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Abstract. In recent years several studies have reported peculiar types of traffic
behavior, such as long-range dependence and self-similarity, which can have
significant impact on network performance. In this paper we proposea novel
traffic model and parameter fitting procedure, based on Markov Modulated
Poisson Processes (MMPPs), which is able to capture variability over many time
scales, a characteristic of self-similar traffic. The fitting procedure matches the
complete distribution at each time scale, and not only some of its moments as itis
the case in related proposals. Our results show that the proposed trafficmodel and
parameter fitting procedure closely matches the main characteristics of measured
traces over the time scales present in data.

keywords: Traffic modeling, self-similar, time scale, Markov Modulated Poisson
Process.

1 Introduction

An efficient design and control of data networks needs to takeinto account the main
characteristics of the supported traffic. Due to the growingdiversity of services and
applications, there is a strong requirement to make frequent measurements of packet
flows and to describe them through appropriate traffic models. Since the work by Leland
et al. [1] several studies have shown that network traffic may exhibit properties of self-
similarity and/or long-range dependence (LRD) [1–4], which have significant impact on
network performance. Self-similar traffic shows identicalstatistical characteristics over
a wide range of time scales. In general, self-similarity implies long-range dependence,
and vice-versa.

Several works have addressed the impact of LRD on network performance.
References [4–7] study the case of a single queue and conclude that the buffer
occupancy is not affected by autocovariance lags that are beyond the so-called critical
time scale (CTS) or correlation horizon (CH), which dependson system parameters
such as the buffer capacity. Similar conclusions are observed for the case of tandem
queues in [8]. Thus, matching the LRD is only required withinthe time scales specific
to the system under study. One of the consequences of this result is that more traditional



traffic models, such as Markov Modulated Poisson Processes (MMPPs), can still
be used to model traffic exhibiting LRD. The use of MMPPs also benefits from
the existence of several tools for calculating the queuing behavior and the effective
bandwidth.

In this paper we propose a novel traffic model and parameter fitting procedure,
which captures self-similar behavior over a range of time scales. The traffic model is
a superposition of discrete-time MMPPs (dMMPPs), where each dMMPP represents
a specific time scale. The parameter fitting procedure matches, at each time scale,
a dMMPP to the empirical probability function characteristic of that time scale. The
number of states of each dMMPP is not fixed a priori; it is determined as part of the
fitting procedure. The accuracy of the fitting procedure is evaluated by applying it to
measured traffic traces that exhibit self-similar behavior: the well-known pOct Bellcore
trace and a trace of aggregated IP WAN traffic. We compare the probability function
at each time scale, and the queuing behavior (as assessed by the loss probability and
average waiting time), corresponding to the measured and tosynthetic traces generated
from the inferred models. Our results show that the proposedfitting method is very
effective in matching the probability function at the various time scales and leads to an
accurate prediction of the queuing behavior.

Fitting procedures for MMPPs with an arbitrary number of states mainly concen-
trate on matching first- and/or second-order statistics, without addressing directly the
issue of modeling on multiple time scales [9–13]. Yoshiharaet al. [14] developed a
fitting method for self-similar traffic based on the superposition of 2-MMPPs, that
matches the variance at each time scale. In this way, the resulting MMPP reproduces
the variance-scale curve characteristic of self-similar processes. Our contribution is to
develop a procedure that matches the complete distributionat each time scale (and not
only the variance) in order to reproduce accurately self-similar behavior.

The paper is organized as follows. Section 2 gives the required background on
MMPPs and self-similarity and presents the various steps ofthe parameter fitting
procedure. Section 3 briefly describes the data traces used in the numerical evaluation
and in section 4 we discuss the results. Finally, section 5 presents the main conclusions.

2 Inference Procedure

Our inference procedure is closely related to the notion of distributional self-similarity.
Consider the continuous-time processY (t) representing the traffic volume (e.g. in
bytes) from time 0 up to timet and letX(t) = Y (t) − Y (t − 1) be the corresponding
increment process (e.g. in bytes/second). Consider also the sequence

X(m)(k) =
1

m

m
∑

i=1

X((k − 1)m + i), k = 1, 2, ... (1)

obtained by averagingX(t) over non-overlapping blocks of lengthm. Y (t) is exactly
self-similar when it is equivalent, in the sense of finite-dimensional distributions, to
a−HY (at), for all t > 0 anda > 0, whereH (0 < H < 1) is the Hurst parameter.
Clearly, the processY (t) can not be stationary. However, ifY (t) has stationary



increments then againX(k) = X(1)(k) is equivalent, in the sense of finite-dimensional
distributions, tom1−HX(m)(k). This illustrates that a traffic model developed for
fitting self-similar behavior must preferably enable the matching of the distribution on
several time scales. Note also that, in general, self-similarity implies LRD, and vice-
versa. An excellent overview of self-similarity and LRD canbe found in [15].

The inference procedure estimates one dMMPP for each time scale that matches a
probability mass function (PMF) characteristic of that time scale. The resulting dMMPP
is obtained from the superposition of all dMMPPs inferred for each time scale. An
(homogeneous) Markov chain(Y, J) = {(Yk, Jk), k = 0, 1, . . .} with state spaceIN0×
S is a dMMPP if and only ifY has non-decreasing sample paths and

P (Yk+1 = m, Jk+1 = j|Yk = n, Jk = i) = pij e−λiλm−n
i /(m − n)! (2)

for k = 0, 1, . . ., m,n ∈ IN0 with n ≤ m, andi, j ∈ S, whereλi, i ∈ S are nonnegative
real constants andP = (pij) is a stochastic matrix. In this case we say that(Y, J) is
a dMMPP with set of modulating statesS and parameter (matrices)P and Λ, and
write (Y, J) ∼ dMMPPS(P,Λ), whereΛ = (λij) = (λiδij). The matrixP is the
transition probability matrix of the modulating Markov chain J , whereasΛ is the matrix
of Poisson arrival rates. IfS has cardinalityr, we say that(Y, J) is a dMMPP of order
r (r-dMMPP). When, in particular,S = {1, 2, . . . , r} for somer ∈ IN , then we write
simply that(Y, J) ∼ dMMPPr(P,Λ).

The superposition of independent dMMPPs is still an dMMPP. More precisely,
if (Y (l), J (l)) ∼ dMMPPrl

(P(l),Λ(l)), l = 1, 2, . . . , L, are independent, then
their superposition(Y, J) = (

∑L
l=1 Y (l), (J (1), J (2), . . . , J (L))) is a dMMPPS(P,Λ)

whereS = {1, 2, . . . , r1} × . . . × {1, 2, . . . , rL},

P = P
(1) ⊗ P

(2) ⊗ . . . ⊗ P
(L) and Λ = Λ

(1) ⊕ Λ
(2) ⊕ . . . ⊕ Λ

(L) (3)

with ⊕ and⊗ denoting the Kronecker sum and product, respectively. In our approach
L, the number of considered time scales , is fixeda priori and the dimensions of the
dMMPPs,r1, r2, . . . , rL, are computed as part of the fitting procedure.

The flowchart of the inference method is represented in figure1 where, basically,
four steps can be identified: (i) compute the data vectors (corresponding to the average
number of arrivals per time interval) at each time scale; (ii) calculate the empirical
PMF at the largest time scale and infer its dMMPP; (iii) for all other time scales
(going from the largest to the smallest one), calculate the empirical PMF, deconvolve
it from the empirical PMF of the previous time scale and infera dMMPP that matches
the resulting PMF; and (iv) calculate the final dMMPP throughsuperposition of the
dMMPPs inferred for each time scale. We will now describe these steps in detail.

2.1 Aggregation process

Having defined the sampling interval,∆t, the number of time scales,L, and the
level of aggregation,a, the aggregation process starts by computing the data vector
corresponding to the average number of arrivals in the smallest time scale (where
the interval length equals the sampling interval),N (1)(k). Then, it calculates the data



vectors of remaining time scales,N (l)(k), l = 2, ...L, corresponding to the average
number of arrivals in intervals of length∆ta(l−1). This is given by

N (l)(k) =

⌈

1

a

a−1
∑

i=0

N (l−1)(k + i)

⌉

,
k − 1

a
∈ IN0 (4)

andN (l)(k) = N (l)(k − 1), for k−1
a

/∈ IN0, wheredxe is the ceiling function. Note
that the block length of equation (1) is related witha andl by m = al−1. The empirical
distribution ofN (l)(k) will be denoted bŷp(l) (x).

2.2 Calculation of the empirical PMFs

This step infers the PMFs that, at each time scale, must be fitted to a dMMPP. For
the largest time scale, this PMF is simply the empirical one.For all other time scales
l, l = 1, 2, ..., L − 1, the associated dMMPP will model only the traffic components
due to that scale. For time scalel, these traffic components can be obtained through
deconvolution of the empirical PMFs of this time scale and ofprevious time scale,
i.e., f̂

(l)
p (x) = [p̂(l) ⊗−1 p̂(l+1)](x). However, this may result in negative arrival

rates for the dMMPP(l), which will occur whenevermin
{

x : p̂(l+1) (x) > 0
}

<

min
{

x : p̂(l) (x) > 0
}

. To correct this, the dMMPP(l) will be fitted to

f̂ (l) (x) = f̂ (l)
p (x + e(l)) (5)

wheree(l) = min
(

0,min
{

x : f̂
(l)
p (x) > 0

})

, which assureŝf (l) (x) = 0, x < 0.

These additional factors are removed in the final step of the inference procedure.

2.3 Approximation of the empirical PMFs by a weighted sum of Poisson
distributions and inference of the dMMPP parameters

Before inferring the dMMPP(l) parameters,l = 1, 2, ..., L, function f̂ (l) is approx-
imated by a weighted sum of Poisson probability functions, using an algorithm that
progressively subtracts a Poisson probability function from f̂ (l). The most important
steps of this algorithm are depicted in the flowchart of figure2 and will be explained in
the next paragraphs.

Let the ith Poisson probability function, with meanϕ(l)
i , be represented by

g
ϕ

(l)
i

(x) and defineh(l)
(i)(x) as the difference between̂f (l)(x) and the weighted sum of

Poisson probability functions at theith iteration. Initially, we seth(l)
(1)(x) = f̂ (l)(x)

and, in each step, we first detect the maximum ofh
(l)
(i)(x). The correspondingx-

value, ϕi = [h
(l)
(i)]

−1
(

max h
(l)
(i) (x)

)

, will be considered theith Poisson rate of

the dMMPP(l). We then calculate the weights of each Poisson probability function,

w
(l)
i =

[

w
(l)
1i , w

(l)
2i , ..., w

(l)
ii

]

, through the following set of linear equations:

f̂ (l)(ϕ(l)
m ) =

i
∑

j=1

w
(l)
ji g

ϕ
(l)
j

(ϕ(l)
m ) (6)



for m = 1, ..., i and l = 1, ..., L. This assures that the fitting between̂f (l)(x)

and the weighted sum of Poisson probability functions is exact at ϕ
(l)
m points, for

m = 1, 2, . . . , i. The final step in each iteration is the calculation of the newdifference
function

h
(l)
(i) (x) = f̂ (l) (x) −

i
∑

j=1

w
(l)
ji g

ϕ
(l)
j

(x). (7)

The algorithm stops when the maximum ofh
(l)
(i)(x) is lower than a pre-defined

percentage of the maximum of̂f (l)(x) and rl, the number of states of the dMMPP,
is made equal toi.

Note that the number of states of each dMMPP depends on the level of accuracy
employed in the approximation of the empirical PMF by the weighted sum of Poisson
probability functions.

After rl has been determined, the parametersp
(l)
ij andλ

(l)
j , j = 1, 2, . . . , rl, of the

rl − dMMPP, are set equal to

π
(l)
j = w

(l)
jrl

and λ
(l)
j = ϕ

(l)
j . (8)

The next step is to associate, for each time scalel, one of the dMMPP(l)

states with each time slot of the arriving process. The statethat is assigned to a
time interval is calculated randomly according to the probability vector θ

(l) (k) =
{

θ
(l)
1 (k) , . . . , θ

(l)
rl (k)

}

, with

θ
(l)
i (k) = g

λ
(l)
i

(

N l(k)
)

/

rl
∑

j=1

g
λ

(l)
j

(

N l(k)
)

, (9)

wherei = 1, ..., rl, l = 1, ..., L andgλ (y) represents a Poisson probability distribution
function with meanλ. The elements of this vector represent the probability thatthe state
j had originated the number of arrivalsN (l)(k) at time slotk from time scalel.

After this step, we infer the dMPPP(l) transition probabilities,p(l)
ij , i, j = 1, ..., rl,

by counting the number of transitions between each pair of states. Ifn(l)
ij represents the

number of transitions from statei to statej, corresponding to the dMPPP(l), then

p
(l)
ij = n

(l)
ij /

rl
∑

m=1

n
(l)
mj , j = 1, ..., rl (10)

The transition probability and the Poisson arrival rate matrices of the dMPPP(l) are
then given byP(l) = (p

(l)
ij ) andΛ

(l) = (λ
(l)
i δij), for l = 1, ..., L.

2.4 Final dMMPP model construction

The final dMMPP process is constructed using equation (3), where the matricesΛ(l)

andP
(l), l = 1, ..., L, were calculated in the last subsection. However, the additional

factors introduced in sub-section 2.2 must be removed. Thus, Λ = Λ −
∑L−1

l=1 e(l) · I
whereI is the identity matrix.
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Fig. 1. Flow diagram of the inference proce-
dure.
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Fig. 2. Algorithm for calculating
the number of states and the Pois-
son arrival rates of the dMMPP(l).

3 Overview of the traffic traces

We consider two traffic traces to evaluate the fitting procedure: (i) the well-known and
publicly available pOct LAN trace from Bellcore [1] and (ii)a trace corresponding
to the downstream Internet access traffic of approximately 65 simultaneous users,
measured at the access link of a Portuguese ISP (to an ADSL network). The traffic
analyzer was a 1.2 GHz AMD Athlon PC, with 1.5 Gbytes of RAM andrunning
WinDump; we recorded the arrival instant and the IP header ofeach packet. The main
characteristics of the selected traces are described in Table 1.

We assess the self-similar (LRD) behavior through the semi-parametric estimator
developed in [16]. Here, one looks for alignment in the so-called Logscale Diagram
(LD), which is a log-log plot of the variance estimates of discrete wavelet transform
coefficients, against scale, complete with confidence intervals about these estimates at
each scale. Traffic is said to be LRD if, within the limits of the confidence intervals, the



��
��

��
�

��
�

��
�

���

���

���

���

���

���

���

���

�	


�
�
�


�
�
�
��
�
�


	

Fig. 3. Autocovariance of packet counts,
trace pOct.
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Fig. 4. Second order Logscale Diagram,
trace pOct.

log of the variance estimates fall on a straight line, in a range of scales from some initial
valuej1 up to the largest one present in data and the slope of the straight line, which is
an estimate of the scaling exponentα, lies in(0, 1).

Both traces exhibit self-similar (LRD) behavior. For example, taking the case of
trace pOct, the analysis of its autocovariance function (Figure 3) lead us to suspect that it
exhibits LRD, due to the slow decay for large time lags. This is confirmed by the scaling
analysis, since theyj values in the Logscale Diagram are aligned between a medium
octave (7) and octave 14, the highest one present in data (Figure 4). A similar analysis
was made for the other trace, also revealing the same self-similar (LRD) behavior.

4 Numerical Results

We assess the suitability of the proposed dMMPP fitting procedure using several
criteria: (i) comparing the Hurst parameters of the original and synthesized (from the
inferred dMMPP) data traces; (ii) comparing the probability functions of the average
number of arrivals in different time scales, obtained for the original and synthesized
traces and (iii) comparing the queuing behavior, in terms ofpacket loss ratio (PLR), of
the original and synthesized traces, using trace-driven simulation. All simulations were
carried out using a fixed packet length equal to the mean packet length of the trace. For
all traces, the sampling interval of the counting process was chosen to be 0.1s and three
different time scales were considered: 0.1s, 1s and 10s. Foreach trace, the estimation
procedure took less than 1 minute, using a MATLAB implementation running in the PC
described above, which shows that the procedure is computationally very efficient.

Trace Capture period Trace sizeMean rateMean pkt size
name (pkts) (byte/s) (bytes)
OctoberBellcore trace 1 million 322790 568
ISP 10.26pm to 10.49pm, October18th2002 1 million 583470 797

Table 1.Main characteristics of measured traces.
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Fig. 5. Probability mass function at the
smallest time scale, trace pOct.
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Fig. 6. Probability mass function at the
intermediate time scale, trace pOct.
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Fig. 7. Probability mass function at the
largest time scale, trace pOct.

Fig. 8. Probability mass function at the
smallest time scale, trace ISP.

In order to verify that the proposed fitting approach captures the self-similar
behavior, we compare in Table 2 the Hurst parameters estimated for the original and
fitted traffic, for each selected data trace. Table 2 also includes the range of time scales
where theyj follow a straight line, inside brackets near to the corresponding Hurst
parameter value. There is a very good agreement between the Hurst parameter values
of the original and fitted traffic, so LRD behavior is indeed well captured by our model.

The next evaluation criteria is based on the comparison between the probability
functions of the original and fitted traces, for different time scales. Starting with trace
pOct, it can be seen in Figures 5, 6 and 7 that there is a good agreement between the
probability functions of the original and fitted traces, forall time scales. Recall that the
fitting procedure explicitly aimed at matching the probability function at the various
time scales; these results confirm that the procedure is effective in performing this task.
Due to space limitations, for the case of the ISP trace we onlyshow the comparison
between the probability functions at the smallest time scale in Figure 8. However, a
good agreement also exists at the three times scales.

Considering now the queuing behavior, we compare the PLR obtained, through
trace-driven simulation, with the original and fitted traces. Two different sets of
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Fig. 9.Packet loss ratio, trace pOct.
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Fig. 10.Packet loss ratio, trace ISP.

utilization ratios were used in the simulations: for trace pOct, we usedρ = 0.6 and
ρ = 0.7 and, for trace ISP, the selected values wereρ = 0.8 andρ = 0.9. This is
due to the lower burstiness of the ISP traffic, which leads to lower packet losses for
the same link utilization. From figures 9 and 10, it can be seenthat the PLR is very
well approximated by the fitted dMMPPs for both utilization ratios. Nevertheless, as
the utilization ratio increases the deviation slightly increases, because the sensitivity of
the metrics variation to a slight difference in the buffer size is higher.

As a final remark, we can say that the proposed fitting approachprovides a close
match of the Hurst parameters and probability mass functions at each time scale, and
this agreement reveals itself sufficient to drive a good queuing performance in terms of
packet loss ratio. The computational complexity of the fitting method is also very small.

Trace original fitted
October0.941 (6,12)0.962 (6,12)

ISP 0.745 (6,13)0.784 (4,13)

Table 2.Comparison between Hurst parameter values

5 Conclusions

In this paper we have proposed a novel traffic model and parameter fitting procedure,
based on Markov Modulated Poisson Processes (MMPPs), whichis able to capture
self-similarity over a range of time scales. The fitting procedure matches the complete
distribution at each time scale, and not only some of its moments as it is the case in
related proposals. We evaluated the procedure by comparingthe probability function
at each time scale, and the queuing behavior (as assessed by the loss probability),
corresponding to measured traffic traces and to traces synthesized according to the
proposed model. Two traffic traces were considered, all exhibiting self-similar behavior:
the well-known pOct Bellcore trace and a trace of aggregatedIP WAN traffic. Our
results show that the proposed traffic model and parameter fitting procedure closely
matches the main characteristics of the measured traces over the time scales present in
data.
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