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Abstract

This paper proposes a fitting procedure for Markov Modulated Poisson Processes (MMPPs) that matches
both the autocovariance tail and marginal distribution of the counting process. A major feature of the
procedure is that the number of states is not fixed a priori. It is an output of the fitting process thus
allowing the number of states to be adapted to the particular trace being modeled. The MMPP is
constructed as a superposition of one M/2-MMPP and one 2-MMPP. The M/2-MMPP is designed to
match the probability function and the 2-MMPP to match the autocovariance tail. The procedure starts
by approximating the autocovariance by a weighted sum of two exponential functions. The exponential
with slower decay is selected to model the autocovariance of the 2-MMPP. The autocovariance tail can
be adjusted to capture the long-range dependence characteristics of the traffic. The procedure then fits
the M/2-MMPP parameters in order to match the probability function, within the constraints imposed
by the autocovariance matching. The number of states is also determined as part of this step. The
final MMPP with M states is obtained by superposing the 2-MMPP and the M/2-MMPP. We apply
the inference procedure to IP traffic traces exhibiting long-range dependence and evaluate its queuing
behavior through simulation. Very good results are obtained, both in terms of queuing behavior and
number of states, in particular, with the well-known Bellcore traces.

Keywords: traffic modeling, autocorrelation, self-similar, long-range dependence, MMPP.

1 Introduction

Traffic modeling plays an increasingly important role in the management and planning of modern
telecommunications networks. In order to make an efficient use of resources, network operators are required
to perform frequent traffic measurements and to derive traffic models capable of describing rigorously its
data. When selecting a stochastic model to describe a traffic source, there is the need to consider the
fitting procedures available for parameter estimation. The design of the fitting procedure is a trade-off
between computational complexity and accuracy and requires careful consideration of the model parameters
that have more impact on the performance metrics of interest. This concern is present in several
works [1], [2], [3], [4], [5), [6], [7), [8].

In recent years it has been clearly shown through experimental evidence, that network traffic may exhibit
properties of self-similarity and long-range dependence (LRD) [9], [10], [11], [12], [13], [14], [15]. These
characteristics have significant impact on network performance. However, as pointed out in [5], matching the
LRD is only required within the time scales of interest to the system under study. For example, in order to
analyze queuing behavior, the selected traffic model needs only to capture the correlation structure of the
source up to the so-called critical time scale or correlation horizon, which is directly related to the maximum
buffer size. One of the consequences of this result is that more traditional traffic models such as Markov
Modulated Poisson Processes (MMPPs) can still be used to model traffic exhibiting LRD.

Providing a good match of the LRD behavior is not enough for accurate prediction of the queuing behavior.
The first-order statistics need also careful consideration. The work in [16] discusses the limitations of using
only the mean and the autocorrelation function, as statistical descriptors of the input process for the purpose
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of analyzing queuing performance. The authors show that the mean queue length can vary substantially
when the parameters of the input process are varied, subject to the same mean and autocorrelation function.
While this issue is of major importance, we believe it remains largely neglected.

The main goal of the present work is to develop a parameter fitting procedure for Markov Modulated
Poisson Processes (MMPPs) that matches closely both the autocovariance tail and the marginal distribution
of the counting process. The work is also motivated by the need to keep the number of states of the MMPP
at a minimum so as to reduce the complexity associated with the calculation of the performance metrics of
interest. The simultaneous matching of these two statistics is a difficult task since every MMPP parameter
has an influence on both. With the purpose of achieving some degree of decoupling when matching the
two statistics, we construct the MMPP as a superposition of one M/2-MMPP and one 2-MMPP. We will
denote the resulting process as (2&M/2)-MMPP. We use the 2-MMPP to match the autocovariance tail
and the M/2-MMPP to match the probability function. While superposing these two MMPPs will modify
both statistics, we devised a procedure where this is done in a controlled way. Specifically, the procedure
assures that the M/2-MMPP contributes only with short-range dependence components to the autocovariance
function. Moreover, the probability function of the M/2-MMPP is obtained through deconvolution of the
2-MMPP and (26M/2)-MMPP probability functions thus ensuring that the contribution of the 2-MMPP is
taken into account. The procedure starts by approximating the autocovariance by a weighted sum of two
exponential functions. The exponential with slower decay is selected to model the autocovariance of the
2-MMPP. The autocovariance tail can be adjusted to capture the LRD characteristics of the traffic. We note
that this fitting process captures only the decay and amplitude of the autocovariance tail, and neglects any
oscillatory behavior. However, our results indicate that the oscillatory behavior has a negligible effect in terms
of queuing performance. After this step, the procedure fits the M/2-MMPP parameters in order to match the
probability function, within the constraints imposed by the autocovariance matching. The number of states is
also determined as part of this step. The final (26M/2)-MMPP is obtained by superposing the 2-MMPP and
the M/2-MMPP. This fitting procedure favors matching the LRD and the marginal distribution, as opposed
to the short-range dependence. We believe that, in general, this agrees with the relative importance of these
statistics in terms of queuing behavior.

We apply the fitting procedure to traffic traces exhibiting LRD, including the well known, publicly
available, Bellcore traces. The LRD characteristics are analyzed using the wavelet based estimator of [17].
Results show that the MMPPs obtained through the fitting procedure are capable of modeling the LRD
behavior present in data. The fitting procedure is also assessed in terms of queuing behavior. Results show
a very good agreement between the packet loss ratio obtained with the original data traces and with traces
generated from the fitted MMPPs.

This paper is organized as follows. In section 2 we give some background on MMPPs and on the
superposition of MMPPs. In section 3 we describe the fitting procedure. In section 4 we present numerical
results, which include applying the fitting procedure to measured traffic traces. In section 5 we compare our
work with previously published ones. Finally, in section 6 we conclude the paper.

2 Background

The MMPP with M states is fully characterized by the infinitesimal generator matrix, Q, and by the diagonal
matrix of the Poisson arrival rates, A,
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where oy = -3, 25 Oij» Oij is the transition rate from state i to state j, and A; is the Poisson rate in state 1.

We also represent diagonal matrix A by vector X= [A1; A2, ..., An]. The steady-state probability vector of
Q is the solution of the following system of equations: 7Q = 0 and 7€ = 1, where € is a unit column vector.

Consider the superposition of N MMPPs, each characterized by matrices Q; and A;. The resulting
process is also an MMPP, with infinitesimal generator matrix Q and arrival rate matrix A,

Q=Q:9Q:®..6QxN (1)
A=A OAD...0 AN (2)

where & denotes the Kronecker sum [18§].



Figure 1: Superposition of M/2-MMPP and 2-MMPP models (case of M = 8).

We will restrict ourselves to the case of the superposition of one M/2-MMPP and one 2-MMPP. The
M/2-MMPP will be characterized by the arrival rates vector @ = [¢1,¢2, ..., oar/2] and the transition rates
matrix Q. Similarly, the 2-MMPP will be characterized by the arrival rates vector ¥ = [y1, V2] and the
transition rates matrix Qs

The superposition process is represented in figure 1. The inference procedure works with the counting
process, {X(kA),k = 1,2,...}, where X (kA) represents the number of arrivals in the k* sampling interval
of duration A of the continuous-time MMPP.

The sampling interval A should be selected according to the traffic characteristics: a too large interval may
smooth away important traffic characteristics (e.g., burstiness); a too short interval may result in a process
that has no arrivals in the majority of sampling intervals. Our experiments indicate that a reasonable value
for A is one that allows the mean number of arrivals per interval to be in the range of [10, 100].

3 Inference Procedure

The inference procedure can be divided in five steps: (i) approximation of the empirical autocovariance by
a weighted sum of two exponentials, (i) inference of the M/2-MMPP probability function and of the 2-
MMPP parameters, (iii) inference of the M/2-MMPP Poisson arrival rates, (iv) inference of the M/2-MMPP
transition rates and (v) calculation of the final M-MMPP parameters. The flow diagram of this procedure is
represented in figure 2. In the following sections we describe these steps in detail. Note that the inference
procedure itself is independent of the parameter A.

3.1 Autocovariance approximation

The autocovariance function of the 2-MMPP counting process, X (kA), is a single exponential given by:

C(Al) = d’py (1 — py) e~ (rutr2)8L, 1=0,1,2,... (3)

where d = |11 — 72| and ps is the steady-state probability of state 2. In our approach, this exponential is
fitted to the tail of the empirical autocovariance.

As a first step, we approximate the empirical autocovariance by a sum of two exponentials with
real positive weights and negative real time constants. This is accomplished through a modified Prony
algorithm [19], and the approximation is validated using the methods of [4]. The Prony algorithm returns
two vectors,

a=[a a] =16 5]
which correspond to the approximating function

Co(Al) = aye PR 4 qpeP2AL 1=0,1,2,... (4)
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Figure 2: Flow diagram of the inference procedure.

Assuming B, < 1, we select the second exponential with parameters f2 and ay as the autocovariance
tail approximation. From (3) and (4) results

az = d’ps (1 — p2) (5)

and
B2 = T11 + 122 (6)

3.2 Inference of the M/2-MMPP probability function and of the 2-MMPP
parameters

The next step is the inference of the M/2-MMPP probability function from the empirical probability function
of the original data trace. Let f(z), fi(z) and fa(z) denote the probability functions of the (2&6M/2)-MMPP,
M/2-MMPP and 2-MMPP, respectively. As a result of the superposition of the M/2-MMPP and 2-MMPP
sources f(x) is given by

f () =fi(z) ® f2(2) (7)

where ® denotes convolution. We consider that the Poisson arrival rate in one state of the 2-MMPP source
is zero (y1 = 0) and is constant and equal to d on the other state. In other words, we approximate the
probability function of the 2-MMPP by that of an Interrupted Deterministic Poisson (IDP) process. This
simplification allows to obtain fi(z) from f(z) directly, avoiding deconvolution, which results in a faster
algorithm. Thus:

fa(z) = (1 = p2) 6 (z) + p20 (z — d) (8)



where §(z) is the dirac function. Then, from (7) and (8),

f(x) =1 =p2) fr (#) + p2f1 (x - d) 9)

Since d and po are related by (5) and given that fi(x) > 0 for x > 0 and f;(x) = 0 otherwise, an exact
solution for obtaining f;(z) from (9) may not exist. An approximation to fi(z) can be obtained through the
following minimization process

in [ 17(2) = (1= p2) £ (2) = pafs (2 = D)o (10)

where 0 < ps < 1. Note that ps is not allowed to be 0 or 1 because, in both cases, the 2-MMPP would
degenerate into a Poisson process. In practice we restrict py to be in the range [0.01,0.09].

A numerical solution for (10) can resort to a scalar bounded nonlinear minimization routine [20], which
requires the definition of an approximation error on the minimization variable. In order to calculate this
error, we define an iterative method for obtaining f; (z) from f(z) given p2. Consider that the possible values

of the counting process are arranged in vectors &; = [di,di + 1,...,d (1 +1) —1],0 < i < {mlg,x {X (kA)/d}-‘ .

Each vector Z; has d elements and each element represents a number of arrivals in the sampling interval A.
Since f1(z) =0 for z < 0,

o\ _ f(@o)
fl('ro) - 1_p2
and, for other Z;,
= f(@) P2 L
T) = —— — —— fi(Z;_
f1(@3) T 1_p2f1( 1)

When this iterative process ends, negative values for f;(x) may result. In this case, we zero all negative
values, resulting in the approximation error defined by

e = If @)= (1=p2) fi (#) = p2 o (Fi)|

At this point all parameters of the 2-MMPP have been determined and the 2-MMPP matrices can be
constructed. These are

_ 100 _ —pafa D232
AQ_[O d] Q2_[(1—p2)ﬁ2 — (1 =p2) B2

3.3 Inference of the number of states and Poisson arrival rates of the M/2-
MMPP

The next step is the inference of the number of states and Poisson arrival rates of the M/2-MMPP from
fi(z). To do this we approximate fi(z) by a weighted sum of Poisson probability functions, where each
Poisson distribution is associated to one state of the M/2-MMPP. In this case, the mean and the weight of
the Poisson distribution are the state Poisson arrival rate and steady-state probability, respectively. This is
a good approximation whenever the mean sojourn time in each state of the inferred MMPP is several times
greater than the sampling interval of the counting process. Our numerical results validate this assumption.

The approximation is carried out through an algorithm that progressively subtracts a Poisson probability
function from f;(x). This algorithm is described in the flowchart of Figure 3. We represent the j** Poisson
probability function with mean ¢; by g;(z). We define fq(x) as the difference between fi(z) and the
weighted sum of Poisson probability functions. Initially, we set f4(z) = f1(z). In each step, we first detect the
maximum of f4(z). The corresponding x-value, ; = f;' (max f ()), will be considered the j* Poisson rate
of the M/2-MMPP. We then calculate the weights of each Poisson probability function, & = [wy, wa, ..., w],
through the following set of linear equations:

fl(SOl):ijgj(tpz), I=1,..1
j=1

This assures that the fitting between f;(z) and the weighted sum of Poisson probability functions is exact
at o points. The final step in each iteration is the calculation of the new difference function fz(x). The
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Figure 3: Algorithm for calculation of the number of states and Poisson arrival rates of the M/2-MMPP.

algorithm stops when the maximum of f;(z) is lower than a pre-defined percentage € of the maximum of
fi(z). Note that at this point, we set M /2 = i. Finally, the matrix of Poisson arrival rates is given by

A1 — 0 Y2 0

In the following steps, we assume that the state indexes have been reassigned such that 1 < @3 < ... <
PYm/2-

3.4 Inference of the M/2-MMPP transition rates

In order to calculate the M/2-MMPP infinitesimal generator matrix Qp, we start by extracting, from the
original trace, the fraction of data that is associated with the M/2-MMPP from the point of view of the
marginal distribution. Note, from (9), that f(z) is a sum of two probability functions, both of them easily
related with fi(z). Thus, a new process X;(kA) with probability function f;(z) can be extracted from the
original process X (kA) with probability function f(z), using the simple thinning algorithm illustrated in
figure 4. In this algorithm, each value of X (kA) will be accepted or rejected as belonging also to X;(kA)
according the following criterion:
1. If X(kA) < d then accept always as belonging to X (kA).

2. Otherwise, accept as belonging to X (kA) with probability PR X(k(i;f fi)){ﬁ((f(— (;f)})l XA

To complete the calculation of the infinitesimal generator matrix Qq, we first need to assign each value
of X;1(kA) to a particular state of the M/2-MMPP and then measure the number of transitions between
each pair of states and the average sojourn time in each state. We assume that the process is in state 1,
2 <9< M/2-1,in sampling interval kA, if

(i — pi1) w; (pit1 — i) wi
i——————————— < X1 (kA) < ¢ + ——————
v wi—1 +w; T 1(RA) < ¢ Wit1 + W;

For state 1, the lower bound is the minimum value of X;(kA) and, for state M/2, the upper bound is the

maximum value of X;(kA). The state boundaries defined above impose that the steady-state probabilities
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Figure 4: Illustration of the thinning process.

of the M/2-MMPP will be approximately equal to the weights of the Poisson probability functions, w;,
calculated in previous section. This is required in order to assure that the M/2-MMPP probability function
is close to fi(x). Figure 5 illustrates how the weights, w;, influence the state boundaries defined above: if
the weight of state 4 is higher than the weight of its neighbor k (i — 1 or ¢ + 1), the boundary will be closer
to Pk -

state i-1 state i
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| |
| |
| |
| |
| |
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i i-1

Figure 5: llustration of the boundaries between states.

In order to guarantee that the M/2-MMPP contributes only with short-range dependence components
to the autocovariance, the average sojourn time in each state is limited to a maximum that depends on the
average sojourn time of the 2-MMPP states. Note that, for state 1 of the 2-MMPP, the average sojourn
time is ¢1 = 1/p2f2 and for state 2 is g2 = 1/(1 — p2)B2. Specifically, we constrain the sojourn times of
the M/2-MMPPs states to be lower than min(g1,¢2)/10. To do this, during the measurement of the state
transition probabilities, we force a transition to a randomly selected state (according to the steady-state
probabilities w;,i = 1, ..., M/2), whenever the sojourn time exceeds the above-mentioned limit.

Let z;;, denote the measured number of transitions from state ¢ to state j and v; the measured average
sojourn time in state ¢, obtained using this procedure. The transition rates matrix Q; is then given by

_1 1 _zi0 1 Zim/2

v1 v1 . TTow .

Ej 215 1 E]' Z1j
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3.5 (26M/2)-MMPP model construction
Finally, the (26M/2)-MMPP process can be constructed from the following equations:

A=A DA, Q=Q:e2Q:

where Ay, Az, Q; and Q2 were calculated in previous sections.



4 Numerical Results

We apply our fitting procedure to several traffic traces: (i) the publicly available Bellcore LAN traces [11]
and (ii) traces of IP traffic measured at our institution. The traces measured at our institution are
representative of Internet traffic produced within a medium-size research environment with approximately
50 users making random accesses to the Internet. We assess the fitting procedure by comparing the density
and the autocovariance functions of the original data traces and of simulated traces obtained from the fitted
MMPPs. We analyze the presence of LRD behavior, in both original and fitted data traces, using the method
described in [17]. This method resorts to the so-called Logscale Diagram which consists in the graph of y;
against j, together with confidence intervals about the y;, where y; is a function of the wavelet discrete
transform coefficients at scale j. Traffic is said to be LRD if, within the limits of the confidence intervals, the
y; fall on a straight line, in a range of scales from some initial value j; up to the largest one present in data.

We also analyze the queuing behavior by comparing the packet loss ratio, obtained through trace-driven
simulation, using again the original data traces and the simulated traces obtained from the fitted MMPP.
To calculate the packet loss ratio (Bellcore and our institution) we assume a fixed packet size equal to mean
packet size. The sampling interval of the counting process was 0.1 seconds for all traces.

4.1 Bellcore traces

The fitting procedure was applied to Bellcore/Telcordia traces pOct.TL and pAug.TL, both with 1 million
samples. The pOct.TL trace was fitted to a 16-MMPP and the pAug.TL trace was fitted to a 18-MMPP
model.

Figure 6 shows the fitting results for the first-order statistics (pOct.TL trace). In this case, the fitting
was performed with a very small approximation error. From figure 7 it can be seen that the autocovariance
of the original traffic has an oscillatory behavior and that the fitted traffic captures its average behavior.
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Figure 6: Probability function, pOct.TL. Figure 7: Autocovariance, pOct.TL.

In order to analyze the queuing behavior we considered a queue with a service rate of 750 pkts/s (3.8
Mb/s). The buffer size was varied from 1 to 7000 packets. The average packet size for this trace is 638
bytes. Figure 8 shows that the loss packet ratios of original and fitted traces are almost coincident for all
buffer sizes. This confirms the good matching obtained in both first and second order statistics. Figure 9
shows that the fitted trace exhibits LRD, since the y; values are aligned between octave 6 and octave 11, the
highest octave present in data. The estimated Hurst parameter is H =0.861.

The fitting results for pAug.TL trace exhibit similar performance results as the ones obtained with the
pOct. TL trace, as can be seen in figure 10 and figure 11. As a result the loss ratios of original and fitted
traces, shown in figure 12, are again almost coincident for all buffer sizes. In this case the simulations were
performed with a service rate of 470 pkts/s (1.6 Mb/s) and the buffer size was varied from 1 to 2000 packets.
The average packet size for this trace is 434 bytes. Again, the fitted trace exhibits LRD, since the y; values
are aligned between octave 6 and octave 11, the highest octave present in data, as shown in figure 13. The
estimated Hurst parameter is H = 0.848.
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Figure 10: Probability function, pAug.TL. Figure 11: Autocovariance, pAug.TL.

4.2 Internet traces measured at our institution

The inference procedure was applied to traffic measured at our institution (the Institute of Telecommuni-
cations - IT), a 40 minutes trace with approximately 500000 packets. We fitted the trace to a 16-MMPP
model. There was an almost perfect fitting of the first-order statistics, as can be seen in figure 14. As in
previous cases, the matching of the autocovariance for high values of time lag is almost perfect (figure 15),
but exhibits some mismatch for lower lag times. This may explain some mismatch in the queuing behavior
for small buffer sizes (figure 16). The service rate was 280 pkts/s (1.6 Mb/s) and the buffer size was varied
from 1 to 6000 packets. The average packet size of this trace is 714 bytes.

Figure 17 and figure 18 show that both traces exhibit LRD, since the y; values are aligned between a
medium octave (5 for the original data trace, 7 for the fitted data trace) and the highest octave present in
data. The estimated Hurst parameters are H = 0.847 for the original data trace and H = 0.802 for the fitted
data trace.

5 Related work

In this section, we restrict our attention to fitting procedures for MMPPs. We start by noting that most
procedures only apply to 2-MMPPs [21], [22], [23], [24]. While 2-MMPPs can capture traffic burstiness, the
number of states is in general not enough to provide a good match of the marginal distribution when the
traffic shows variability on a wide range of arrival rates.

Skelly et al. [25] propose a method for estimating the parameters of a generic MMPP that only matches
the first-order statistics: the Poisson arrival rates are inferred from the empirical probability function and
the state transition rates from a direct measurement of the observed trace. We use a similar method in the
steps of our procedure described in sections 3.3 and 3.4. However, a limitation in [25] is that the number of
states results from arbitrating the number of bins for constructing the empirical probability function and the
length of these bins determines the Poisson arrival rates. This results in equally spaced Poisson arrival rates.
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Figure 14: Probability function, IT trace. Figure 15: Autocovariance, IT trace.

In our case, we approximate the empirical probability function by a weighted sum of Poisson distributions.
This allows for a better selection of the Poisson arrival rates, resulting in a lower number of states, when
compared with [25], adapted to the particular characteristics of trace being modeled.

The work by Li and Hwang [6] is closely related to ours, in that it also matches both the autocovariance and
the marginal distribution. The fitting procedure applies to CMPPs, which are a special case of MMPPs where
the steady-state probabilities are the same for all states. The structure of the CMPP allows circumventing
the so-called inverse eigenvalue problem, which is associated with the need of inverting the exponential of the
infinitesimal generator matrix to obtain the transition rates from the fitted autocovariance. As opposed to
ours, the fitting procedure is able to capture pseudoperiodic components present in data, since the infinitesimal
generator matrix of a CMPP can have complex eigenvalues. However, our experiments indicate that the
pseudoperiodic components have a small importance in what concerns queuing performance. In [6], there
is less flexibility in adjusting the marginal distribution, since CMPP states are equiprobable. In particular,
with this procedure it is more difficult to detect low probability peaks on the arrival rate. If these peaks
occur at high rates the queuing behavior can be significantly affected. The detection resolution can only be
improved by increasing the number of states. Our procedure is well adapted to this case, since the method
for matching the empirical probability function is specifically based on detection of local peak arrival rates.

Andersen and Nielsen [1] use 2-MMPPs to model several time-scales of the autocovariance function.
Each of the time scales is fitted to an exponential function, resulting in a model that corresponds to the
superposition of several 2-MMPPs. When compared to ours, this procedure allows a more detailed matching
of the autocovariance at low time scales. We only consider the largest time scale where the LRD behavior may
be observed. However, the fitting of the first-order statistics is very poor, since only the mean is matched.

Deng and Mark [26] propose a method for estimating the parameters of a MMPP with any number of
states, based on the maximum-likelihood principle. The same principle was also used in [23], [24] in the
context of 2-MMPPs. As referred in [24], the method of [26] is quite sensitive to the choice of the sampling
interval and can lead to an exceedingly high number of states. These works do not directly address the
issue of matching the statistics of observed data. Instead, they are targeted to minimizing the estimation
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error, under the assumption that the underlying process is an MMPP with a number of states known a
priori. These assumptions severely weaken the application of these methods in the area of traffic modeling.
In fact, the main challenge in traffic modeling is the discovery of models and associated parameter estimation
procedures that provide a flexible means of capturing the statistics of observed data that have more impact on
network performance. While the MMPP model provides such framework, the performance of the parameter
estimation procedure should not be dependent on the assumption that the underlying population is indeed
of the MMPP type.

6 Conclusions

This paper proposed a fitting procedure for Markov Modulated Poisson Processes (MMPPs) that matches
both the autocovariance tail and marginal distribution of the counting process. A major feature of the
procedure is that the number of states is not fixed a priori. It is an output of the fitting process thus allowing
the number of states to be adapted to the particular trace being modeled. The MMPP is constructed as
superposition of one M/2-MMPP and one 2-MMPP. The M/2-MMPP is designed to match the probability
function and the 2-MMPP to match the autocovariance tail. Our numerical results, which include fitting
traffic traces that exhibit LRD, show that the procedure matches closely the autocovariance tail and the
probability function and that the number of states of each MMPP model is relatively small. The queuing
behavior as assessed by the packet loss ratio suffered by measured and fitted traces, also shows a very
good agreement. Furthermore, the results illustrate that MMPP models, although not being intrinsically
long-range dependent, can capture this type of behavior for limited time scales.
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