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SUMMARY
tance for the traffic engineering of IP networks, due to ttoswyng diversity
of multimedia applications and the need to efficiently supQa$ differen-
tiation in the network. Several recent measurements haverstiawInter-
net traffic may incorporate long-range dependence and isellas charac-
teristics, which can have significant impact on network penénce. Self-
similar traffic shows variability over many time scales, and thehavior
must be taken into account for accurate prediction of netwerkormance.
In this paper, we propose a new parameter fitting procedura $operpo-
sition of Markov Modulated Poisson Processes (MMPPs), wli@able to
capture self-similarity over a range of time scales. The §tfmocedure
matches the complete distribution of the arrival process et &me scale
of interest. We evaluate the procedure by comparing the Hharstmeter,
the probability mass function at each time scale, and the ggeaghavior
(as assessed by the loss probability and average waiting, boreespond-
ing to measured traffic traces and to traces synthesizeddiogaio the
proposed model. We consider three measured traffic tracestabiting

self-similar behavior: the well-known pOct Bellcore traadrace of aggre-
gated IP WAN traffic, and a trace corresponding to the pofiléasharing

application Kazaa. Our results show that the proposeddititocedure is
able to match closely the distribution over the time scalesgnkin data,
leading to an accurate prediction of the queuing behavior.

key words: Traffic modeling, self-similar, time scale, Markov Modelzt
Poisson Process.

1. Introduction

Measuring and modeling network traffic is of key impor-

and Antonio PACHECOT®, Nonmember

The impact of LRD on network performance has been
addressed by several works . References [5], [8]-[10] study
the case of a single queue and conclude that the buffer occu-
pancy is not affected by autocovariance lags that are beyond
the so-called critical time scale (CTS) or correlation hori
zon (CH), which depends on system parameters such as the
buffer capacity. Similar conclusions are observed for the
case of tandem queues in [11]. Thus, matching the LRD is
only required within the time scales specific to the system
under study. One of the consequences of this result is that
more traditional traffic models, such as Markov Modulated
Poisson Processes (MMPPs), can still be used to model traf-
fic exhibiting LRD. The use of MMPPs also benefits from
the existence of several tools for calculating the queuig b
havior and the effective bandwidth.

In this paper we propose a new parameter fitting pro-
cedure for a superposition of Markov Modulated Poisson
Processes (MMPPs), which captures self-similar behavior
over a range of time scales. Each MMPP models a specific
time scale. The parameter fitting procedure matches, at eact
time scale, an MMPP to a probability mass function (PMF)
that describes the contribution of that time scale to the-ove

all traffic behavior. The number of states of each MMPP
The growing diversity of services and applications in the In s not fixed a priori; it is determined as part of the fitting
ternet places a strong requirement on the use of efficient deprocedure. The accuracy of the fitting procedure is eval-
sign and control procedures. In particular, the main char- yated by applying it to several measured traffic traces that
acteristics of the supported traffic must be known with suf- exhibit self-similar behavior: the well-known pOct Belteo
ficient detail. Several recent studies have shown that-Inter trace, a trace of aggregated IP WAN traffic, and a trace cor-

net traffic may exhibit properties of self-similarity anchtp
range dependence (LRD) [1]-[7]. In general, self-simijari

responding to the file sharing application Kazaa. We se-
lected the Kazaa application given its present populanity i

implies long-range dependence and vice-versa. Self&imil the Internet. We compare the PMF at each time scale, and

traffic shows identical statistical characteristics ovevide

the queuing behavior (as assessed by the loss probabitity an

range of time scales, which may have a significant impact average waiting time), corresponding to the measured and to
on network performance. Therefore, it is important to make synthetic traces generated from the inferred models. Gur re
frequent measurements of packet flows and to describe thengults show that the proposed fitting method is very effective

through appropriate traffic models.
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in matching the PMF at the various time scales and leads to
an accurate prediction of the queuing behavior.

When measuring network traffic data, we can either
record the individual arrival instants or the number of ar-
rivals in a predefined sampling (time) interval. The former
approach brings more detail but the latter one has the advan-
tage of producing a fixed amount of data that is known in
advance. This allows the recording of longer traces, which
clearly pays off the loss of detail in data recording, if the
sampling interval is chosen appropriately. In this work,
we consider discrete-time MMMPs (dMMPPs) instead of



continuous-time MMPPs, since they are more natural modeltraffic volume (e.g. in bytes) from time 0 up to tinnend

for data corresponding to the number of arrivals in a sam-let X (¢) = Y (¢t) — Y (¢ — 1) be the corresponding increment
pling interval. Note that discrete-time and continuounsei process (e.g. in bytes/second). Consider also the sequenc
MMPPs are basically interchangeable (through a simple pa-X ™) (k) which is obtained by averaging () over non-
rameter rescaling) as models for arrival processes, wieenev overlapping blocks of length, that is

the sampling interval used for the discrete-time version is

small compared with the average sojourn times in the states m 1 = N

of the modulating Markov chain. X (k) = m ;X((k —UmAi k=12 (1)
Several fitting procedures have been proposed in the =

literature for estimating the parameters of MMPPs from em- The fitting procedure developed in this work will be

pirical data ([12]-[{21], among many others). However, most based on the aggregated procesk€s) (k).

procedures only apply to 2-MMPPs (e.g. [12],[14], [15], We start by introducing the notion of distributional self-

[18]). This model can capture traffic burstiness but the num- similarity. Y (¢) is exactly self-similar when it is equiv-
ber of states is not enough to reproduce variability over a alent, in the sense of finite-dimensional distributions, to
wide range of time scales. On the other hand, the fitting a=*Y (at), for allt > 0 anda > 0, whereH (0 < H < 1)
procedures for MMPPs with an arbitrary number of states is the Hurst parameter. Clearly, the procé&g) can not
mainly concentrate on matching first- and/or second-orderbe stationary. However, ¥ (t) has stationary increments
statistics, without addressing directly the issue of miogel  then againX (k) = X () (k) is equivalent, in the sense of
on multiple time scales [13], [16], [17], [20], [21]. Yoskire finite-dimensional distributions, ta' ~# X (™) (k). This il-

et al. [19] developed a fitting procedure for self-similar traf- lustrates that a traffic model developed for fitting selfi&m

fic based on the superposition of 2-MMPPs, that matches thebehavior must preferably enable the matching of the distri-
variance over specified time scales. In this way, the regulti  bution on several time scales.

MMPP reproduces the variance-scale curve characteristic o Long-range dependence is associated with stationary
self-similar processes. Kasahara [22] addressed in die¢ail  processes. Consider now thit(k) is second-order sta-
queuing behavior achieved by this fitting procedure. Sal- tionary with variancer? and autocorrelation function(k).
vadoret al. [21] proposed a fitting procedure that matches Note that, in this caseX ™ (k) is also second-order sta-
simultaneously the autocovariance and marginal disidhut ~ tionary. The processX (k) has long-range dependence
of the packet counts. The resulting MMPP is constructed as(LRD) if its autocorrelation function is nonsummable, that
the superposition of. 2-MMPPs matching the autocovari- is, 3~ r(n) = co. Intuitively, this means that the pro-
ance, and one M-MMPP matching the marginal distribution. cess exhibits similar fluctuations over a wide range of time
The autocovariance modeling is such that each 2-MMPP (inscales. Taking the case of the pOct Bellcore trace, it can be
the set of L 2-MMPPs) models a characteristic time con- seen in Figure 1 that the fluctuations over the 0.01, 0.1 and
stant (also called time scale) of the autocovariance fancti  1s time scales are indeed similar.

In this paper we develop a procedure that matches the com-  Equivalently, one can say that a stationary process is
plete distribution of the packet counts at each time scale.LRD if its spectrum diverges at the origin, that fi§v) ~
Here, however, the concept of time scale is not directly re- ¢;|v|~*,v — 0. Here,« is a dimensionless scaling expo-
lated to second-order statistics; instead it refers to tize-c ~ nent, that takes values {0, 1); ¢, takes positive real values
acterization of the traffic process when aggregated over aand has dimensions of variance. On the other hand, a short
number of time intervals. Thus, the proposed fitting method range dependent (SRD) process is simply a stationary pro-
addresses the scaling paradigm in a more natural way tharcess which is not LRD. Such a process has- 0 at large

the one proposed in [21], achieving even higher accuracy inscales, corresponding to white noise at scales beyond the so

the fitting of self-similar traffic, although usually inclung called characteristic scale or correlation horizon. ThesiHu
a higher number of parameters in the resulting MMPP. parametefd is related witha by H = (o + 1) /2.
The paper is organized as follows. Section 2 intro- There are several estimators of LRD. In this study we

duces self-similarity and long-range dependence, metivat use the semi-parametric estimator developed in [23], which
ing the need for a traffic model that matches the different is based on wavelets. Here, one looks for alignment in the
time scales of the data. Section 3 gives the required back-so-called Logscale Diagram (LD), which is a log-log plot
ground on MMPPs. Section 4 presents the various steps ofof the variance estimates of the discrete wavelet transform
the parameter fitting procedure. Section 5 briefly describescoefficients representing the traffic process, againsescal
the data traces used in the numerical evaluation and in seceompleted with confidence intervals about these estimates
tion 6 we discuss the results. Finally, section 7 presems th at each scale. It can be thought of as a spectral estima-
main conclusions. tor where large scale corresponds to low frequency. The
main properties explored in this estimator are the stationa
2. Self-similarity, long-range dependence, and time ity and short-term correlations exhibited by the process of
scales discrete wavelet transform coefficients and the power-law
dependence in scale of the variance of this process. We will
Consider the continuous-time proc&sg) representing the  represent the scale hyand the logarithm of the variance



nonnegative real constants aBd= (p;;) being a stochastic
matrix. Note that the distribution &, — Y}, givenJy 1, =
19 1 Jj is Poisson with mean;, so that); represents the mean
] increment of the process when the modulating Markov
| chain is in statg.

Whenever (4) holds, we say thék’, J) is a dMMPP
{~

with set of modulating state$S and parameter (matriceB)
andA, and write

average number of arrivals
5

E "l !” ‘ M h ” H' ‘ J ~

] 1y l \h |1‘ i (Y,J) ~ dMMPPs (P, A) (5)

2l A IH l . .

D, TR i Il whereA = (\;;) = (\d;5), with § being the Kronecker

o o e "°°°sam.,?§°‘3mbf°°° T s function, i.e.,d;; is one ifi = j and is zero otherwise. The
Fig.1 LRD processes exhibit fluctuations over a wide range of ime Matrix P is the transition probability matrix of the modu-
scales (Example: trace pOct). lating Markov chainJ, whereasA is the matrix of Pois-

son arrival rates. I has cardinalityr, we say tha(Y, J)

) o ) S o is a dAMMPP of order (r-dMMPP). When, in particular,
estimate byy;. Traffic is said to be LRD if, within the limits =~ ¢ _ 1 .,r} for somer € IV, then

of the confidence intervals, the log of the variance estimate

fall on a straight line, in a range of scales from some initial P11 piz .. Pir
value j; up to the largest one present in data and the slope Po1 P22 ... Dor
of the straight line, which is an estimate of the scaling expo P= o (6)
nenta, liesin (0, 1). Pri Dr2 oe. Prer
There is a close relationship between long-range de-
pendent and self-similar processes. In facl/{t) is self- and
similar with stationary increments and finite variance then A0 0
X (k) is long-range dependent, as longlas: H < 1. The Ao A . 0 7)
processX (k) is said to be exactly second-order self-similar SRR
(%<H<1)if 0 0 ... A\
and we write simply thatY’, J) ~ r-dMMPP.(P, A).
r(n)=1/2|(n+1)*" —2n*" 4 (n — 1)2H} 2) Consider now the superposition df independent
dMMPPs
forall n > 1, or is asymptotically self-similar if
(YO, JO) ~ 7-dMMPP,, (PD, AD) (8)

r(n) ~ "0 L(n) ©)
_ _ _ _ wherel = 1,2,...,LandJ®, J® . J@) are ergodic

asn — oo, whereL(n) is a slowly varying function atin-  chains in steady- _state and the dimension of each dMMPP is
finity. In both cases the autocovariance decays hyperbol-ngt necessarily the same Fot 1,2, ..., L we denote by

ically, which indicates LRD. Any asymptotically second- 2O = [0 (z)
= 1™

o,
order self-similar process is LRD, and vice-versa. 7T” the stat|onary d|str|but|on of

The result of the superposition is the process

3. Markov Modulated Poisson Processes
(Y,J) = (Zy(l) J(l) J? ,J(L))>

The discrete-time Markov Modulated Poisson Process =

(dMMPP) is the discrete-time version of the popular 9)
(continuous-time) MMPP and may be regarded as an dAMMPP«(P. A

Markov random walk where the increments in each instant ~ s(P,A)
have a Poisson distribution whose parameter is a functionyyhere

of the state of the modulator Markov chain. More precisely,

the (homogeneous) Markov chail, .J) = { (Y, Ji), k = S ={L2,...,m} x...x{1,2,...,r} (10)
0,1,...} with state spacéV, x S is a dMMPP if and only P=PYUgP?g. . oP® (11)
iffor k=0,1,..., A=AV A® g o AD (12)
P(Yipr =m, Joyr = jlYe =n, Jp =) = wherery, s, ..., 7., represent the dimensions of each one
_ 0 o msm (4) of the L dMMPPs, with¢ and® denoting the Kronecker
pije N (ni_n)! m>n sum and the Kronecker product, respectively. Note that the

Markov chainJ is also in steady-state.
for all m,n € INg andi,j € S, with A;, j € S, being In our approaclt’, that represents the number of time



scales considered, is fixadoriori and the dimensions of the  fitted to a dMMPP. For the largest time scale, this PMF is
dMMPPs,ry, 79, ..., 71, are computed as part of the fitting simply the empirical one. For all other time scale$ =
procedure. 1,2,...,L — 1, the associated dMMPP will model only the

The dMMPP is a particular case of the discrete-time traffic components due to that scale. For time s¢albese
batch Markovian arrival process (usually denoted by D- traffic components can be obtained through deconvolution
BMAP) proposed by Blondia and Casals [24]. These pro- of the empirical PMFs of this time scale and of previous
cesses and queues fed by them have received a great detime scald + 1, i.e.,
of attention (see, e.g., [25]-[33] and references therdm) R
particular, we note their use in explaining long range depen fD (z) = [ B g1 A(l“)} (2) (14)
dence [28].

However, this may result in negative arrival rates for the

4. Inference Procedure dMMPPY | which will occur whenever

The inference procedure estimates one dMMPP for each

time scale that matches a probability mass function (PMF) min {a: cpY () > O} < min {x :p0 (2) > O} (15)
characteristic of that time scale. The resulting dAMMPP is

obtained from the superposition of all dAMMPPs inferred for 1q correct this, the dMMP® will be fitted to

each time scale. This inference procedure is closely gtlate

to the notion of distributional self-similarity. The flowatt FO (@) = f0 (m T e(l)> (16)
of the inference method is represented in figure 2 where,
basically, four steps can be identified: (i) compute the data . . Al .
sequences (corresponding to the average number of arrivalherec®) = min (0’mm {x fy (@) 0}) which as-
per time interval) at each time scale; (i) calculate the em- suresf(®) (z) = 0, # < 0. These additional factors are
pirical PMF at the largest time scale and infer its AMMPP; removed in the final step of the inference procedure.

(iii) for all other time scales (going from the largest to the

smallest one), calculate the empirical PMF, deconvolve it 4.3 Parameter inference

from the empirical PMF of the previous time scale and infer

a dMMPP that matches the resulting PMF; and (iv) calculate The first step in the inference of the dMM@F’parameters,
the final dMMPP through superposition of the dMMPPs in- | — 1,2 ... L, is the approximation of(l) by a weighted
ferred for each time scale. We will describe these steps insum of Poisson probability functions. This resorts to an al-
detail in the next subsections. The time interval atthe bmal gorithm, introduced in [21], that progressively subtraats

est time scaleAt, the number of time scaled,, and the  pojsson probability function fronf(). The main steps of

level of aggregatiory, are given apriori. this algorithm are depicted in the flowchart of figure 3 and
) will be explained in the next paragraphs.
4.1 Calculation of the data aggregates Let the it Poisson probability function, with mean

. l
The procedure starts by computing the data sequence cor%  be represented by <”( ) and deflneh( )( ) as the
responding to the average number of arrivals in the small- difference betweerf(® (z) and the we|ghted sum of Pois-
est time scaleDM(k),k = 1,2,...,N. Then, it cal- son probability functions at thé'" iteration. Initially,
culates the data sequences of the remaining time scalesye set h( ( ) = f®(z) and, in each step, we first
DW(k),l = 2,..., L, corresponding to the average number

of arrivals in intervals of lengtihta—1). This is given by detect the maximum of.;)(x). The corresponding:-

value, p; = [hg;]—l (maxhgg ({L‘)), will be considered
ZDU D (k + 1) k=l e Ny . :
DO (k) = a the i* Poisson rate of the M PPY. We then cal-
D(l)(k 1)7 % ¢ IN, culate the weights of each Poisson probability function,
(13) wg” = [wﬁ),wg),..., (l)} through the following set of

where ¥ (x) represents round toward the integer neatest  |inear equations:

Note that the block length of equation (1) is related with

a andl by m = a'~!. Note also that all data sequences

have the same lengthV and thatD(")(k) is formed by FO) Zwﬂ 9 ( (%) 17)
sub-sequences af ~! successive equal values; these sub-
sequences will be calldesequencesThe empirical distri-

bution ofD(l)(k) will be denoted by (). form=1,...,iandl =1, ..., L. This assures that the fitting

betweenf® (z) and the weighted sum of Poisson proba-
4.2 Calculation of the PMFs bility functions is exact atp(l) points, form = 1,2,...,14

The final step in each iteration is the calculation of the new
This step infers the PMFs that, at each time scale, must bedifference function



DO (k)

aggregate data for all time
scales, | (I=2,...,L)

DO (k),D(%).....DM (k)

' 1
) =07 ) <
calculation of the empirical 9" =hy [max{h('” (X)}]
PMF for time scale I=L
i)
7(1) n i
y 0 JO@ =Y W g @) m =i
j=1
approximation by a weighted | FO () i=it1
sum of Poisson distributions ‘ Sl l w 7y
shift the empirical PMF of time scale |

= () o) ~ L

A wiLg f ”'(x) = »/"/,‘”(x +min (O,min{x : /"/,”’(,r) > 0})) h((:,ll)(x) =/ (,)(x) - /Z::, W(,f)gw, (X)
inference of the dAMMPP®) 0
7, &)
parameters
deconvolve the PMF of the

A pO) previous scale from this PMF

\J jp«/r(x):i,l/)(/\,)ljfl A0()

I=1-1 Tﬁ“’(x)

calculation of the empirical
PMF for time scale |

No T
=07

compute 77 and A"

calculation of the equivalent

dMMPP parameters Fig.3  Algorithm for calculating the number of states and the Paisso
arrival rates of the dMMP®) ,
AP
Fig.2  Flow diagram of the inference procedure. IN,i < N. The state that is assigned to I-sequence

is calculated randomly according to the probability vector
i o0 (i) = 4608V iy, ..., 00 (i)}, with
l A l 1 ) s Ury ’
hgi)ﬂ) () = f (2) - ij('i)gq,y) (z).  (18) { }
j=1 1/-
00 () = < (00) (20)
The algorithm stops when the maximumhﬁg(x) is lower g Yot 9,0 (DY)’
than a pre-defined percentage of the maximunf@f(x) ’
andr;, the number of states of the dMMPP, is made equal to \yheren — 1. ... r1, andgy (y) represents a Poisson prob-

& ability distribution function with mear\. The elements of

Note that the number of states of each dMMPP dependsiys vector represent the probability that the stated orig-
on the level of accuracy employed in the approximation of ;5ied the number of arrival®® (k) at time slotk from
the empirical PMF by the weighted sum of Poisson proba- ime scald.

bility functions. _ After this step, we infer the dMPPPtransition proba-
After r; has been determined, the parametﬁj% and  pjities, p¥, 4, j = 1, ..., 71, by counting the number of tran-

W A .
Aj g =12,....m ofther, — dMMPP, are setequal to  ijtions between each pair of states. nif) represents the

W W W W number of transitions from stateto statej, corresponding
T =wyy,and AR =g (19) o the dMPPP, then

The next step is to associate, for each time stadee !
of the IMMPPR" states with each time slot of the arriving p(,l) — Mij j=
process. Recall the data sequences aggregated at time scale ” P nij)J 7
I havea!~! successive equal values called I-sequences. The
state assignment process considers only the first time inter The transition probability and the Poisson arrival rate
val of each I-sequence, definedby: o'~ '(k — 1)+ 1,k € matrices of the dMPPP are then given by

1,...,7’1 (21)
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4.4 Construction of the final dMMPP model Fig.4 Autocovariance of packet counts, trace pOct.

The final dMMPP process is constructed using equations
(11) and (12), where the matricas? andP®, 1 =1, ..., L,
were calculated in the last subsection. However, the ad-
ditional factors introduced in sub-section 4.2 must be re-
moved. Thus,

L-1
A=A-> el.1 (24)
=1
wherel is the identity matrix.

5. Measured traffic traces

The evaluation of fitting procedure will be based on three ’ ) ® oomvel * . “
measured traffic traces. Two traces are of aggregated P traf
fic: (i) the well-known and publicly available pOct LAN
trace from Bellcore [1] and (ii) a trace corresponding to
the downstream Internet access traffic of approximately 65
simultaneous users, measured at the access link of a Por6. Numerical Results
tuguese ISP (to an ADSL network). The third trace is from
the Kazaa application (10 simultaneous users) and was alsd he suitability of the proposed dMMPP fitting procedure is
measured at the above access link. We have included thisasssessed using several criteria: (i) comparing the Huest pa
application given the fact that an increasing percentage oframeters of the original and synthesized (from the inferred
the overall Internet traffic belongs to peer-to-peer protoc  dMMPP) data traces; (ii) comparing the probability func-
of the same type as Kazaa. For all our measurements, theions of the average number of arrivals in different time
traffic analyzer was a 1.2 GHz AMD Athlon PC, with 1.5 scales, obtained for the original and synthesized traces an
Gbytes of RAM and running WinDump; we recorded the (iii) comparing the queuing behavior, in terms of packeslos
arrival instant and the IP header of each packet. No packetratio (PLR) and average waiting time in queue (AWT), of
drops were reported by WinDump in all measurements. Thethe original and synthesized traces, using trace-driven-si
main characteristics of the selected traces are descnibed ilation. We have resorted to simulation since, in our cage, th
Table 1. packet processing times are not necessarily multipleseof th
All traces exhibit self-similar behavior. For example, sampling interval, as would be required for using the avail-
taking the case of trace pOct, the analysis of its autocevari able theoretical results of AMMPPs.
ance function (Figure 4) lead us to suspect that it exhibits All simulations were carried out using a fixed packet
LRD, due to the slow decay for large time lags. This is length equal to the mean packet length of the trace. For
confirmed by the scaling analysis, since thevalues inthe  all traces, the sampling interval of the counting process wa
Logscale Diagram, are aligned between a medium octavechosen to be 0.1s and three different time scales were con-
(7) and octave 14, the highest one present in data (Figure 5)sidered: 0.1s, 0.2s and 0.4s. For each trace, the estimatior
Recall that they; values are logarithms of the variance esti- procedure took less than 1 minute, using a MATLAB imple-
mates of the discrete wavelet transform coefficients tht re  mentation running in the PC described above, which shows
resent the traffic process. A similar analysis was made forthat the procedure is computationally very efficient.
the other traces, also revealing the same self-similar (LRD In order to verify that the proposed fitting approach
behavior. captures the self-similar behavior, we compare in Table 2

Fig.5 Second order Logscale Diagram, trace pOct.



Trace Capture period Trace size| Mean rate| Mean pkt size
name (pkts) (byte/s) (bytes)
October| Bellcore trace 1 million 322790 568

ISP 10.26pm to 10.49pm, Octob@g**2002 | 1 million 583470 797
Kaaza | 10.26pm to 11.31pm, Octob&s'*2002 | 0.5 million | 131140 1029

Table 1  Main characteristics of measured traces.

Trace original fitted !
October| 0.941 (6,12)| 0.962 (6,12)
ISP 0.745 (6,13)| 0.784 (4,13)
Kazaa | 0.783(6,12)| 0.773 (2,12)
Table 2  Comparison between Hurst parameter values
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Fig.8 Q-Q plot of the cumulative probability function at the larggse
scale, trace pOct.
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the Hurst parameters estimated for the original and fittec
traffic, for each one of the three selected data traces. Pable
also includes the range of time scales whereith®llow a T a0 w0 oo o0 1000 1200 1400
straight line, inside brackets near to the correspondingtu pkisisec
parameter value. There is a very 90_09‘ agreem_ent betW_eE Fig.10  Probability mass function at the intermediate time scaleetrac
the Hurst parameter values of the original and fitted traffic, poct.
so LRD behavior is indeed well captured by our model.

The next evaluation criteria is based on the comparisor
between the PMFs of the original and fitted traces, for dif- agreement between the probability functions of the origina
ferent time scales. Starting with trace pOct, it can be seeil and fitted traces, for all time scales. We used three differ-
in Figures 6, 7, 8, 9, 10, 11 and 12 that there is a good ent types of graphical comparison to show the accuracy of
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the inference procedure in the fitting of the original trac
PMF: PMF plot, QQ-plot and CDF plot. Recall that the fit
ting procedure explicitly aimed at matching the PMF at the ment between the curves corresponding to the original and
various time scales, so the obtained results confirm that thefitted traces is good for both performance metrics and for all
procedure is effective in performing this task. Due to space utilization ratio values, specially fgy = 0.6 andp = 0.7.
limitations, for the case of the ISP and Kazaa traces we onlyFor trace Kazaa the results are depicted in figures 19 and 20
show the comparison between the probability functions at In this case, the agreement between the curves is only good
the smallest time scale, in Figures 13 and 14. However, afor thep = 0.6 andp = 0.7 utilization ratios, beginning
good agreement also exists at the three times scales.
Considering now the queuing behavior, we compare is similar to the one observed for trace pOct. Thus, in gen-
the PLR and the AWT obtained, through trace-driven simu- eral, the results are good except for the highest utilimatio
lation, with the original and fitted traces. Two differentsse
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Fig.15 Packet loss ratio, trace pOct.

of utilization ratios were used in the simulations: for gac
pOct and Kazaa, we used= 0.6 andp = 0.7 and for trace

ISP the selected values wepe= 0.8 andp = 0.9. This

is due to the lower burstiness of the ISP traffic, which leads
to lower packet losses for the same link utilization. Beside
these utilization ratio values, we have also run simulation
with p = 1.0 andp = 1.2, for all traces, in order to as-
sess how the generated dMMPPs capture the performance
at high utilization ratio values.

From figures 15 and 16 it can be seen that, for trace
pOct, the PLR is very well approximated by the fitted
dMMPP for the lower utilization ratiosp(= 0.6 andp =
0.7) but the accuracy degrades at higher utilization ratios.
The same behavior occurs for the AWT, but generally the
agreement of the AWT curves is less accurate than that of
the PLR curves, even for low utilization ratios. For tracB IS
the results are illustrated in figures 17 and 18. The agree-

to degrade as the utilization ratio increases. This behavio

ratios where some deviations can occur. At these values,
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Fig.20 Average waiting time in queue, trace Kazaa.
Fig.17 Packet loss ratio, trace ISP.

7. Conclusions
——@——  original traffic (p=0.8) P f
v fitted traffic 1;):078) —
I -G e 4 We have proposed a new parameter fitting procedure for
— A — original traffic (p=1.0} g -
e ‘E): - a superposition of Markov Modulated Poisson Processes

——v—— fitted traffic (p=1.2)

(MMPPs), which is able to capture self-similarity over a
range of time scales. The fitting procedure matches the com-
plete distribution of the arrival process at each time soéle
interest. We evaluated the procedure by comparing the Hurst
parameter, the probability mass function at each time scale
and the queuing behavior (as assessed by the loss probabil

: : : : ity and average waiting time), corresponding to measured
e traffic traces and to traces synthesized according to the pro
posed model. Three measured traffic traces were consid-
ered, all exhibiting self-similar behavior: the well-know
pOct Bellcore trace, a trace of aggregated IP WAN traffic,
and a trace corresponding to the popular file sharing appli-
the buffer occupancies are very high and the sensitivity ¢ cation Kazaa. Our results show that the proposed fitting pro-
the results becomes larger; however, the packet losses andedure is able to match closely the distribution over thetim
waiting times are very high, even unrealistic for operagion scales present in data, leading to an accurate prediction of
networks. the queuing behavior.

As a final remark, we can say that the proposed fit-

ting approach provides a close match of the Hurst parame-Acknowledgement
ters and probability mass functions at each time scale, and
this agreement reveals itself sufficient to drive a good queu The authors would like to thank the anonymous referees for
ing performance in terms of packet loss ratio and averagetheir valuables comments and suggestions. This researct
waiting time in queue. The computational complexity of the was supported in part by Fundagpara a Gncia e a Tec-
fitting method is also very small. nologia, the project POSI/42069/CPS/2001, and the grant
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