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Abstract. In recent years several studies have reported peculiar typesfaf traf
behavior, such as long-range dependence and self-similarity, whichhave
significant impact on network performance. In this paper we proporevel
traffic model and parameter fitting procedure, based on Markov Moehl
Poisson Processes (MMPPs), which is able to capture variability over timag
scales, a characteristic of self-similar traffic. The fitting procedure meatthe
complete distribution at each time scale, and not only some of its moments as it
the case in related proposals. Our results show that the proposediradiat and
parameter fitting procedure closely matches the main characteristicsastineel
traces over the time scales present in data.
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1 Introduction

An efficient design and control of data networks needs to taleeaccount the main
characteristics of the supported traffic. Due to the growdivgrsity of services and
applications, there is a strong requirement to make fregoeasurements of packet
flows and to describe them through appropriate traffic mo&#hee the work by Leland
et al.[1] several studies have shown that network traffic may akpiloperties of self-
similarity and/or long-range dependence (LRD) [1-4], vithi@ve significant impact on
network performance. Self-similar traffic shows identistaltistical characteristics over
a wide range of time scales. In general, self-similarity liegplong-range dependence,
and vice-versa.

Several works have addressed the impact of LRD on networkonpeance.
References [4-7] study the case of a single queue and canchat the buffer
occupancy is not affected by autocovariance lags that arenethe so-called critical
time scale (CTS) or correlation horizon (CH), which dependssystem parameters
such as the buffer capacity. Similar conclusions are olesefor the case of tandem
queues in [8]. Thus, matching the LRD is only required witthia time scales specific
to the system under study. One of the consequences of thisisethat more traditional



traffic models, such as Markov Modulated Poisson ProcedgdsPPs), can still
be used to model traffic exhibiting LRD. The use of MMPPs alsmdiits from
the existence of several tools for calculating the queuielgalior and the effective
bandwidth.

In this paper we propose a novel traffic model and parametargfiprocedure,
which captures self-similar behavior over a range of timeesc The traffic model is
a superposition of discrete-time MMPPs (dMMPPs), wheréhaddMPP represents
a specific time scale. The parameter fitting procedure majchteeach time scale,
a dMMPP to the empirical probability function charactecisif that time scale. The
number of states of each dMMPP is not fixed a priori; it is deteed as part of the
fitting procedure. The accuracy of the fitting procedure @lwated by applying it to
measured traffic traces that exhibit self-similar behavtwe well-known pOct Bellcore
trace and a trace of aggregated IP WAN traffic. We compare ithieapility function
at each time scale, and the queuing behavior (as assesshd ms$ probability and
average waiting time), corresponding to the measured asyhtthetic traces generated
from the inferred models. Our results show that the propditag method is very
effective in matching the probability function at the varictime scales and leads to an
accurate prediction of the queuing behavior.

Fitting procedures for MMPPs with an arbitrary number otestamainly concen-
trate on matching first- and/or second-order statistichoit addressing directly the
issue of modeling on multiple time scales [9-13]. Yoshihatal. [14] developed a
fitting method for self-similar traffic based on the supeipos of 2-MMPPs, that
matches the variance at each time scale. In this way, th&irgsMMPP reproduces
the variance-scale curve characteristic of self-simitacpsses. Our contribution is to
develop a procedure that matches the complete distribatieach time scale (and not
only the variance) in order to reproduce accurately sefiitar behavior.

The paper is organized as follows. Section 2 gives the reduirackground on
MMPPs and self-similarity and presents the various stepghefparameter fitting
procedure. Section 3 briefly describes the data traces nsbé numerical evaluation
and in section 4 we discuss the results. Finally, sectioreSents the main conclusions.

2 Inference Procedure

Our inference procedure is closely related to the notiongifidutional self-similarity.
Consider the continuous-time processt) representing the traffic volume (e.g. in
bytes) from time O up to timéand letX (¢) = Y (t) — Y (¢ — 1) be the corresponding
increment process (e.g. in bytes/second). Consider adssettjuence

m

X (k) = lzx((k_1)m+i),k= 1,2, ... (1)

m <
i=1

obtained by averaging (¢) over non-overlapping blocks of length. Y (¢) is exactly

self-similar when it is equivalent, in the sense of finiteadnsional distributions, to
a~HY (at), forallt > 0 anda > 0, whereH (0 < H < 1) is the Hurst parameter.
Clearly, the procesd’(¢t) can not be stationary. However, ¥ (¢) has stationary



increments then agaili (k) = X (Y (k) is equivalent, in the sense of finite-dimensional
distributions, tom!' = X(™)(k). This illustrates that a traffic model developed for
fitting self-similar behavior must preferably enable thetechang of the distribution on
several time scales. Note also that, in general, self-aiityilimplies LRD, and vice-
versa. An excellent overview of self-similarity and LRD daafound in [15].

The inference procedure estimates one dMMPP for each tiale #tat matches a
probability mass function (PMF) characteristic of thatdistale. The resulting dMMPP
is obtained from the superposition of all AMMPPs inferred éach time scale. An
(homogeneous) Markov chafi, J) = {(Yx, Jk), k = 0,1,...} with state spacéV, x
S'is a dMMPP if and only ifY” has non-decreasing sample paths and

P(Yiy1 =m, Jyp1 = j|Ye =n, Jp =1) = pij ef)‘i)\;”_"/(m —n)! (2)

fork=0,1,...,m,n € INgwithn < m, andi, j € S, where\;, 7 € S are nonnegative
real constants anB® = (p;;) is a stochastic matrix. In this case we say tfiatJ) is
a dMMPP with set of modulating states and parameter (matrice$) and A, and
write (Y, J) ~ dMMPPs(P, A), whereA = ()\;;) = (A\id;;). The matrixP is the
transition probability matrix of the modulating Markov ¢hal, whereas\ is the matrix
of Poisson arrival rates. § has cardinality-, we say thatY, J) is a dMMPP of order
r (r-dMMPP). When, in particulatls = {1, 2,...,r} for somer € IN, then we write
simply that(Y, J) ~ dMMPP,.(P, A).

The superposition of independent dMMPPs is still an dMMPRBréviprecisely,
if (YO, JO) ~ dMMPP, (PO AM), | = 1,2,...,L, are independent, then
their superpositiortY, J) = (31, Y®, (JM, J@ ... JE)))is a AIMMPR(P, A)
whereS = {1,2,...,rm} x ... x{1,2,...,r.},

P=PYeP?Pg..eP" and A=ADVagA®@g. .. oAl (@3

with @ and® denoting the Kronecker sum and product, respectively. imapproach
L, the number of considered time scales , is figegriori and the dimensions of the
dMMPPs,rq, 19, ..., 71, are computed as part of the fitting procedure.

The flowchart of the inference method is represented in figundnere, basically,
four steps can be identified: (i) compute the data vectons€sponding to the average
number of arrivals per time interval) at each time scald; d@lculate the empirical
PMF at the largest time scale and infer its dMMPP; (iii) fof ather time scales
(going from the largest to the smallest one), calculate thpikcal PMF, deconvolve
it from the empirical PMF of the previous time scale and irdetMMPP that matches
the resulting PMF; and (iv) calculate the final AMMPP throwgiperposition of the
dMMPPs inferred for each time scale. We will now describe¢hsteps in detail.

2.1 Aggregation process

Having defined the sampling intervaf¢, the number of time scaled,, and the
level of aggregationg, the aggregation process starts by computing the datarvecto
corresponding to the average number of arrivals in the sstatime scale (where
the interval length equals the sampling interval),") (k). Then, it calculates the data



vectors of remaining time scaled[(!)(k), I = 2,...L, corresponding to the average
number of arrivals in intervals of lengthtal—1). This is given by

a
=0

andNW(k) = NO(k — 1), for =L ¢ IN,, where[z] is the ceiling function. Note
that the block length of equation (1) is related witand! by m = a!~!. The empirical
distribution of N (k) will be denoted by (z).

a—1
NO () = F SN (k4 i)-‘ , % e IV @)

2.2 Calculation of the empirical PMFs

This step infers the PMFs that, at each time scale, must legl fitt a dMMPP. For
the largest time scale, this PMF is simply the empirical dfae. all other time scales
Il =1,2,..,L — 1, the associated dMMPP will model only the traffic components
due to that scale. For time scdlethese traffic components can be obtained through
deconvolution of the empirical PMFs of this time scale andpdvious time scale,
e, f(2) = [0 ®=1 p+V)(z). However, this may result in negative arrival
rates for the dMMPP), which will occur whenevemin {z : s+ (z) > 0} <
min {z : p) (z) > 0}. To correct this, the dMMPP will be fitted to

FO (@) = fO (@ + D) 5)
wheree = min (O,min {x  fD () > 0}) which assureg® (z) = 0, z < 0.
These additional factors are removed in the final step ofrtfezénce procedure.

2.3 Approximation of the empirical PMFs by a weighted sum of Pgsson
distributions and inference of the dMMPP parameters

Before inferring the dMMP® parameters] = 1,2, ..., L, function f() is approx-
imated by a weighted sum of Poisson probability functiorsing an algorithm that
progressively subtracts a Poisson probability functi@mfrf(). The most important
steps of this algorithm are depicted in the flowchart of figesd will be explained in
the next paragraphs.

Let the i** Poisson probability function, with meamgl), be represented by

g, (x) and define‘zgg(x) as the difference betweefi) () and the weighted sum of
Poisson probability functions at th&" iteration. Initially, we SeThEll))(:z:) = fO(2)

and, in each step, we first detect the maximumhéﬁ (z). The corresponding-

value, p; = [hgg]—l (maxhgg (x)), will be considered the'* Poisson rate of
the dMMPRY. We then calculate the weights of each Poisson probabilibgtion,

w = wﬁ),wé?, ...,w@] , through the following set of linear equations:

7 (Z3

FO@I) = wgm(e) (6)
j:l J



for m = 1,..,iandl = 1,..,L. This assures that the fitting betwegf (z)

and the weighted sum of Poisson probability functions iscexd gpﬁ,? points, for
m = 1,2,...,4. The final step in each iteration is the calculation of the déference
function

0 @) =Ff (@ Zwﬁ 9,0 ( (7)

The algorithm stops when the maximum bfi)(a:) is lower than a pre-defined

percentage of the maximum (fﬂ”(m) andr;, the number of states of the dAMMPP,
is made equal to.

Note that the number of states of each dMMPP depends on thkedéaccuracy
employed in the approximation of the empirical PMF by theghéed sum of Poisson
probability functions.

After r; has been determined, the paramep,%)sand/\(l) j=1,2,...,r, of the

— dMMPP, are set equal to
A —w® and AP =0, ®)

The next step is to associate, for each time sdalene of the dMMPP
states with each time slot of the arriving process. The dfst is assigned to a
time interval is calculated randomly according to the ptolite vector 8 (k) =

{9§” k), ...,00 (k)}, with

o0 (k) = 950 (Nl(k))/ZgA? (NY(K)), 9)

wherei =1,...,r,1 =1, ..., L andg) (y) represents a Poisson probability distribution
function with mean\. The elements of this vector represent the probabilitytthetstate
4 had originated the number of arrivalg") (k) at time slotk from time scald.

After this step, we infer the dMPP transition probabilitieSpll), i, =1,..,1,
by counting the number of transitions between each pairabést Ifn represents the
number of transitions from statdo statej, corresponding to the dMPIﬁ‘P then

pz] - nz] / Z ngyll)jvj =1,..,m (20)
m=1
The transition probability and the Poisson arrival raterivas of the dMPP® are
then given byP") = (pgé.)) andA® = (A\Ys,;), for1 =1,..., L.

2.4 Final dAMMPP model construction

The final dAMMPP process is constructed using equation (3grevthe matriced (¥
andP®, [ = 1,..., L, were calculated in the last subsection. However, the iaddit
factors mtroduced in sub-section 2.2 must be removed. ,Thus A — ZL Le® .1
wherel is the identity matrix.
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3 Overview of the traffic traces

We consider two traffic traces to evaluate the fitting proced(i) the well-known and
publicly available pOct LAN trace from Bellcore [1] and (@ trace corresponding
to the downstream Internet access traffic of approximatélysiBnultaneous users,
measured at the access link of a Portuguese ISP (to an ADSlongt The traffic
analyzer was a 1.2 GHz AMD Athlon PC, with 1.5 Gbytes of RAM amining
WinDump; we recorded the arrival instant and the IP headeaoh packet. The main
characteristics of the selected traces are described ir Tab

We assess the self-similar (LRD) behavior through the gEamémetric estimator
developed in [16]. Here, one looks for alignment in the skkedaLogscale Diagram
(LD), which is a log-log plot of the variance estimates ofatite wavelet transform
coefficients, against scale, complete with confidencevaterabout these estimates at
each scale. Traffic is said to be LRD if, within the limits oétbonfidence intervals, the



Fig. 3. Autocovariance of packet counts, Fig. 4. Second order Logscale Diagram,
trace pOct. trace pOct.

log of the variance estimates fall on a straight line, in @yeof scales from some initial
valuej, up to the largest one present in data and the slope of thglstitaie, which is
an estimate of the scaling exponentiies in (0, 1).

Both traces exhibit self-similar (LRD) behavior. For exdepgaking the case of
trace pOct, the analysis of its autocovariance functiogyfé 3) lead us to suspect that it
exhibits LRD, due to the slow decay for large time lags. Thisdnfirmed by the scaling
analysis, since thg; values in the Logscale Diagram are aligned between a medium
octave (7) and octave 14, the highest one present in dataré~4). A similar analysis
was made for the other trace, also revealing the same seilasi{LRD) behavior.

4 Numerical Results

We assess the suitability of the proposed dMMPP fitting pitoce using several
criteria: (i) comparing the Hurst parameters of the origared synthesized (from the
inferred dMMPP) data traces; (ii) comparing the probapilitnctions of the average
number of arrivals in different time scales, obtained fa triginal and synthesized
traces and (iii) comparing the queuing behavior, in termsaufket loss ratio (PLR), of
the original and synthesized traces, using trace-drivenlsition. All simulations were
carried out using a fixed packet length equal to the mean p&kgth of the trace. For
all traces, the sampling interval of the counting process etesen to be 0.1s and three
different time scales were considered: 0.1s, 1s and 10sed&dr trace, the estimation
procedure took less than 1 minute, using a MATLAB implemgaitterunning in the PC
described above, which shows that the procedure is coniquadly very efficient.

Trace |Capture period Trace sizéMean rateMean pkt size
name (pkts) | (bytels) (bytes)
OctoberBellcore trace 1 million | 322790 568

ISP 10.26pm to 10.49pm, Octob@s*"2002| 1 million | 583470 797

Table 1. Main characteristics of measured traces.
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In order to verify that the proposed fitting approach captutiee self-similar
behavior, we compare in Table 2 the Hurst parameters estitrfat the original and
fitted traffic, for each selected data trace. Table 2 alsaded the range of time scales
where they; follow a straight line, inside brackets near to the corresiig Hurst
parameter value. There is a very good agreement betweenutfs¢ phrameter values
of the original and fitted traffic, so LRD behavior is indeedlwaptured by our model.

The next evaluation criteria is based on the comparison dmtvthe probability
functions of the original and fitted traces, for differemh& scales. Starting with trace
pOct, it can be seen in Figures 5, 6 and 7 that there is a goa@iagnt between the
probability functions of the original and fitted traces, &rtime scales. Recall that the
fitting procedure explicitly aimed at matching the probipifunction at the various
time scales; these results confirm that the procedure istieféen performing this task.
Due to space limitations, for the case of the ISP trace we shiywv the comparison
between the probability functions at the smallest timees@alFigure 8. However, a
good agreement also exists at the three times scales.

Considering now the queuing behavior, we compare the PLRimodxd, through
trace-driven simulation, with the original and fitted tracdwo different sets of
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Fig. 9. Packet loss ratio, trace pO« Fig. 10.Packet loss ratio, trace ISP.

utilization ratios were used in the simulations: for tracgch we useg = 0.6 and

p = 0.7 and, for trace ISP, the selected values were- 0.8 andp = 0.9. This is
due to the lower burstiness of the ISP traffic, which leadoteel packet losses for
the same link utilization. From figures 9 and 10, it can be dbahthe PLR is very
well approximated by the fitted dMMPPs for both utilizaticatios. Nevertheless, as
the utilization ratio increases the deviation slightlyreases, because the sensitivity of
the metrics variation to a slight difference in the bufferesis higher.

As a final remark, we can say that the proposed fitting apprpaavides a close
match of the Hurst parameters and probability mass funstidreach time scale, and
this agreement reveals itself sufficient to drive a good queperformance in terms of
packet loss ratio. The computational complexity of therfigtmethod is also very small.

Trace | original fitted
Octobef0.941 (6,12)0.962 (6,12
ISP |0.745 (6,13)0.784 (4,13

Table 2. Comparison between Hurst parameter values

5 Conclusions

In this paper we have proposed a novel traffic model and paearfiging procedure,
based on Markov Modulated Poisson Processes (MMPPs), vidiahle to capture
self-similarity over a range of time scales. The fitting dare matches the complete
distribution at each time scale, and not only some of its mdmas it is the case in
related proposals. We evaluated the procedure by comptréngrobability function
at each time scale, and the queuing behavior (as assessén byss probability),
corresponding to measured traffic traces and to traces essinétd according to the
proposed model. Two traffic traces were considered, albétihdg self-similar behavior:
the well-known pOct Bellcore trace and a trace of aggregiée@W/AN traffic. Our
results show that the proposed traffic model and parametieigfiprocedure closely
matches the main characteristics of the measured traceshavéme scales present in
data.
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