different
probing schemes and architectures under a wide range of scenarios and traffic
types. The experimental results indicate that � -probing can achieve utilizations
close to the limits obtained by fair queueing, while eliminating resource stealing.
Consequently, if core networks provide minimal differentiation on the forward-



ing path, � -probing provides a scalable mechanism to control multiple service
classes, achieve high utilization, and provide a strong service model without
resource stealing.

The remainder of this paper is organized as follows. In Section 2, we for-
mulate the stealing problem in multi-class networks and describe the role of the
packet scheduler. Next, in Section 3, we propose a simple probing algorithm,
termed � -probing, that overcomes the observability limitations introduced by
multi-class schedulers. In Section 4 we develop an analytical model to study
the performance issues and tradeoffs in achieving high utilization, multiple ser-
vice classes, and a strong service model without stealing. Finally, in Section 5,
we describe an extensive set of simulation experiments used to investigate the
design space under more realistic scenarios.

2 Resource Stealing

The stealing problem arises in multi-class systems in which resources are re-
motely controlled by observation. This is in contrast to systems in which re-
sources are controlled with explicit knowledge of their load, such as in IntServ-
like architectures. In this section, we describe the origins of multi-class stealing
and the corresponding design and performance issues. Throughout, we consider
a general definition of “class” that can be based on application types, service
level agreements, etc., and with quality-of-service parameters such as loss rate
and delay associated with each class.

2.1 Origins and Illustration

Probing schemes, such as those studied in [1, 4, 6, 7], can be described with
an example using the network depicted in Figure 1. To establish a real-time
flow between hosts H and H’, host H transmits a sequence of probes into the
network at the desired rate (or peak rate for variable rate flows). If the loss rate
of the probes is below a pre-established threshold for the traffic class, then the
flow is admitted, and otherwise it is rejected. Scalability is achieved in such a
framework by pushing all quality-of-service functionality to end-hosts, indeed
removing the need for any signaling or storage of per-flow state.

The stealing problem can be illustrated as follows. Consider the following
simple scenario with two flows sharing a single router with link capacity

�
and

a flow-based fair queueing scheduler1(or similarly core stateless fair queueing
1 We will discuss both flow- and class-based fair queueing. In class-based, the scheduling disci-

pline inside each class is FCFS (First Come First Served), and between classes the discipline
is fair queueing. In flow based each flow is considered as a class.



[11] to achieve scalability on the data path). Suppose that the first flow requires
a bandwidth of

�

�
�

and is admitted to an initially idle system. Further suppose
that the second flow has a bandwidth requirement

�
�

�
. Upon probing for the

available service in the fair queueing system, the flow will discover that it can
indeed achieve a loss-free service with throughput

�
�

�
, and admit itself. Unfor-

tunately, while
�

�
�

is indeed the fair rate for each flow, the goal here is not to
achieve packet-level fairness, but rather to achieve flow-level quality-of-service
objectives. Thus, in this example, abruptly reducing the first flow’s capacity is a
clear violation of the flow’s service.

A
 A'


B'

B


H
 H'


Fig. 1. Illustration of Probing and Multi-Class Stealing

This simple example illustrates an important point. The ability of fair queue-
ing to provide performance isolation can be exploited for both flow-control (to
quickly and accurately assess a flow’s fair rate) and quality of service (to pro-
vide a minimum guaranteed bandwidth to a flow or group of flows). However,
it is precisely this performance isolation which introduces the “stealing” prob-
lem for scalable services: since the probing flow is isolated from the established
flows, it cannot assess the potentially significant performance impact that it has
on them. Consequently, while a new flow can determine whether or not its own
quality-of-service objectives will be satisfied, it cannot determine its impact on
others. Thus, if admitted, the new flow can unknowingly steal resources from
previously admitted flows and result in service violations.

This problem is not limited to fair queueing nor to per-flow schedulers. Con-
sider a class-based strict priority scheduler in which a new flow wishes to probe
for the available service at a mid-level priority. Ideally, the flow could indeed
assess the capacity remaining from higher priority flows by probing at the de-
sired service level. However, it would not be able to assess its impact on lower
priority levels without also probing at lower levels.



Thus, the stealing problem arises from a lack of observability of multi-class
networks, namely, that assessing one’s own performance does not necessarily
ensure that other flows are not adversely affected.

2.2 Problem Formulation

Within a framework of scalable services based on host probing, the key chal-
lenge is to simultaneously achieve (1) multiple traffic classes (differentiated ser-
vices), (2) high utilization, and (3) a strong service model without stealing. To
illustrate this challenge, consider the network of Figure 1 in which each link has
capacity

�
. Further suppose the system supports two traffic classes

�
and �

with different traffic characteristics and QoS requirements.
A key design axis which affects these design goals is whether or not the

system allows resource sharing across classes. This in turn is controlled by the
scheduler and whether or not it is work conserving.

Rigid Partitioning without Work Conservation One way to ensure both classes
achieve their desired QoS constraints is via hard partitioning of system resources
with no bandwidth borrowing across classes allowed. Such a system can be im-
plemented with rate limiters, i.e., policing elements with the peak rate of class �
limited to ��� �

with � ��� � �	��
 .
Observe that a hard partitioning system can support multiple traffic classes

and does not incur stealing, thereby achieving the first and third goal above.
However, notice that the system is non-work-conserving in the sense that it will
reject flows even if sufficient capacity is available and consequently can under
utilize system resources. For example, suppose path A-A’ of Figure 1 has a
large class-

�
demand and no class- � and vice versa on path B-B’. In this case,

the system would be under-utilized as only half of the flows which the system
could support would be admitted. In general, whenever the current bandwidth
demands are not in line with the weights ��� , the system will suffer from low
utilization.

Inter-class Sharing with Work Conservation In contrast to the scenario above,
consider a work-conserving system which allows one class to use excess capac-
ity from other classes. In particular, consider a two-class fair queueing system
(without rate limiters) with weights � � and � � . With the same demand as in the
example above, both A-A’ and B-B’ flows can fully utilize the capacity due to
the soft partitioning of resources in the work conserving system. Thus, the first
and second goals are achieved. However, as described in Section ??, such a sys-
tem suffers from the stealing problem, as a new class- � flow on A-A’ or a new
class-

�
flow on B-B’ will steal bandwidth from established flows.



Targeted Behavior The targeted behavior that we strive to achieve is to com-
bine the advantages of the hard and soft partitioning systems and allow borrow-
ing across classes to achieve high utilization, while eliminating resource stealing
to provide a strong service model. Thus, in the example, if A-A’ is fully utilized
by class-

�
flows, class- � flows (and class-

�
flows) should be blocked until

class-
�

flows depart. Below, we develop new probing schemes which seek to
simultaneously achieve the above three design goals and achieve this targeted
behavior. This service model is a greedy one, in which all flows which can be
admitted are, provided that their and all other service requirements can be sat-
isfied. This strategy does not incorporate blocking probability as a QoS param-
eter. It is possible to have targeting blocking probabilities, but it is beyond the
scope of this paper. Throughout the paper we will only consider the admission
controlled traffic. Best-effort would have a lower priority level so it would not
interfere with the admission controlled one. Also, guaranteed-like service with
strict QoS assurances would have a reserved bandwidth and a higher priority.

3 Epsilon Probing

In this section, we develop probing algorithms which overcome the stealing
problem in fair queueing multi-class servers. The key technique is to infer the
“state” of other classes with minimal overhead in terms of probing traffic or
probing duration. Throughout, we consider a simplified bufferless fluid model
as in [4], in which flows and probes transmit at constant rate and probing is
“perfect” in the sense that probes correctly infer their loss rate as determined by
the scheduling discipline (which defines how loss is distributed among classes)
and the workload (which defines the extent of the loss in the system).
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Fig. 2. Illustration of � -Probing



Consider a class-based weighted fair queueing server with
�

classes, where
class � has weight ��� and target QoS parameters of loss rate ��� and delay bound� � (for simplicity, we restrict the discussion to loss). According to the definition
of WFQ, the bandwidth utilized by class � when all classes are backlogged is
given by ���	� 
��
������ 
 � �

where � is the set of backlogged classes. Let the

demanded bandwidth of class � be denoted by ��� . If � ��������� � ����� �
, then

loss occurs in the system, and the loss rate of class � at that particular instant in
time is given by �

��� �!�"�$#%�&�('*)�+,�"�.- (1)

With probing in a single level, a new class- � flow requesting bandwidth /,�
is admitted if its measured loss rate is less than the class requirement, i.e., if�
� � �0� . However, observe that even under congestion and arbitrarily high loss

rates in other classes, the new flow would be admitted as long as

�"� � /1� � � �2�(+3� 
 #4�0�('�- (2)

Thus, stealing across classes can occur as the probing flow fails to observe
whether or not other classes’ loss requirements are also satisfied. While simul-
taneously probing in all classes may seemingly solve the problem, it is not only
unnecessary, but significantly damages the performance of the system: namely
increased probing traffic forces the system to more quickly enter a thrashing
regime in which excessive probing traffic causes flows to be mistakenly rejected,
and in the limit, causes system collapse [4].

We propose � -probing as a probing scheme designed to eliminate stealing
in a minimally invasive way. With � -probing, a new flow requesting bandwidth/�� simultaneously transmits a small bandwidth � � to each other class � . The
motivating design principle is that the impact of the new flow on all classes
must be observed, so that the new flow is only admitted if

�
� � � � is satisfied

for all �$� 
65�������5 � . The admissible loss rate in each � -probe (

�
� ) is the same

for all classes and globally agreed upon. In particular, addition of the new class-� flows can affect �7� for each class: the � -probes ensure that the new �8� is
sufficiently large to meet the required loss rate.

In the fluid model, � � can be arbitrarily small, whereas in the packet system,
it must be sufficiently large to detect loss in the class. In the simulation experi-
ments of Section 5, we consider � � = 64 kb/sec for a 45 Mb/sec link with flows
transmitting at rates between 512 kb/sec and 2 Mb/sec.

Finally, we note that despite the utilization advantages of a work-conserving
system, a network may still contain non-work conserving elements to achieve
other objectives (e.g., to ensure that a minimum bandwidth is always available



in each class, even if there is no current demand, cf. Figure 7). The goal of � -
probing is to enable inter-class resource sharing to the maximal extent allowed
by the system architecture.

� -probing is applicable to both class-based fair queueing and strict priority
schedulers. In the latter type of scheduler, the � -probes are required only in the
priority levels lower than the level of the class for the flow that is requesting
admission. In higher levels stealing cannot occur and no � -probe is required.
Therefore, the overhead due to � -probes is lower in strict priority than in class-
based fair queueing schedulers.

4 Theoretical Model

In this section we develop an analytical model based on continuous time Markov
chains to study the problem of resource stealing in multi-class networks.

4.1 Preliminaries

In the model, each state identifies the number of currently admitted flows in each
class such that with

�
classes, the Markov chain has

�
dimensions. The link

capacity is
�

resource units and each flow of class � occupies /�� resource units.2

We assume that new flows arrive to the system as a Poisson process with mean
inter-arrival time

�
� � , and that flow lifetimes are also exponentially distributed

with mean
�
� � . Probing is considered instantaneous so that we do not consider

the “thrashing” phenomenon (due to simultaneously probing flows) described
in [4].

We define � � to be the number of class � flows in the system such that
the total amount of resources occupied by all flows in the system is given by� b � n ' , where b � � / ��5������ 5 / ��' , n � ��� ��5�������5 � � ' , and � b � n '8� 
 ���� � /����0� .
All classes require 0 loss probability so that we restrict our focus to multi-class
stealing and do not address QoS differentiation with this model.

In the discussion below, we consider an example consisting of two traffic
classes so that, for example, the transition from state � � 5 
 ' to � 
65 
 ' signifies
admission of the first class 1 flow. The link capacity

�
is 6 resource units and

the flow bandwidths are 1 and 2, i.e., / � � 
 and / � �	� .

4.2 Markov Models

Below, we model the different schedulers and probing algorithms which we
compare in Section 4.3.

2 In general the rates of flows that belong to the same class may be different; however this
assumption is required for the Markov chain formulation.



FIFO Here, we consider FIFO as a baseline scenario. In our working example
with two classes, each flow will probe the network and will be admitted only if/ � � � � / � � �	� �

, including the probing flow. Figure 3 depicts the corresponding
state transition diagram.

In the general case, the state space is
� ��� n ��� ��� � b � n ' � ���

where � is
the set of non-negative integers and � � is the set of all

�
-tuples of non-negative

integers. The link utilization is given by 	 � �
 
���
�� � b � n '�� � n ' where � � n '
is the probability of being in state n, which can be computed using standard
techniques [10]. Notice that the probability of stealing is zero, since probing
flows are only admitted if there is available bandwidth in the link.

Fig. 3. FIFO Transition Diagram

Flow-Based Fair Queueing As described in Section 2, larger bandwidth flows
can have bandwidth stolen in flow-based fair queueing systems. Figure 4 de-
picts the system’s state transition diagram for our working example. As shown,
the state space includes all states in which the number of flows multiplied by
the lowest bandwidth flow is lower or equal to the link capacity. For example,
a transition from state (4,1) to (5,1) is possible because 1 bandwidth unit is
guaranteed for each flow, and this is sufficient for class 1 flows. Alternatively,
a transition from state (5,0) to (5,1) is not possible because class 2 flows re-
quire 2 bandwidth units. Thus, the stealing states represent admissions of low
bandwidth flows when the system is at full capacity and high bandwidth flows
are forced into a loss state. In the state transition diagrams, stealing states are
represented by a crossed-out state.

Suppose � � � 5 � � 5 - - - 5 �0� 5 - - - 5 � � � is the current admitted set of flows. Then a
new class- � flow is admissible if ��/ � � � � / � � � � - - - � /�� ��� �0� � 
�� � �0� ) � � - - - �



Fig. 4. Flow-Based Fair Queueing Transition Diagram

� � ' � ���
with ��/ � � / � � - - - � /1� � - - - � / � � . There are two cases: if the

total demand satisfies ��/ � � � � / � � � � - - - � /1� ���0� � 
 ' � /1� ) � �0� ) � � - - - � /1� � � �
���

, then all flows are correctly admissible; however if ��/ � � � � / � � � � - - - �/��3���0� � 
 ' � /1� ) � �0� ) � � - - - � / � � � � ���
, then stealing occurs. Since the

scheduler fairly allocates bandwidth to all flows, flows with bandwidth higher
than the bandwidth of the flow requesting admission are forced into a loss state.

For the case of two types of flows, the state space including stealing states
is given by

����� � � n ��� � � � � / � � � � / � � � � � '���� / � � � � � '�� ��� ���� � ' '� � � / � � � � � '�� ��� � � � ' ' �
For example, in our transition diagram, state (2,3) (with � � � � �� �

) is a
possible state (a stealing state) because / � � � � / � � � �
	 � �

and / � � � �
� �
�

. State (2,4) is not a possible state since / � � � � / � � � ��� � �
but / � � � �
 � �

. This example explains the need of the second inequality � / � � � � � ' .
With � � � �

, the state with the maximum number of flows is (0,3) because/ � � � ��� � �
.

To generalize the state space to
�

types of flows, let ��� be the smallest �
such that � ��� �� �

, then

����� ��� n ��� � � � /1� � �0� � � /1� � �0� � ) � � - - - � /1� � � � � � '
� � /�� � ) � �0� � ) � � - - - � /1� � ) � � � � � '�� - - -�� � / � � � � � ' �

The mean utilization is then

	 � 

� �

n

 ����� � b � n '�� � n ' (3)



where

� b � n ' �
� � b � n ' if (b � n) � �

�
otherwise

(4)

The probability of stealing is

� ������ � 
 # 

n

�� � b � n '�� � n '


n

 � ��� � b � n '�� � n ' (5)

computed as the percentage of bandwidth guaranteed to flows which is stolen
by other flows.

Rate Limiters With rate limiters class � flows are only allowed to use a max-
imum of

� � bandwidth units. Here, we consider rate limiters of
� � � � units

and
� � ��� units respectively. Figure 5 depicts the corresponding state tran-

sition diagram. Given the functionality of the rate limiters, the state space is
reduced to ���
	 ��� n ��� � � /1� �0� � � � 5 � � 
65 � 5 - - - � � - (6)

With this elimination of various high-utilization states, the overall system uti-
lization in the general case of

�
classes, given by 	 � �
 
 � 
 ����
 � b � n '�� � n ' , is

then also reduced as compared to work-conserving systems. Clearly, the extent
of this utilization reduction is a function of the system load, /,� and � � , and

� � .
If they are properly tuned, the penalty will be minimal, whereas if they become
unbalanced due to load fluctuations, the system performance will suffer.

Fig. 5. Rate Limiters Transition Diagram



Fig. 6. Class-Based Fair Queueing Transition Diagram

Class-Based Systems In class-based fair queueing without rate limiters, re-
source borrowing across classes is allowed. However, as described in Section 2,
stealing occurs as new flows in classes with reserved rate less than � � �

request
admission. Thus, with 1-level probing, a class � flow with bandwidth /,� will be
admitted if, including the probing flow, one of two conditions occurs: /,���0� � �

when � b � n ' � �
, or / � �0� � � �2� when � b � n ' � �

. In the state transition
diagram of Figure 6, � � � 
 + � and � � � � + � . As an example, consider the
transition from (5,0) to (5,1). In the state space, the first set of inequalities is not
satisfied because / � � � �	� � �

, but / � � � � / � � � ����� �
. However the second

set of inequalities is satisfied since / � � � �	� � � � � and / � � � � / � � � ��� � �
.

Therefore this transition is possible. Similarly, the transition from (4,1) to (5,1)
is not allowed because neither set of inequalities are satisfied.

The state space has two parts. The first one is equal to the one of FIFO and
allows borrowing between classes as long as � b � n ' � �

. Thus
� 
�� ��� � includes

� n ��� � � � b � n ' � ���
. Suppose we are in one of the edge FIFO states. Due to

the borrowing between classes, for some classes, /�� �0� � � �2� , which we will
call the underload classes ( �	� ), and for others, / � �0��� � � � , which we will call
the overload ones ( 
�� ). Suppose there is currently no stealing in the system.
New probing flows from �	� classes can be admitted until /
��� ����� � � ����� , with
	�� � ��� , irrespective of the value � b � n ' . Thus departing from an edge FIFO
state, new states can be created such that � n ��� � 5 	�� ����� � /���� ����� � � ����� � .
The overall state space

� 
�� ��� � is then the union of the FIFO state space and
the one constructed with these new states.

The utilization is 	 � �
 
 � 
 ����� � � � � b � n '�� � n ' and the probability of

stealing is � 
�� ��� �� � � 
 # 
�� �����
b �n �! � n �
�� ��� ��� � � �
�
b " n �! � n � . Note that � b � n ' has the same

definition as in flow-based fair queueing. Comparing the class-based and flow-



based fair queueing, observe that the class-based system has a larger number of
stealing states than the flow-based system. For example, transition from (6,0)
to stealing state (6,1) is possible in the class-based system whereas state (6,1)
does not exist in flow-based fair queueing. The reason for this is that the flow
based fair queueing system blocks this 7th flow as it forces the system into loss.
However, the class based system admits this flow since the requested rate of 2
bandwidth units is indeed available in class 2, even though it forces class 1 into
a stealing situation. Regardless, even though there are more stealing states in
the class-based system, the overall stealing probability is lower (as indicated by
numerical examples and simulations below) because the fraction of time spent
in such stealing states is lower in the class based system, so the bandwidth stolen
will also become lower.

In contrast to the above 1-level probing, with � -probing, all classes are
probed to ensure that no stealing occurs. Here, the admissible states in this
scheduler are the same as in FIFO, so the state space is the same, as well as the
utilization. (We note that the utilization in the real system with nonzero probe
durations is not the same however.)

4.3 Numerical Examples

Here we numerically solve the Markov models for each system described above.
With the solution to the state probabilities, we compute the utilization and prob-
ability of stealing using the expressions derived above. We consider the scenario
of previous sections with a link capacity of 6 bandwidth units. The weights of
classes 1 and 2 are 1/3 and 2/3, respectively. The bandwidths of class-1 and
class-2 flows are 1 unit and 2 units, respectively. Class 1’s mean flow arrival
rate is 8 requests per second while class 2’s is 5. The mean life time of class 1
flows is 2/3 time units while class 2’s is 1/4 time units.

Probing Scheme Utilization Stealing
� -probing/FIFO 0.789 0

Flow-FQ 0.792 0.140
Rate Limiters 0.702 0

Class-FQ (1-level) 0.789
��� �������
	 ���

Table 1. Utilization and Stealing Probability

We make two observations about numerical examples presented in Table 1.
First, notice that � -probing and rate limiters both have the effect of eliminating



resource stealing. However, � -probing does so at higher utilizations. For exam-
ple, � -probing achieves 79% utilization as compared to 70% under rate limiters.
Moreover, the difference between these two utilizations is determined by the
relative class demands, which in this context are the relative flow arrival rates.

Second, note the stealing probabilities for flow- and class-based fair queue-
ing (without � -probing). Here, the stolen bandwidth is 0.140 for flow-based and
 - � 
 � 
 � � �

for class-based. As evident from the model, CBQ incurs far less
stealing than flow-based fair queueing. In simulation experiments, this relative
difference still exists, however the probability of stealing for CBQ is far greater
than it is in these numerical examples. The reason for this is even evident from
the Markov model. In the CBQ system, stealing occurs as classes first demand
bandwidths below and then later above � � �

as defined in the state space of
CBQ-1 level. It is precisely such system dynamics (changing resource demands)
which are well captured by simulations but less via the Markov model. Thus,
while the Markov model is useful to explore the origins and structure of multi-
class resource stealing, we now turn to simulation experiments to quantitatively
explore stealing under more realistic scenarios.

5 Experimental Studies

In this section, we present a set of simulation experiments with the goal of ex-
ploring the architectural design space as outlined in Section 2, evaluating � -
Probing presented in Section 3, and validating the conclusions of the analytical
model of Section 4 in a more general setting.

Hosts

Rate Limiters Multi-Class Scheduler

Fig. 7. Simulation Scenario

The basic scenario is illustrated in Figure 7. It consists of a large number of
hosts interconnected via a 45 Mb/sec multi-class router. For some experiments,
the router contains rate limiters which drop all of a class’ packets exceeding the



pre-specified rate. We consider several multi-class schedulers including CBQ,
flow-based fair queueing, and rate limiters. We also consider FIFO for baseline
comparisons. New flows arrive to the system with independent and exponential
inter-arrival times through a Poisson process and probe for a constant time of 2
seconds. Flows send probes at their desired admission rate except for � -probes,
which are transmitted at 64 kb/sec. New flows are admitted if the loss rate of the
probes is below the class’ threshold.
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Fig. 8. Utilization and Stealing vs. Load for Various Node Architectures

Utilization and Stealing In the first set of experiments depicted in Figure 8,
we investigate the challenge of simultaneously achieving high utilization and
a strong service model without stealing. In this scenario, there are three traffic
classes with bandwidth requirements of 512 kb/sec, 1 Mb/sec, and 2 Mb/sec
respectively. We consider three variants of the system depicted in Figure 7. The
flow-based fair queueing curve, (labeled “FQ”) represents the case in which
the scheduler allocates bandwidth fairly among flows, i.e., the

� ���
probing flow

measures no loss if its rate is less than
� + � . In contrast, the curves labeled “Rate

Limiters 1”, “Rate Limiters 2” and “CBQ 1 level probing” represent class-based
scheduling. In the former case, each class is rate limited to

� + � so that all loss
occurs in the rate limiters and none in the scheduler (cf. Figure 7). In the latter
case, the classes are not rate limited and the scheduler performs CBQ with each
class’ weight set to 1/3. In all cases, probes are transmitted at the flow’s desired
rate and � -probing of Section 3 is not performed. The x-axis, labeled load, refers
to the resource demand given by

�
� .

We make the following observations about the figure. First, comparing the
results with rate limiters and CBQ, Figure 8(a), indicates that CBQ achieves



higher utilization than rate limiters due to the latter’s non-work-conserving na-
ture. That is, the rate limiters prevent flows from being admitted in a particular
class whenever the class’ total reserved rate is

� + � , even if capacity is available
in other classes. However, from Figure 8(b), it is clear that the higher utiliza-
tion of CBQ is achieved at a significant cost: namely, CBQ incurs stealing in
which up to 1.5% of the bandwidth (in the range shown) guaranteed to flows
is stolen by flows in other classes. Hence the experiments illustrate that neither
technique simultaneously achieves high resource utilization and a strong service
model. Moreover, as the resources demanded by a class become mismatched
with the pre-allocated weights, the performance penalty of rate limiters is fur-
ther increased. That is, if the demanded bandwidth were temporarily 80/10/10
rather than 33/33/33, as is the case for the curve labeled “Rate Limiters 2” at a
load of 40, then the rate limiters would restrict the system utilization to at most
53% representing a 33/10/10 allocation.

Second, observe the effects of flow aggregation on system performance. In
particular, flow-based fair queueing achieves higher utilization and has higher
stealing than CBQ. With no aggregation and flow-based queueing, smaller band-
width flows can always steal bandwidth from higher bandwidth flows resulting
in both higher utilization since more flows are admitted (in particular low band-
width flows) as well as more flows having bandwidth stolen. In contrast, with
class based fair queueing, stealing only occurs when a class exceeds its 1/3 allo-
cation (rather than a flow exceeding its 
 + � allocation) and a flow from another
class requests admission, an event that occurs with less frequency.

� -Probing Figure 9(a) depicts utilization vs. load for three cases: CBQ with
one-level probing, CBQ with � -probing, and rate limiters. Observe that com-
pared to one-level probing, � -probing incurs a utilization penalty. There are two
contributing factors. First, the � -probes themselves cause an additional traffic
load on the system despite their small bandwidth requirement. Second, by block-
ing flows which will result in stealing, there are fewer flows in the system on
average with � -probing than with one class probing. Regardless, this moderate
reduction in utilization has the advantage of eliminating stealing completely.
Moreover, the utilization penalty of rate limiters can be arbitrarily high depend-
ing on the mismatch between the demanded resources and the established limits.
In contrast, the performance of � -probing does not rely on proper tuning of rate
limiters, but rather the overhead of � -probing simply increases linearly with the
number of classes.

The utilization reduction solely due to probing is further illustrated in Fig-
ure 9(b). Observe that the overhead incurred in � -probing is necessarily higher
larger than that incurred by probing in only one class, as � -probing must also
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Fig. 9. Utilization and Overhead of � -Probing

ensure that other traffic classes are not in overload. However, due to the lim-
ited bandwidth required to probe in other classes, � -probing incurs moderate
utilization reductions typically below 2.5%. Therefore, � -probing is able to si-
multaneously eliminate stealing, provide multiple service levels, and enable full
statistical sharing across classes.

6 Conclusions

Placing admission control functions at the network’s endpoints has been pro-
posed as a mechanism for achieving per-flow quality-of-service in a scalable
way. However, if routers perform class differentiation such as multiple priority
queues, the system becomes less observable to probing flows, precisely because
of the performance isolation provided by the service discipline. In this paper, we
have studied the resource stealing problem that arises in such multi-class net-
works and developed a simple probing scheme termed � -probing which attains
the high utilization of work-conserving systems while preventing stealing as in
non-work-conserving systems with hard class-based rate limits. We introduced
a Markov model that illustrated the design space of key network differentiation
mechanisms, such as class- and flow-based weighted fair queueing and rate lim-
iters. The model showed the different ways that stealing is manifested in the
different configurations and provided a tool for formal comparison of diverse
systems. Finally, our simulation experiments explored the design space under a
broader set of scenarios. We quantified the severity of bandwidth stealing and
found that � -probing eliminates stealing with a modest utilization penalty re-
quired to observe the impact of a new flow on other traffic classes.
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