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Abstract

This paper proposes a procedure for fitting Markov Modulated Poisson Processes
(MMPPs) to traffic traces that matches both the autocovariance and marginal
distribution of the counting process. A major feature of the procedure is that
the number of states is not fixed a priori. It is an output of the fitting process, thus
allowing the number of states to be adapted to the particular trace being modeled.
The MMPP is constructed as a superposition of L 2-MMPPs and one M-MMPP.
The 2-MMPPs are designed to match the autocovariance and the M-MMPP to
match the marginal distribution. Each 2-MMPP models a specific time-scale of
the data. The procedure starts by approximating the autocovariance by a weighted
sum of exponential functions that model the autocovariance of the 2-MMPPs.
The autocovariance tail can be adjusted to capture the long-range dependence
characteristics of the traffic, up to the time-scales of interest to the system under
study. The procedure then fits the M-MMPP parameters in order to match
the marginal distribution, within the constraints imposed by the autocovariance
matching. The number of states is also determined as part of this step. The final
MMPP with M2L states is obtained by superposing the L 2-MMPPs and the M-
MMPP. We apply the inference procedure to traffic traces exhibiting long-range
dependence and evaluate its queuing behavior through simulation. Very good
results are obtained, both in terms of queuing behavior and number of states, for
the traces used, which include the well-known Bellcore traces.

Keywords: Traffic modeling, autocorrelation, self-similar, long-range depen-
dence, MMPP.

1 Introduction

Since the work by Leland et al. [1] several studies have shown that network traffic
may exhibit properties of self-similarity and long-range dependence (LRD) [1],
[2], [3], [4], [5], [6], [7]. These characteristics have significant impact on network
performance. However, as pointed out in [8] and [9], matching the LRD is only
required within the time-scales of interest to the system under study. For example,
in order to analyze queuing behavior, the selected traffic model needs only to
capture the correlation structure of the source up to the so-called critical time-scale
or correlation horizon, which is directly related to the maximum buffer size. One
of the consequences of this result is that more traditional traffic models such as
Markov Modulated Poisson Processes (MMPPs) can still be used to model traffic
exhibiting long-range dependence. Moreover, providing a good match of the LRD
behavior (through an accurate fitting of the autocovariance tail) is not enough
for accurate prediction of the queuing behavior. For example, the work in [10]
discusses the limitations of using only the mean and the autocorrelation function
as statistical descriptors of the input process for the purpose of analyzing queuing
performance. The authors show that the mean queue length can vary substantially
when the parameters of the input process are varied, subject to the same mean
and autocorrelation function. Thus, in general, accurate prediction of queuing
behavior requires detailed modeling of the first-order statistics, not just the mean.
While this issue is of major importance, we believe it remains largely neglected.
The limitations of matching only the LRD are also in line with recent suggestions
that multifractal models [11], [12], [13], or eventually hybrid models combining
multifractal and self-similar behavior [14], may be more appropriate than self-
similar ones for certain types of network traffic as they allow for incorporating
time-dependent scaling laws.

The main goal of the present work is to develop a parameter fitting procedure
using Markov Modulated Poisson Processes (MMPPs) that is capable of achieving
accurate prediction of queuing behavior for network traffic exhibiting LRD
behavior. In order to achieve this goal, the procedure matches closely both the
autocovariance and the marginal distribution of the counting process. The work is
also motivated by the need to minimize the number of states of the underlying
model so as to reduce the complexity associated with the calculation of the



performance metrics of interest. The consideration of MMPPs is motivated by the
availability of theoretical results for analyzing the queuing behavior [15] and for
determining effective bandwidths [16] [17]. MMPPs have deserved considerable
attention in the literature [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32].

Matching simultaneously the autocovariance and the marginal distribution
is a difficult task since every MMPP parameter has an influence on both
characteristics. With the purpose of achieving some degree of decoupling when
matching these two statistics, we construct the MMPP as a superposition of two
MMPPs, where one MMPP (with 2L states) is used to adjust the autocovariance
and the other (with M states) is used to adjust the marginal distribution, taking into
account the contribution of the first MMPP. We will denote the resulting process
as M2L-MMPP. The 2L-MMPP matching the autocovariance is a superposition of
L 2-MMPPs. Given that the autocovariance of a 2-MMPP is a single exponential,
this approach allows matching the empirical autocovariance based on prior
approximation by a weighted sum of exponentials, which results in a simple and
accurate procedure. The M-MMPP matching the marginal distribution is forced
to have null autocovariance, to assure that the autocovariance of the M2L-MMPP
equals that of the superposition of the L 2-MMPPs; the marginal distribution of the
M-MMPP is obtained through deconvolution of the L 2-MMPPs and M2L-MMPP
marginal distributions, thus ensuring that the contribution of the L 2-MMPPs is
taken into account. The autocovariance modeling is such that each 2-MMPP (in
the set of L 2-MMPPs) models a specific time-scale. Thus, in this work, the
concept of time-scale is defined in the context of second-order statistics: each
time-scale is associated with a characteristic time constant of the autocovariance
function. An important feature of the procedure is that both L and M need not to
be defined a priori, since they are determined as part of the procedure.

We note that, in order to boost the computational efficiency of the fitting
procedure, the 2-MMPPs used to fit the autocovariance function are interrupted
Poisson processes, and that the value of M of the M -MMPP is chosen as the
smallest value that provides a given degree of matching between the data and
the marginal probability function of the fitted model. Moreover, the assumed
independence between the M -MMPP and the L 2-MMPPs introduces further
constraints on the parametric form of the fitted M2L-MMPP.

When measuring network traffic data, we can either record the individual
arrival instants or the number of arrivals in a predefined sampling (time) interval.
The former approach brings more detail but the latter one has the advantage
of producing a fixed amount of data that is known in advance. This allows

the recording of longer traces, which clearly pays off the loss of detail in data
recording, if the sampling interval is chosen appropriately. In this work, we
consider discrete time MMPPs (dMMPPs) instead of continuous time MMPPs,
since they are more natural model for data corresponding to the number of arrivals
in a sampling interval. We note that discrete time and continuous time MMPPs
are basically interchangeable (through a simple parameter rescaling) as models
for arrival processes, whenever the sampling interval used for the discrete time
version is small compared with the average sojourn times in the states of the
modulating Markov chain.

The procedure starts by approximating the autocovariance by a weighted sum
of exponential functions. As part of this step, the relevant time-scales of the
data are identified. After this, the procedure fits the M-dMMPP parameters in
order to match the probability function, within the constraints imposed by the
autocovariance matching. The final M2L-dMMPP is obtained by superposing the
L 2-dMMPPs and the M-dMMPP.

We apply the fitting procedure to traffic traces exhibiting LRD, including the
well known, publicly available, Bellcore traces. The LRD characteristics are
analyzed using the wavelet based estimator of [33]. Results show that the MMPPs
obtained through the fitting procedure are capable of modeling the LRD behavior
present in data. The fitting procedure is also assessed in terms of queuing behavior.
Results show a very good agreement between the packet loss ratio obtained with
the original data traces and with traces generated from the fitted MMPPs.

This paper is organized as follows. In section 2 we give some background
on discrete MMPPs. In section 3 we describe the fitting procedure. In section
4 we present numerical results, which include applying the fitting procedure
to measured traffic traces. In section 5 we compare our work with previously
published ones. Finally, in section 6 we conclude the paper.

2 Background

The discrete time Markov Modulated Poisson Process (dMMPP) is the discrete
time version of the popular (continuous time) MMPP and may be regarded as
a Markov random walk where the increments in each instant have a Poisson
distribution whose parameter is a function of the state of the modulator
Markov chain. More precisely, the (homogeneous) Markov chain (X,J) =
{(Xk, Jk), k = 0, 1, . . .} with state space IN0 × S is a dMMPP if and only if



for k = 0, 1, . . .,

P (Xk+1 = m, Jk+1 = j|Xk = n, Jk = i) =

=

{
0 m < n

pij e−λi
λm−n

i

(m−n)! m ≥ n

(1)

for all m,n ∈ IN0 and i, j ∈ S, with λi, i ∈ S, being nonnegative real constants
and P = (pij) being a irreducible stochastic matrix. Note that the distribution
of Xk+1 − Xk given Jk = j is Poisson with mean λj , so that λj represents the
mean increment of the process X when the modulating Markov chain is in state
j. The dMMPP is a particular case of the dBMAP (discrete time batch Markovian
arrival process proposed by Blondia and Casals [34] and that has received some
attention (see, e.g., [35, 36, 37, 38] and references therein). In the dBMAP the
distribution of the increments of the process at each time instant may depend on
the state visited at the previous instant in addition to the current state.

Whenever (1) holds, we say that (X,J) is a dMMPP with set of modulating
states S and parameter (matrices) P and Λ, and write

(X,J) ∼ dMMPPS(P,Λ) (2)

where Λ = (λij) = (λiδij). The matrix P is the transition probability matrix of
the modulating Markov chain J , whereas Λ is the matrix of Poisson arrival rates.
If S has cardinality r, we say that (X,J) is a dMMPP of order r (r-dMMPP).
When, in particular, S = {1, 2, . . . , r} for some r ∈ IN , then

P =


p11 p12 . . . p1r

p21 p22 . . . p2r

. . . . . . . . . . . .
pr1 pr2 . . . prr

 (3)

and

Λ =


λ1 0 . . . 0
0 λ2 . . . 0

. . . . . . . . . . . .
0 0 . . . λr

 (4)

and we write simply that (X,J) ∼ dMMPPr(P,Λ).

We will consider the superposition of (independent) L 2-dMMPPs

(X(l), J (l)) ∼ dMMPP2(P(l),Λ(l)), l = 1, 2, . . . , L (5)

and one M -dMMPP

(X(L+1), J (L+1)) ∼ dMMPPM (P(L+1),Λ(L+1)). (6)

Note that, in particular, for l = 1, 2, . . . , L,

P(l) =

[
p
(l)
11 p

(l)
12

p
(l)
21 p

(l)
22

]
, Λ(l) =

[
λ

(l)
1 0
0 λ

(l)
2

]
(7)

and we assume that p
(l)
12 + p

(l)
21 < 1. In addition, we consider

J (1), J (2), . . . , J (L+1) to be ergodic chains in steady-state. For l = 1, 2, . . . , L

we denote by π(l) =
[
π

(l)
1 π

(l)
2

]
the stationary distribution of J (l). Similarly,

we denote by π(L+1) = [π(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M ] the stationary distribution of

J (L+1).

The result of the superposition is the process

(X,J) =

(
L+1∑
l=1

X(l), (J (1), J (2), . . . , J (L+1))

)
(8)

∼ dMMPPS(P,Λ) (9)

where

S = {1, 2}L × {1, 2, . . . ,M} (10)

P = P(1) ⊗ P(2) ⊗ . . . ⊗ P(L+1) (11)

Λ = Λ(1) ⊕ Λ(2) ⊕ . . . ⊕ Λ(L+1) (12)

with ⊕ and ⊗ denoting the Kronecker sum and the Kronecker product,
respectively. Note that Markov chain J is also in steady-state. We refer to (X,J)
as being the M2L-dMMPP.

In our approach L and M are not fixed a priori but instead are computed as
part of the fitting procedure. However, in the rest of this section they may be
thought as being fixed. We want the L 2-dMMPPs to capture the autocovariance



function of the increments of the arrival process (X). Also, discounting for
the effect of the L 2-dMMPPs, we want the M -dMMPP to approximate the
distribution of the increments of the arrival process. To explain how this may
be accomplished, it is convenient to define the increment processes associated
to X(1),X(2), . . . , X(L+1), and X , which we denote by Y (1), Y (2), . . . , Y (L+1),
and Y , respectively. Thus,

Y
(l)
k = X

(l)
k+1 − X

(l)
k , l = 1, 2, . . . , L + 1 (13)

and
Yk = Xk+1 − Xk (14)

for k = 0, 1, . . .. Note that Yk is the (total) number of arrivals at sampling interval
k and Y

(l)
k is the number of arrivals that are due to the l-th arrival process, so that,

in particular,

Yk =
L+1∑
l=1

Y
(l)
k , k = 0, 1, 2, . . . . (15)

Moreover Y (1), Y (2), . . . , Y (L+1), and Y , are stationary sequences.

In order to characterize the marginal distributions of the processes Y (1),
Y (2), . . . , Y (L+1), and Y , we denote, respectively, by {fl(k), k = 0, 1, 2, . . .},
l = 1, 2, . . . , L + 1, and {f(k), k = 0, 1, 2, . . .}, their (marginal) probability
functions. As the univariate distributions of Y (1), Y (2), . . . , Y (L+1) are mixtures
of Poisson distributions, we denote the probability function of a Poisson random
variable with mean µ by {gµ(k), k = 0, 1, 2, . . .}, for µ ∈ [0,+∞), so that

gµ(k) = e−µ µk

k!
, k = 0, 1, 2, . . . . (16)

For l = 0, 1, . . . , L, the marginal distribution of Y (l) (that is, the distribution of
Y

(l)
k , for k = 0, 1, . . .) is a mixture of two Poisson distributions with means λ

(l)
1

and λ
(l)
2 and weights π

(l)
1 and π

(l)
2 , respectively. Thus the probability functions of

Y (l), l = 1, 2, . . . , L, are given by

fl(k) = π
(l)
1 g

λ
(l)
1

(k) + π
(l)
2 g

λ
(l)
2

(k), k = 0, 1, 2, . . . (17)

and their autocovariance functions are

γ
(l)
k = Cov (Y (l)

0 , Y
(l)
k ) =

= π
(l)
1 π

(l)
2 |λ(l)

2 − λ
(l)
1 |2 ekcl , k = 0, 1, 2, . . .

(18)

where cl = ln (1 − p
(l)
12 − p

(l)
21 ). Note that, in particular, the autocovariance

functions of Y (1), Y (2), . . . , Y (L) exhibit an exponential decay to zero.

As we want the M -dMMPP to approximate the distribution of the increments
of the arrival process but to have no contribution to the autocovariance function of
the increments of the M2L-dMMPP, we choose to make J(L+1) a Markov chain
with no memory whatsoever. This is accomplished by choosing

P(L+1) =


π

(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M

π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M

. . . . . . . . . . . .

π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M

 . (19)

Note that this implies that Y (L+1) is an independent and identically distributed
sequence of random variables whose distribution is a mixture of M Poisson
random variables with means λ

(L+1)
i and weights πL+1

i , for i = 1, 2, . . . ,M .
As a consequence, the probability function of Y (L+1) is given by

fL+1(k) =
M∑

j=1

π
(L+1)
j g

λ
(L+1)
j

(k), k = 0, 1, 2, . . . (20)

and the autocovariance function of Y (L+1) is null for all positive lags; i.e.,

γ
(L+1)
k = Cov (Y (L+1)

0 , Y
(L+1)
k ) = 0, k ≥ 1. (21)

Taking into account (15), it follows that the probability function of Y is given
by:

f(k) = (f1 ⊕ f2 ⊕ . . . ⊕ fL+1) (k) (22)

where ⊕ denotes the convolution of probability functions. Y is a sequence of
random variables whose distribution is a mixture of Poisson random variables



(note that the sum of independent mixtures of Poisson random variables is also a
mixture of Poisson random variables), and the probability function of Y may be
written in the following way

f(k) =
2∑

ji=1

2∑
j2=1

. . .
2∑

jL=1

M∑
jL+1=1

(
L+1∏
l=1

π
(l)
jl

)
g∑L+1

l=1 λ
(l)
jl

(k). (23)

Moreover, from (15) and taking into account (18) and (21), we conclude that the
autocovariance function of Y is given by

γk = Cov (Y0, Yk) =
L+1∑
l=1

Cov
(
Y

(l)
0 , Y

(l)
k

)
=
∑L

l=1 π
(l)
1 π

(l)
2 |λ(l)

2 − λ
(l)
1 |2 ekcl

(24)

for k = 1, 2, . . ..

3 Inference Procedure

In the rest of the paper we will refer to Y (1), Y (2), . . . , Y (L) as the 2-dMMPPs,
to Y (L+1) as the M -dMMPP, and to Y as the M2L-dMMPP.

The inference procedure can be divided in four steps: (i) approximation of the
empirical autocovariance by a weighted sum of exponentials and identification of
time-scales, (ii) inference of the M-dMMPP probability function and of the 2-
dMMPPs parameters, (iii) inference of the M-dMMPP Poisson arrival rates and
transition probabilities and (iv) calculation of the final M2L-dMMPP parameters.
The flow diagram of this procedure is represented in figure 2. In the following
subsections we describe these steps in detail.

3.1 Autocovariance approximation and time-scales identifica-
tion

Our approach is to approximate the autocovariance by a large number of
exponentials and then aggregate exponentials with a similar decay into the same
time-scale. This is close to the approaches considered in [23], [20], [39].
As a first step, we approximate the empirical autocovariance by a sum of K
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L 2-dMMPPs

)1(
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Figure 1: Superposition of M-dMMPP and L 2-dMMPP models.

exponentials with real positive weights and negative real time constants. We
chose K as

√
kmax, where kmax represents the number of points of the empirical

autocovariance. This is accomplished through a modified Prony algorithm [40].
The Prony algorithm returns two vectors,

�a =
[

a1 ... aK

]
�b =

[
b1 ... bK

]
which correspond to the approximating function

CK

(
�a,�b
)

=
K∑

i=1

aie
−bik, k = 0, 1, 2, ... (25)

At this point we identify the components of the autocovariance that characterize
the different time-scales. We define L different time-scales, in which the
autocovariance decays, bi, i = 1, ...,K, fall in the same logarithmic scale. To
explain how this is accomplished it is useful to assume that bj ≤ bj+1, 1 ≤ j ≤
K−1, and 	. . .
 represents the integer round towards plus infinity. The value L is
computed through the following iterative process. Starting with l = 1 and il = 1
compute il+1 through

il+1 = min {K + 1, inf {j : il < j ≤ K ∧ 	log10 (bj)
 > 	log10 (bj−1)
}} .

If il+1 > K then make L = l and stop; otherwise increment l by one and repeat
the process. Note that, in particular,

	log10 (bil
)
 = 	log10 (bil+1)
 = . . . =

⌈
log10

(
bil+1−1

)⌉



empirical
autocovariance

empirical probability
function

approximation by a weighted
sum of Poisson distributions

calculation of
M2L-dMMPP parameters

( )kf e

( )kf L 1
ˆ

+

ba
r

r

,

)()( , ll PΛ

)1()1( , ++ LL PΛ

construction of the L
2-dMMPP matrices

inference of M-dMMPP
probability function

l
l d,, )(

1πβ
r

approximation by
exponentials

Y

PΛ,

time-scales
identification

βα
r

r

,

Figure 2: Flow diagram of the inference procedure.

but, if il+1 ≤ K,
	log10 (bil

)
 <
⌈
log10

(
bil+1

)⌉
.

For j = 1, 2, . . . , L, we consider that the decays bil
to bil+1−1 characterize the

same traffic time scale and we aggregate the nl = |il+1 − il| components in one
component with the following parameters:

αl =
il+1−1∑
k=il

ak and βl =

il+1−1∑
k=il

akbk

αl
. (26)

Taking in account (18), (25) and (26), these parameters are used to fit the
autocovariance function of the 2-dMMPP Y (l). Through these relations, it results
that

αl = d2
l π

(l)
1 π

(l)
2 and βl = cl (27)

where dl = |λ(l)
2 − λ

(l)
1 |.

3.2 Inference of the M-dMMPP probability function and of the
L 2-dMMPP parameters

The next step is the inference of the M-dMMPP probability function from the
empirical probability function of the original data trace. The relation between the
probability functions of the 2-dMMPPs, the M -dMMPP and the M2L-dMMPP is
defined by (22).

In order to simplify the deconvolution of fL+1(k) and fl(k), l = 1, ..., L, we
consider that the Poisson arrival rate is zero in one state of each 2-dMMPP source;
that is, λ

(l)
1 = 0 and λ

(l)
2 = dl, for l = 1, ..., L. From (27),

dl =
√

αl

π
(l)
1 π

(l)
2

, l = 1, 2, . . . , L. (28)

The probability function of the M -dMMPP, fL+1, is inferred from the empirical
probability function of the data, denoted by fe, and the L 2-dMMPP probability
functions, denoted by f̂l, l = 1, 2, . . . , L, based on the fitted parameters, after
fixing the probabilities π

(l)
1 , l = 1, 2, . . . , L, through (22). More precisely, fL+1

is fitted jointly with the parameters π
(l)
1 , l = 1, ..., L, through the following

constrained minimization process:

min
{π

(l)
1 , l=1,...,L},{fL+1(k), k=0,1,...}

∑
k

|oe(k)| (29)

where

oe(k) = fe(k) −
(
f̂1 ⊕ ... ⊕ f̂L ⊕ fL+1

)
(k) (30)



subject to (27) and

0 < π
(l)
1 < 1, l = 1, 2, . . . , L,

fL+1(k) > 0, k = 0, 1, . . . ,

and
∑+∞

k=0 fL+1(k) = 1.
(31)

We denote by f̂L+1 the fitted probability function of the M-dMMPP. Note that
π

(l)
1 is not allowed to be 0 or 1 because, in both cases, the lth 2-dMMPP

would degenerate into a Poisson process. The constrained minimization process
given by (29) to (31) is a non-linear programming problem and in general, it is
computationally demanding to obtain the global optimal solution. Accordingly, to
solve this problem we consider two approximations: (i) we make π

(l)
1 = π

(l+1)
1 ,

l = 1, . . . , L − 1 and (ii) we restrict the range of possible π
(l)
1 solutions to be

discrete and such that π
(l)
1 = 0.001k, k = 1, . . . , 999. Then a search process is

used to find the minimum value of the objective function. These approximations
have had negligible impact on the results obtained so far with the fitting procedure,
in particular on those presented in section 4.

At this point all parameters of the 2-dMMPPs, Y (1), Y (2), . . . , Y (L), have been
determined and their corresponding 2-dMMPP matrices

{(P(l),Λ(l)), l = 1, 2, . . . , L}

can be constructed in the following way:

P(l) =

[
1 − π

(l)
2 (1 − eβl) π

(l)
2 (1 − eβl)

π
(l)
1 (1 − eβl) 1 − π

(l)
1 (1 − eβl)

]

and

Λ(l) =
[

0 0
0 dl

]
.

3.3 Inference of M-dMMPP parameters

The next step is the inference of the number of states and Poisson arrival rates
of the M -dMMPP from f̂L+1. To do this we infer f̂L+1 as a weighted sum of
Poisson probability functions.
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Figure 3: Algorithm for calculation of the number of states and Poisson arrival
rates of the M-dMMPP.

The matching is carried out through an algorithm that progressively subtracts
a Poisson probability function from f̂L+1. This algorithm is described in the
flowchart of figure 3. We represent the ith Poisson probability function with
mean ϕi by gϕi

(k). We define h(i)(k) as the difference between f̂L+1(k) and
the weighted sum of Poisson probability functions at the ith iteration. Initially,
we set h(1)(k) = f̂L+1(k). In each step, we first detect the maximum of h(i)(k).
The corresponding k-value, ϕi = [h(i)]−1

(
max h(i) (k)

)
, will be considered the

ith Poisson rate of the M-dMMPP. We then calculate the weights of each Poisson
probability function, �wi = [w1i, w2i, ..., wii], through the following set of linear



equations:

f̂L+1(ϕl) =
i∑

j=1

wjigϕj
(ϕl), l = 1, ..., i.

This assures that the fitting between f̂L+1(k) and the weighted sum of Poisson
probability functions is exact at ϕi points, for l = 1, 2, . . . , i. The final step in
each iteration is the calculation of the new difference function

h(i) (k) = f̂L+1 (k) −
i∑

j=1

wjigϕj
(k).

The algorithm stops when the maximum of h(i)(k) is lower than a pre-defined
percentage of the maximum of f̂L+1(k) and M is made equal to i.

After M has been determined, the parameters of the M-dMMPP,
{(π(L+1)

j , λ
(L+1)
j ), j = 1, 2, . . . ,M}, are then set equal to

π
(L+1)
j = wjM and λ

(L+1)
j = ϕj .

3.4 M2L-dMMPP model construction

Finally, the M2L-dMMPP process can be constructed using the equations (11) and
(12), where Λ(L+1), P(L+1), Λ(i) and P(i), i = 1, ..., L, were calculated in the
last two subsections.

4 Numerical Results

We apply our fitting procedure to several traffic traces: (i) the publicly available
Bellcore LAN traces [1] and (ii) a set of traces of IP traffic measured at
the University of Aveiro (UA). The UA traces are representative of Internet
access traffic produced within a University campus environment. The UA
network provides connection between the 29 campus buildings, and includes three
backbone technologies: (i) an old 10Base5 Ethernet, (ii) an optical fiber FDDI
ring and (iii) an optical fiber ATM network. The interconnection is provided by
15 IP/IPX routers spread over the campus. The network allows asynchronous

accesses from the exterior, using modems (analogue/ISDN), which provides
Internet access to external users. The UA network is connected to the Internet
through an ATM connection at 10 Mbits/sec. The measurements were carried
out in a 100 Mb/s Ethernet LAN on the back of the Internet access router. The
main characteristics of the UA traces are described in Tables 1 and 2. Each UA
trace corresponds to a different day period. All measurements captured 20 million
packets. However, to assure stationarity, traces UA6b and UA10b were truncated
to 10 million packets. The traffic analyzer was a 1.2 GHz AMD Athlon PC, with
1.5 Gbytes of RAM, running WinDump. The measurements recorded the arrival
instant and the IP header of each packet.

We assess the fitting procedure by comparing the empirical probability and
autocovariance functions of the original data traces and the theoretical ones
corresponding to the fitted dMMPPs.

We analyze the presence of LRD behavior, in both the original and the fitted
data traces, using the method described in [33]. This method resorts to the so-
called Logscale Diagram which consists in the graph of yj against j, together with
confidence intervals about the yj , where yj is a function of the wavelet discrete
transform coefficients at scale j. Traffic is said to be LRD if, within the limits of
the confidence intervals, the yj fall on a straight line, in a range of scales from
some initial value j1 up to the largest one present in data.

Tables 3 and 4 summarize some of the characteristics and results of the fitting
process. For each trace, it indicates the number of states of the fitted dMMPP,
the number of 2-dMMPPs modeling the autocovariance (L), the computational
efficiency measured both in terms of time and floating point operations (FLOPS),
obtained with MATLAB, and the errors relative to the fitting of the probability
function (PF) and of the autocovariance function (AF). The fitting error is defined
in terms of the Inequality Coefficient (IC). The results indicate that a close match
was obtained in all cases.

We also analyze the queuing behavior by comparing the packet loss ratio,
obtained through trace-driven simulation, using the original data traces and the
simulated traces obtained from the fitted dMMPPs. To calculate the packet loss
ratio, we assume a fixed packet size equal to the mean packet size. The sampling
interval of the counting process was 0.1 seconds for all traces. In each case, results
are shown for two average link utilization values.

To determine if the fitted dMMPPs are able to capture the LRD behavior up
to the time-scales of interest, we calculate the so-called correlation horizon (CH),
using the method of [8]. The CH is the autocovariance lag that separates relevant
and irrelevant time-scales for the purpose of assessing queuing behavior, and is a
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Figure 5: Autocovariance, pOct.TL.

function of the input data characteristics and of the system parameters.

4.1 Bellcore traces

The fitting procedure was applied to Bellcore traces pOct.TL and pAug.TL, both
with 1 million samples. These traces were fitted to a 28-dMMPP and a 56-dMMPP
respectively.

In both traces three relevant time-scales were identified. The pOct.TL trace
autocovariance was fitted by three exponentials functions with parameters �α =
[60.1 141.34 201.9] and �β = [−8.05× 10−1 − 6.98× 10−2 −4.5× 10−4],
and the pAug.TL trace autocovariance by exponentials with parameters �α =
[75.3 91.57 43.78] and �β = [−8.43×10−1 −9.15×10−2 −1.2×10−3].

Figure 4 shows the fitting results for the probability function (pOct.TL trace).
In this case, the fitting was performed with a very small approximation error.
From figure 5 it can be seen that the autocovariance of the fitted model is able
to reproduce the average behavior of the empirical autocovariance (but not its
oscillatory behavior).

In order to analyze the queuing behavior we considered a queue with a two
service rates of 517 KBytes/s and 452 KBytes/s, corresponding respectively to
link utilizations of ρ = 0.7 and ρ = 0.8. The buffer size was varied from 1 to
25000 packets. The average packet size for this trace is 638 bytes. Figure 6 shows
that the packet loss ratios of original and fitted traces are quite close for all buffer
sizes and both link utilizations. This confirms the good matching obtained in both
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first and second order statistics. It also shows that the oscillatory behavior of the
autocovariance has negligible impact on the queuing behavior. Figure 7 shows
that the fitted trace exhibits LRD, since the yj values are aligned between octave 9
and octave 11, the highest octave present in data. The estimated Hurst parameter
is Ĥ = 0.838.

The correlation horizon (CH) for the pOct.TL trace, with a buffer size of 5000
packets and a link utilization of 0.8 (the largest one considered in the queuing
behavior study) is 31.1 seconds. As shown in figure 5, this value is well bellow
the maximum autocovariance lag that is matched by our fitting procedure, thus
confirming its ability to capture the LRD behavior up to the time-scales of interest
to the system under study.

The fitting results for the pAug.TL trace are similar to the ones obtained with the
pOct.TL trace, as can be seen in figure 8 and figure 9. The fitting of the probability
function is slightly better, but the fitting of the autocovariance function is worse.
The relatively high fitting error obtained in this case is due to the strong oscillatory
behavior of the empirical autocovariance. The packet loss ratios of original and
fitted traces, shown in figure 10, are almost coincident for all buffer sizes and
link utilizations. In this case the simulations were performed with service rates
of 197 KBytes/s and 172 KBytes/s, corresponding again to link utilizations of
ρ = 0.7 and ρ = 0.8. The buffer size was varied from 1 to 5000 packets. The
average packet size for this trace is 434 bytes. Again, the fitted trace exhibits
LRD, since the yj values are aligned between octave 6 and octave 11, the highest
octave present in data, as shown in figure 11. The estimated Hurst parameter is
Ĥ = 0.714. The CH for the maximum buffer size (5000 packets) and maximum
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link utilization (0.8) is 15.5 seconds, and figure 9 shows that, as in the pOct.TL
case, this value is bellow the maximum autocovariance lag that is matched by the
fitting procedure.

4.2 Internet traces measured at the University of Aveiro

The inference procedure was applied to the UA19b trace, a 5 hours trace with
approximately 20 million packets (much larger and longer than the Bellcore
traces). The procedure fitted the trace to a 12-dMMPP model. Only two relevant
time-scales were identified, which explains the smaller number of states of the

Trace name Capture date Capture period Trace size (pkts)
UA17 Thu, June 7th 2001 2.40pm to 6.10pm 20 millions
UA1b Tue, July 3th 2001 8.00pm to 3.15am 20 millions
UA6b Thu, July 5th 2001 3.58am to 9.11am 10 millions
UA10b Fri, July 6th 2001 12.41pm to 3.16pm 10 millions
UA19b Tue, July 10th 2001 10.15am to 3.08pm 20 millions

Table 1: Main characteristics of measured traces (captured date and period, and
trace size).

Trace name Mean rate (pkts/sec) Mean pkt size (bytes)
UA17 1114 536
UA1b 766 598
UA6b 533 692
UA10b 1074 600
UA19b 1138 557

Table 2: Main characteristics of measured traces (mean rate and mean pkt size).

fitted dMMPP, when comparing with the Bellcore traces. The parameters of the
two exponentials are �α = [1.00 × 102 6.87 × 101] and �β = [−6.91 × 10−5

−1.28 × 10−2]. As in the Bellcore traces, there was a close fitting of both the
probability function (figure 12) and the autocovariance (figure 13). The packet
loss ratio curves (figure 17) are also very close. The service rates were 685
KBytes/s and 629 KBytes/s, corresponding respectively to link utilizations of
ρ = 0.9 and ρ = 0.98. The reason for using link utilizations higher than with
the Bellcore traces, is due to the lower burstiness of the UA traffic which leads to
lower packet losses for the same link utilization. The buffer size was varied from 1
to 9000 packets. The average packet size of this trace is 557 bytes. The CH is 14.5
seconds for a buffer size of 9000 packets and a link utilization of 0.98, which is
again bellow the maximum autocovariance lag matched by the fitting procedure.
Figure 14 and figure 15 show that both traces exhibit LRD, since the yj values
are aligned between a medium octave (7 for the original data trace, 5 for the fitted
data trace) and the highest octave present in data. The estimated Hurst parameters
are Ĥ = 0.952 for the original data trace and Ĥ = 0.935 for the fitted data trace.

The results obtained with the remaining four UA traces are similar. The queuing
results are shown in figures 17, 18, 19 and 20. The link utilizations were again



Trace name Inferred model π
(l)
i L

pAug 56-dMMPP 0.1 3
pOct 28-dMMPP 0.4 2
UA17 12-dMMPP 0.2 2
UA1b 24-dMMPP 0.1 3
UA6b 12-dMMPP 0.2 2
UA10b 16-dMMPP 0.1 2
UA19b 12-dMMPP 0.2 2

Table 3: Fitting results (inferred model characteristics).

Trace name MFLOPS Fitting time (sec) PF IC (%) AF IC (%)
pAug 95.35 38.25 7.25 29.05
pOct 28.41 50.67 9.21 7.37
UA17 78.24 14.49 7.74 8.24
UA1b 74.33 15.12 10.02 7.31
UA6b 67.99 12.52 13.62 5.70
UA10b 130.06 21.93 9.70 17.88
UA19b 95.51 13.72 10.75 5.23

Table 4: Fitting results (computation time and fitting error).

ρ = 0.9 and ρ = 0.98 for all traces. In all cases the buffer size was varied from
100 packets to 12000 packets.

5 Related work

In this section, we restrict our attention to fitting procedures for MMPPs. We
start by noting that most published procedures only apply to 2-MMPPs [24], [25],
[26], [27]. While 2-MMPPs can capture traffic burstiness, the number of states is
in general not enough to provide a good match of the marginal distribution when
the traffic shows variability on a wide range of arrival rates.

Skelly et al. [28] propose a method for estimating the parameters of a generic
MMPP that only matches the first-order statistics: the Poisson arrival rates are
inferred from the empirical density function and the state transition rates from
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a direct measurement of the observed trace. We use a similar method in the
steps of our procedure described in subsection 3.3. However, a limitation in
[28] is that the number of states results from arbitrating the number of bins for
constructing the empirical density function and the length of these bins determines
the Poisson arrival rates. This results in equally spaced Poisson arrival rates. In
our case, we approximate the empirical probability function by a weighted sum
of Poisson distributions. This allows for a better selection of the Poisson arrival
rates, resulting in a lower number of states, when compared with [28], adapted to
the particular characteristics of the trace being modeled.

The work by Li and Hwang [29] is closely related to ours, in that it also matches
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both the autocovariance and the marginal distribution. The fitting procedure
applies to CMPPs, which are a special case of MMPPs where the steady-state
probabilities are the same for all states. The structure of the CMPP allows
circumventing the so-called inverse eigenvalue problem, which is associated with
the need of inverting the exponential of the infinitesimal generator matrix to obtain
the transition rates from the fitted autocovariance. As opposed to ours, the fitting
procedure is able to capture pseudoperiodic components present in data (which
shows up in the Bellcore traces), since the infinitesimal generator matrix of a
CMPP can have complex eigenvalues. However, our experiments indicate that the
pseudoperiodic components have a small importance in what concerns queuing
performance. Moreover, in [29] there is less flexibility in adjusting the marginal
distribution, since the CMPP states are equiprobable. In particular, with this
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Figure 20: Packet loss ratio, UA10b trace.

procedure it is more difficult to detect low probability peaks on the arrival rate.
If these peaks occur at high arrival rates the queuing behavior can be significantly
affected. In [29] the detection resolution can only be improved by increasing the
number of states. Our procedure is well adapted to this case, since the method for
matching the empirical probability function is specifically based on detection of
local peak arrival rates.

As in our approach, Andersen and Nielsen [23] use a superposition of 2-
MMPPs to model the different time-scales of the autocovariance. Each of the
time-scales in the autocorrelation function is fitted to an exponential function,
using a procedure similar to that of [39]. However, the time-scales are defined
a priori, whereas in our case a procedure to determine the significant time scales
was implemented. Moreover, in [23] the fitting of the first-order statistics is very
poor, since only the mean is matched.

Deng and Mark [30] propose a method for estimating the parameters of a
MMPP with any number of states, based on the maximum-likelihood principle.
The same principle was also used in [26] and [27] in the context of 2-MMPPs.
As referred in [27], the method of [30] is quite sensitive to the choice of the
sampling interval and can lead to an exceedingly high number of states. These
works do not directly address the issue of matching statistics of observed data.
Instead, they are targeted to minimizing the estimation error, under the assumption
that the underlying process is an MMPP with a number of states known a priori.
These assumptions severely weaken the application of these methods in the area
of traffic modeling. In fact, the main challenge in traffic modeling is the discovery
of models and associated parameter estimation procedures that provide flexible
means of capturing the statistics of observed data that have more impact on
network performance. While the MMPP model provides such framework, the



performance of the parameter estimation procedure should not be dependent on
the assumption that the underlying population is indeed of the MMPP type.

6 Conclusions

This paper proposed a fitting procedure for Markov Modulated Poisson Processes
(MMPPs) that matches both the autocovariance and marginal distribution of the
counting process. A major feature of the procedure is that the number of states is
not fixed a priori. It is an output of the fitting process thus allowing the number
of states to be adapted to the particular trace being modeled. The MMPP is
constructed as superposition of L 2-MMPPs and one M-MMPP. The M-MMPP
is designed to match the probability function and the L 2-MMPPs to match the
autocovariance function. Our numerical results, which include fitting traffic traces
that exhibit long-range dependence, show that the procedure matches closely the
autocovariance and probability functions. The queuing behavior, as assessed by
the packet loss ratio suffered by the measured and the fitted traces, also shows
a very good agreement. Furthermore, the results illustrate that MMPP models,
although not being intrinsically long-range dependent, can capture this type of
behavior up to the time-scales of interest to the system under study.
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