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Abstract

Efficient traffic engineering of IP networks requires the knowledge of the main characteristics of the sup-
ported traffic. Several studies have shown that IP network traffic may exhibit properties of burstiness, self-
similarity and/or long-range dependence, with significantimpact on network performance. In this work, we
propose a Markov Modulated Poisson Process (MMPP), and its associated parameter fitting procedure, that
is able to incorporate these characteristics over multipletime scales. This is accomplished through a hier-
archical construction procedure that, starting from a MMPPthat matches the distribution of packet counts
at the coarsest time scale, successively decomposes each MMPP state into new MMPPs, that incorporate
a more detailed description of the distribution at finner time scales. The traffic process is then represented
by a MMPP equivalent to the constructed hierarchical structure. The accuracy of the fitting procedure is
evaluated by comparing the Hurst parameter, the probability mass function at each time scale and the queu-
ing behavior (as assessed by the loss probability and average waiting time), corresponding to the measured
and to synthetic traces generated from the inferred models.Several measured traffic traces exhibiting self-
similar behavior are considered: the well-known pOct Bellcore trace, a trace of aggregated IP WAN traffic,
and a trace corresponding to the the popular file sharing application Kazaa. Our results show that the pro-
posed model and parameter fitting procedure are very effective in matching the main characteristics of the
measured traces over the different time scales present in data.
keywords: Traffic modeling, self-similar, time scale, Markov Modulated Poisson Process.

1 Introduction

Traffic characterization and modeling comprise important steps towards understanding and solving performance-
related problems in future IP networks. An efficient design and control of IP networks needs to take into account
the main characteristics of the supported traffic, and therefore accurateand detailed measurements need to be
carried out. Traffic modeling refers to the construction of (usually stochastic) models that capture the most
important statistical properties of the measured data. Since the work by Leland et al. [1] several studies have
shown that network traffic may exhibit properties of burstiness, self-similarity and/or long-range dependence
(LRD) [1, 2, 3, 4, 5, 6, 7], which have significant impact on network performance.

Burstiness is a traffic behavior showing noticeable periods with arrivals above the mean (bursts) and self-
similarity refers to the replication of statistical characteristics over a wide range of time scales. Models like the
fractional Gaussian noise (fGN) and the fractional autoregressive integrated moving average (fARIMA) have
been proposed to capture burstiness and self-similarity but there is still a lack of analytical results, e.g., to assess
the queuing behavior.

In general, self-similarity implies LRD, and vice-versa. The impact of LRD onnetwork performance has
been addressed by several authors. References [4, 8, 9, 10], for example, study the case of a single queue and
conclude that the buffer occupancy is not affected by autocovariance lags that are beyond the so-called critical
time scale (CTS) or correlation horizon (CH), which depends on system parameters such as the buffer capacity.
Similar conclusions were observed for the case of tandem queues in [11]. Thus, matching the LRD is only
required within the time scales specific to the system under study. One of the consequences of this result is
that more traditional traffic models, such as Markov Modulated Poisson Processes (MMPPs), can still be used
to model traffic exhibiting LRD. Moreover, the use of MMPPs benefits fromthe existence of several tools for
calculating the queuing behavior and the effective bandwidths.
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In this work, we consider discrete-time MMMPs (dMMPPs) instead of continuous-time MMPPs, since they
are more natural model for data corresponding to the number of arrivals(packet counts) in a sampling interval.
Note that discrete-time and continuous-time MMPPs are basically interchangeable (through a simple parameter
rescaling) as models for arrival processes, whenever the sampling interval used for the discrete-time version is
small compared with the average sojourn times in the states of the modulating Markov chain.

In this paper we propose a dMMPP traffic model, and its associated parameter fitting procedure, that is
able to incorporate traffic characteristics of different time scales. This is accomplished through a construction
procedure that successively decomposes dMMPP states into new dMMPPs, thus refining the traffic process by
incorporating the characteristics offered by finer time scales. We start atthe largest time scale by inferring a
dMMPP that matches the probability mass function (PMF) of this time scale. At the next finer time scale, each
dMMPP state is decomposed into a new dMMPP that matches the contribution of thistime scale to the PMF of
the state it descends from. In this way, a child dMMPP provides a detailed description of its parent state PMF.
This refinement process is iterated until a pre-defined number of time scalesare integrated. Finally, a dMMPP
incorporating this hierarchical structure is derived. The number of states of each dMMPP is not fixed a priori;
it is determined as part of the fitting procedure. The accuracy of the fitting procedure is evaluated by applying it
to several measured traffic traces that exhibit self-similar behavior: the well-known pOct Bellcore trace, a trace
of aggregated IP WAN traffic, and a trace corresponding to the file sharing application Kazaa. This application
was selected due to its present popularity in the Internet. We compare the PMFat each time scale, and the
queuing behavior (as assessed by the loss probability and average waiting time), corresponding to the measured
and to synthetic traces generated from the inferred models. Our results show that the proposed fitting method is
very effective in matching the PMF at the various time scales and leads to an accurate prediction of the queuing
behavior.

Several fitting procedures have been proposed in the literature for estimating the parameters of MMPPs from
empirical data ([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], among others). However, most procedures only apply
to 2-MMPPs (e.g. [12, 14, 15, 18]). This model can capture traffic burstiness but the number of states is not
enough to reproduce variability over a wide range of time scales. On the other hand, the fitting procedures for
MMPPs with an arbitrary number of states mainly concentrate on matching first- and/or second-order statistics,
without addressing directly the issue of modeling over multiple time scales [13, 16, 17, 19, 21]. Yoshiharaet al.
[20] developed a fitting method for self-similar traffic based on the superposition of 2-MMPPs, that matches the
variance at each time scale. In this way, the resulting MMPP reproduces thevariance-scale curve characteristic
of self-similar processes. Our contribution is to develop a procedure thatmatches the complete distribution at
each time scale (and not only the variance) in order to reproduce accurately self-similar behavior.

The paper is organized as follows. Section 2 introduces self-similarity and long-range dependence, moti-
vating the need for a traffic model that matches the different time scales of thedata. Section 3 gives the required
background on MMPPs. Section 4 describes the proposed model and Section 5 presents the various steps of
the parameter fitting procedure. Section 6 briefly describes the data tracesused in the numerical evaluation and
in Section 7 we discuss the obtained results. Finally, Section 8 presents the mainconclusions.

2 Self-similarity, long-range dependence, and time scales

Consider the continuous-time processY (t) representing the traffic volume (e.g. in bytes) from time 0 up to
time t and letX(t) = Y (t)−Y (t−1) be the corresponding increment process (e.g. in bytes/second). Consider
also the sequenceX(m)(k) which is obtained by averagingX(t) over non-overlapping blocks of lengthm, that
is

X(m)(k) =
1

m

m
∑

i=1

X((k − 1)m+ i), k = 1, 2, ... (1)

The fitting procedure developed in this work will be based on the aggregated processesX(m)(k).
We start by introducing the notion of distributional self-similarity.Y (t) is exactly self-similar when it is

equivalent, in the sense of finite-dimensional distributions, toa−HY (at), for all t > 0 anda > 0, whereH
(0 < H < 1) is the Hurst parameter. Clearly, the processY (t) can not be stationary. However, ifY (t) has
stationary increments then againX(k) = X(1)(k) is equivalent, in the sense of finite-dimensional distributions,
tom1−HX(m)(k). This illustrates that a traffic model developed for fitting self-similar behaviormust preferably
enable the matching of the distribution on several time scales.
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Figure 1: LRD processes exhibit fluctuations over a wide range of time scales (Example: trace pOct).

Long-range dependence is associated with stationary processes. Consider now thatX(k) is second-order
stationary with varianceσ2 and autocorrelation functionr(k). Note that, in this case,X(m)(k) is also second-
order stationary. The processX(k) has long-range dependence (LRD) if its autocorrelation function is non-
summable, that is,

∑

n r(n) = ∞. Intuitively, this means that the process exhibits similar fluctuations over
a wide range of time scales. Taking the case of the pOct Bellcore trace, it can be seen in Figure 1 that the
fluctuations over the 0.01, 0.1 and 1s time scales are indeed similar.

Equivalently, one can say that a stationary process is LRD if its spectrum diverges at the origin, that is
f(v) ∼ cf |v|

−α, v → 0. Here,α is a dimensionless scaling exponent, that takes values in(0, 1); cf takes
positive real values and has dimensions of variance. On the other hand,a short range dependent (SRD) process
is simply a stationary process which is not LRD. Such a process hasα = 0 at large scales, corresponding to
white noise at scales beyond the so-called characteristic scale or correlation horizon. The Hurst parameterH is
related withα byH = (α+ 1)/2.

There are several estimators of LRD. In this study we use the semi-parametric estimator developed in [22].
Here, one looks for alignment in the so-called Logscale Diagram (LD), which is a log-log plot of the variance
estimates of discrete wavelet transform coefficients, against scale, complete with confidence intervals about
these estimates at each scale. It can be thought of as a spectral estimator where large scale corresponds to low
frequency. Traffic is said to be LRD if, within the limits of the confidence intervals, the log of the variance
estimates fall on a straight line, in a range of scales from some initial valuej1 up to the largest one present in
data and the slope of the straight line, which is an estimate of the scaling exponent α, lies in(0, 1).

There is a close relationship between long-range dependent and self-similar processes. In fact, ifY (t)
is self-similar with stationary increments and finite variance thenX(k) is long-range dependent, as long as
1
2 < H < 1. The processX(k) is said to be exactly second-order self-similar(1

2 < H < 1) if

r (n) = 1/2
[

(n+ 1)2H − 2n2H + (n− 1)2H
]

(2)

for all n ≥ 1, or is asymptotically self-similar if

r (n) ∼ n−(2−2H)L(n) (3)

asn → ∞, whereL(n) is a slowly varying function at infinity. In both cases the autocovariance decays
hyperbolically, which indicates LRD. Any asymptotically second-order self-similar process is LRD, and vice-
versa.

3 Markov Modulated Poisson Processes

The discrete-time Markov Modulated Poisson Process (dMMPP) is the discrete-time version of the popular
(continuous-time) MMPP and may be regarded as an Markov random walk where the increments in each
instant have a Poisson distribution whose parameter is a function of the state of the modulator Markov chain.
More precisely, the (homogeneous) Markov chain(Y, J) = {(Yk, Jk), k = 0, 1, . . .} with state spaceIN0 × S
is a dMMPP if and only if fork = 0, 1, . . .,

P (Yk+1 = m, Jk+1 = j|Yk = n, Jk = i) =

{

0 m < n

pij e
−λi

λm−n
i

(m−n)! m ≥ n
(4)
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Figure 2: Illustration of the dMMPP construction.

for all m,n ∈ IN0 and i, j ∈ S, with λi, i ∈ S, being nonnegative real constants andP = (pij) being a
stochastic matrix. Note that the distribution ofYk+1 − Yk givenJk = j is Poisson with meanλj , so thatλj

represents the mean increment of the processY when the modulating Markov chain is in statej.
Whenever (8) holds, we say that(Y, J) is a dMMPP with set of modulating statesS and parameter (matri-

ces)P andΛ, and write

(Y, J) ∼ dMMPPS(P,Λ) (5)

whereΛ = (λij) = (λiδij). The matrixP is the transition probability matrix of the modulating Markov chain
J , whereasΛ is the matrix of Poisson arrival rates. IfS has cardinalityr, we say that(Y, J) is a dMMPP of
orderr (dMMPPr). When, in particular,S = {1, 2, . . . , r} for somer ∈ IN , then

P =









p11 p12 . . . p1r

p21 p22 . . . p2r

. . . . . . . . . . . .
pr1 pr2 . . . prr









and Λ =









λ1 0 . . . 0
0 λ2 . . . 0
. . . . . . . . . . . .
0 0 . . . λr









(6)

and we write simply that(Y, J) ∼ dMMPPr(P,Λ). The stationary distribution ofJ is denoted byπ =
[π1 π2, . . . πr].

4 Proposed model

The goal of this work is to propose a dMMPP model that is able to incorporatetraffic characteristics of different
time scales. Specifically, we work with the PMF of the packet counts at each timescale. This is accomplished
through a construction procedure that successively decomposes dMMPP states into new dMMPPs, thus refining
the traffic process by incorporating the characteristics offered by finer time scales. We start at the largest time
scale, by inferring a dMMPP that matches the PMF of this time scale. As part ofthe parameter fitting procedure,
each time interval of the data sequence is assigned to a dMMPP state; in this way, a PMF can be associated
with each dMMPP state. At the next finer time scale, each dMMPP state is decomposed into a new dMMPP
that matches the contribution of this time scale to the PMF of the state it descends from. In this way, a child
dMMPP provides a description of its parent state PMF. This refinement process is iterated until a pre-defined
number of time scales are integrated. Finally, a dMMPP incorporating this hierarchical structure is derived.

We consider that the number of time scales,L, is fixed a priori. Time scales will be numbered in an
increasing way, froml = 1 (corresponding to the largest time scale) tol = L (corresponding to the smallest
time scale). The construction process can be described through a tree where, except for the root node, each tree
node corresponds to a dMMPP state and each tree level to a time scale. A dMMPP state will be represented
by a vector indicating the path in the tree from its higher level ancestor (i.e. thestate it descends from at the
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largest scale,l = 1) to itself. Thus, a state at time scalel will be represented by~s = (s1, s2, ..., sl) , si ∈ IN .
Each dMMPP will be represented by the state that generated it (i.e. its parent state). We let dMMPP~s denote
the dMMPP generated by state~s and{1, 2, . . . , N~s} the set of corresponding states, whereN~s is its number of
states. The root node of the tree corresponds to a virtual state, denotedby ~s = ∅, that is used to represent the
dMMPP of the largest time scale,l = 1. This dMMPP will be called the root dMMPP.

Thus, the dMMPP states in the tree are characterized by

~s = (s1, s2, ..., sl) , l ∈ IN (7)

with si+1 ∈
{

1, 2, . . . , N~si]

}

, i = 0, 1, . . . , l− 1; here,~sj] denotes the sub-vector of~s given by(s1, s2, ..., sj),

with j < |~s|, and~s0] = ∅, where|~s| denotes the length of vector~s. Note that, using this notation, a vector~s can
either represent state~s or the dMMPP generated by~s. Also, the time scale of dMMPP~s is |~s| + 1.

Figure 2 illustrates the decomposition process for the simple case of three time scales and two-state dMMPPs.

5 Inference Procedure

The inference procedure is represented schematically in the flowchart of Figure 3, where the following main
steps can be identified:

(i) calculation of the data sequences (corresponding to the average number of arrivals per time interval) for
each time scale, starting with the smallest one and going through an aggregationprocess up to the largest one.

(ii) inference of the dMMPP at the largest time scale,l = 1, that matches the empirical PMF at this time
scale.

(iii) for all other time scales, in increasing order,l = 2, ..., L − 1, and for each parent dMMPP state,
identification of the time intervals assigned to the state, calculation of the corresponding PMF and inference of
the dMMPP that matches the contribution of the time scale to the PMF of the state;

(iv) finally, calculation of matricesΛ andP of the dMMPP incorporating the previous hierarchical structure.
Note that the dimensions of all dMMPPs are computed as part of the fitting procedure. We will now describe
in detail the various steps of the inference method.

5.1 Calculation of the data aggregates

Having defined the time interval at the smallest time scale,∆t, the number of time scales,L, and the level
of aggregation,a, the aggregation process starts by computing the data sequence corresponding to the aver-
age number of arrivals in intervals of length∆t, i.e., in the smallest time scale, which will be denoted by
D(L)(k), k = 1, 2, . . . , N . Then, it calculates the data sequences of the remaining time scales,D(l)(k), l =
L− 1, ..., 1, corresponding to the average number of arrivals in intervals of length∆ta(L−l). This is given by

D(l)(k) =











Ψ

(

1
a

a−1
∑

i=0
D(l+1)(k + iaL−l−1))

)

, k−1
aL−l ∈ IN0

D(l)(k − 1), k−1
aL−l /∈ IN0

(8)

whereΨ(x) represents round toward the integer nearestx. Note that the block length of equation (1) is related
with a andl bym = aL−l. Note also that all data sequences have the same lengthN and thatD(l)(k) is formed
by sub-sequences ofaL−l successive equal values; these sub-sequences will be calledl-sequences.

5.2 Inference of the tree dMMPPs

All tree dMMPPs are inferred in order to fit an empirical PMF. For the largest time scale, it is the PMF of the
most aggregated data sequence,D(1)(k). For all other time scales, one dMMPP is inferred for each state of the
immediately higher time scale. For each dMMPP and time scale, the matched PMF represents the contribution
of the time scale to the PMF of its parent state. The parameter fitting procedure of each tree dMMPP comprises
several steps, highlighted in the flowchart of Figure 3 and explained in more detail in the next sub-sections.

An important step of the fitting procedure is the identification of the time intervals assigned to each dMMPP
state. LetE~s denote the set of time intervals associated with state~s, i.e., with dMMPP~s. Using this notation,
the set associated with dMMPP∅ will be E∅ = {1, 2, ..., N}, whereN is the number of time intervals, i.e.,
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Figure 3: Flow diagram of the inference proce-
dure.
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ber of states and the Poisson arrival rates of
dMMPP~s.

E∅ contains all time intervals. Starting fromE∅, the setsE~s are successively partitioned at each time scale in
a hierarchical fashion. Thus, if states~s and~t are such that|~s| =

∣

∣~t
∣

∣ = l and~s 6= ~t, thenE~s ∩ E~t = ∅ and
⋃

~s:|~s|=l

E~s = E∅. Moreover, if state~s is a parent of state~t, that is~t = (~s, j), thenE~t ⊆ E~s and
⋃

j=1,...,N~s

E(~s,j) =

E~s.

5.2.1 Calculation of the PMFs

Each dMMPP will be inferred from a PMF that represents a contribution to aparticular time scale. Except
for the root dMMPP, the contribution of a dMMPP at time scalel generated from state~s corresponds to the
deconvolution of the empirical PMFs, calculated over the set of time intervalsE~s, at this time scalel = |~s|+ 1
and previous time scalel − 1 = |~s|, i.e., f̂~s

p (x) =
[

p̂~s,|~s|+1 ⊗−1 p̂~s,|~s|
]

(x), wherep̂~s,l represents the PMF
obtained from the data sequenceDl(k), k ∈ E~s. Note that the two empirical PMFs are obtained from the same
set of time intervals but aggregated at different levels.

However, this may result in probability mass at negative arrival rates forthe dMMPP~s, which will occur
whenevermin

{

x : p̂~s,|~s| (x) > 0
}

< min
{

x : p̂~s,|~s|+1 (x) > 0
}

. To correct this, the dMMPP~s will be fitted to
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f̂~s (x) = f̂~s
p (x+ e~s) (9)

wheree~s = min
(

0,min
{

x : f̂~s
p (x) > 0

})

, which assureŝf~s (x) = 0, x < 0. These additional factors are

removed in the next step of the inference procedure.

5.2.2 Inference of the parameters

The first step in the inference of the dMMPP~s parameters, is the approximation off̂~s, by a weighted sum of
Poisson probability functions. This is based on an algorithm that progressively subtracts a Poisson probability
function fromf̂~s. The most important steps of this algorithm are depicted in the flowchart of Figure 4 and will
be explained in the next paragraphs.

Let thenth Poisson probability function, with meanϕ~s
n, be represented bygϕ~s

n
(x) and defineh~s

n(x) as the

difference between̂f~s(x) and the weighted sum of Poisson probability functions at thenth iteration. Initially,
we seth~s

1(x) = f̂~s(x) and, in each step, we first detect the maximum ofh~s
n(x). The correspondingx-value,

ϕn = arg max
x

h~s
n(x), will be considered thenth Poisson rate of the dMMPP~s. We then calculate the weights

of each Poisson probability function,~w~s
n =

[

w~s
1n, w

~s
2n, ..., w

~s
nn

]

, through the following set of linear equations:

f̂~s(ϕ~s
m) =

n
∑

j=1

w~s
jngϕ~s

j
(ϕ~s

m) (10)

for m = 1, ..., n. This assures that the fitting between̂f~s(x) and the weighted sum of Poisson probability
functions is exact atϕ~s

m points, form = 1, 2, . . . , n. The final step in each iteration is the calculation of the
new difference function

h~s
n+1 (x) = f̂~s (x) −

n
∑

j=1

w~s
jngϕ~s

j
(x). (11)

The algorithm stops when the maximum ofh~s
n(x) is lower than a pre-defined percentage of the maximum of

f̂~s(x). At this point, the number of states of the dMMPP~s,N~s, is made equal ton.
AfterN~s has been determined, the parameters of the dMMPP~s {(π~s

j , λ
~s
j), j = 1, 2, . . . , N~s} are set equal to

π~s
j = w~s

jN~s
and λ~s

j = ϕ~s
j . (12)

Note that the number of states of each dMMPP depends on the level of accuracy employed in the approxi-
mation off~s by the weighted sum of Poisson probability functions.

The next step of the parameter inference procedure is to associate, at each time scale, one of the dMMPP~s

states with each time interval. Recall that the set of time intervals associated with dMMPP~s isE~s and that the
data sequences aggregated at time scalel haveaL−l successive equal values called l-sequences. The goal here
is to partitionE~s into subsetsE(~s,j), j = 1, ..., N~s. The state assignment process considers only the first time
interval of each l-sequence, defined byi = aL−(|~s|+1)(k − 1) + 1, k ∈ IN, i ∈ E~s. The state that is assigned to

l-sequencei is calculated randomly according to the probability vector~θ~s (i) =
{

θ~s
1 (i) , . . . , θ~s

N~s
(i)

}

, with

θ~s
n (i) =

gλ~s
n

(

D(|~s|+1)(i)
)

∑N~s

j=1 gλ~s
j

(

D(|~s|+1)(i)
)

(13)

wheren = 1, ..., N~s. Recall thatλ~s
j represents the Poisson arrival rate of thejth state of dMMPP~s andgλ (y)

represents a Poisson probability distribution function with meanλ. The elements of this vector represent the
probability that the statej had originated the number of arrivalsD(l)(k) at time intervalk from time scalel.

After this step, we infer the dMMPP~s transition probabilities,p~s
od, with o, d = 1, ..., N~s, counting the

number of transitions between each pair of states. Ifn~s
od represents the number of transitions from stateo to

stated of the dMPPP~s, then we let

p~s
od =

n~s
od

∑N~s
m=1 n

~s
om

, o, d = 1, ..., N~s (14)

37/7



The transition probability and the Poisson arrival rate matrices of the dMMPP~s are then given by

P
~s =









p~s
11 p~s

12 . . . p~s
1N~s

p~s
21 p~s

22 . . . p~s
2N~s

. . . . . . . . . . . .

p~s
N~s1

p~s
N~s2

. . . p~s
N~sN~s









and Λ
~s =









λ~s
1 0 . . . 0

0 λ~s
2 . . . 0

. . . . . . . . . . . .

0 0 . . . λ~s
N~s









+ e~sI (15)

The diagonal matrix of the steady-state probabilities will be designated byΠ
~s.

5.3 Construction of the equivalent dMMPP model

In this Section we construct a dMMPP equivalent to the tree structure of dMMPPs derived in previous sections.
The goal is to incorporate in the model the level of detail given by the finesttime scale. Thus, the equivalent
dMMPP will have a number of states equal to the number of states in the finest timescale of the tree structure,
L. These can be identified by paths on the tree structure of the form~s = (s1, s2, ..., sL). Note that each state~s
results from its associated states on the corresponding path,~si+1] = (s1, s2, ..., si+1), i = 0, 1, . . . , L−1 of the

dMMPP~si] . Thus, the states of the equivalent dMMPP will have Poisson rates which are the sum of the Poisson
rates of its associated states in the tree structure, i.e.,

λ~s =

L−1
∑

j=0

λ
~s j]
sj+1 . (16)

The transition between each pair of states is determined by the shortest path inthe tree structure, going
through the root dMMPP, that joins the two states. Any pair of states descend from one or more common
dMMPPs. The first one, at the time scale with higherl, will be denoted by~s ∧ ~t = (s1, s2, ..., sk) where
k = max {i : sj = tj , j = 1, 2, ..., i}.

We first consider the case of~s 6= ~t. The probability of transition from~s to~t, p~s,~t, is given by the product of

three factors. The first factor accounts for the time scales where~s and~t have the same associated states and is
given by

φ~s,~t =











|~s∧~t|−1
∏

j=0
p
~s j]
sj+1,sj+1 , |~s ∧ ~t| 6= 0

1, |~s ∧ ~t| = 0

(17)

The second factor accounts for the transition in the time scale where~s and~t are associated to different states
of the same dMMPP, which corresponds top~s∧~t

s|~s∧~t|+1,t|~s∧~t|+1
. The third factor accounts for the steady-state

probabilities of states associated to~t in the time scales that are not common to~s and is given by

ψ~s,~t =
L−1
∏

j=|~s∧~t|+1

π
~t j]

tj+1
(18)

where an empty product is equal to one.
Finally, for~s 6= ~t,

p~s,~t = φ~s,~tp
~s∧~t
s|~s∧~t|+1,t~s∧~t+1

ψ~s,~t. (19)

In case~s = ~t, the transition probability is simply

p~s,~t = φ~s,~t. (20)

6 Overview of the traffic traces

Two different traces of aggregated IP traffic were selected to test the accuracy of the proposed fitting procedure:
(i) the well known and publicly available Bellcore pOct LAN trace [1] and (ii)a trace measured at the backbone
of a Portuguese ISP ADSL network, characterizing the downstream Internet access traffic of approximately 65
simultaneous users. A third trace was also considered, corresponding tothe downstream traffic from 10 users
of the file sharing application Kazaa, a protocol running over TCP. This trace was measured at the premises of
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Figure 5: Autocovariance of packet counts, trace
pOct.
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Figure 6: Second order Logscale Diagram, trace
pOct.

the same Portuguese ISP and its inclusion is due to the fact that an increasingpercentage of the overall Internet
traffic belongs to peer-to-peer protocols of the same type as Kazaa. Forall our measurements, the traffic
analyzer was a 1.2 GHz AMD Athlon PC, with 1.5 Gbytes of RAM and running WinDump, and recorded the
arrival instant and the IP header of each packet. The main characteristics of all selected traces are described in
Table 1.

All traces exhibit self-similar characteristics: taking trace pOct, for example, the analysis of its autocovari-
ance function (Figure 5) lead us to suspect that it exhibits LRD behavior,due to the slow decay for large time
lags. This is confirmed by the scaling analysis, since theyj values in the logscale diagram are aligned between
a medium octave (7) and octave 14, the highest one present in data (Figure 6). A similar analysis was made for
the other traces, also revealing the same LRD behavior.

7 Numerical Results

We assess the suitability of the proposed MMPP fitting procedure using several criteria: (i) comparing the Hurst
parameters of the original and synthesized (according to the parameters inferred for the resulting dMMPP) data
traces; (ii) comparing the PMFs of the packet counts in different time scales, calculated also from the original
and synthesized traces and (iii) comparing the queuing behavior, in terms ofpacket loss ratio (PLR) and average
waiting time in queue (AWT), through a trace-driven simulation using those traces as inputs. All simulations
were carried out using a fixed packet length equal to the mean packet length of the trace. For all traces, the
sampling interval of the counting process was chosen to be 0.1s and three different time scales were considered:
0.1s, 0.2s and 0.4s. Larger aggregation levels were also considered, with good fitting results. For each trace, the
estimation procedure took less than 2 minutes, using a MATLAB implementation running in the PC described
above, which shows that the procedure is computationally very efficient.

In order to verify that the proposed fitting approach captures the trafficLRD behavior, we compare in Table
1 the Hurst parameters estimated for the original and dMMPP fitted traffic, for each one of the three selected
data traces. The LRD estimator that was used is the Logscale Diagram, introduced in Section 2, and Table 1
also includes the range of time scales where the wavelet coefficients follow astraight line, written in parenthesis
near to the corresponding Hurst parameter value. As we can see, thereis a very good agreement between the
Hurst parameter values of the original and fitted traffic, so LRD behaviorseems to be well captured by this
fitting approach.

The next evaluation criteria is based on the comparison between the PMFs ofthe original and dMMPP

Trace name Capture period Trace size Mean rate Mean pkt size
(pkts) (byte/s) (bytes)

pOct Bellcore trace 0.5 million 322790 568
ISP 10.26pm to 10.49pm, October18th2002 0.5 million 583470 797
Kaaza 10.26pm to 11.31pm, October18th2002 0.5 million 131140 1029

Table 1: Main characteristics of measured traces.
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Figure 7: PMF at the smallest time scale, trace
pOct.
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Figure 8: PMF at the intermediate time scale,
trace pOct.
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Figure 9: PMF at the largest time scale, trace
pOct.
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Figure 10: PMF at the smallest time scale, trace
ISP.
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Figure 11: PMF at the intermediate time scale,
trace ISP.
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Figure 12: PMF at the largest time scale, trace
ISP.

fitted traces, for different time scales. Starting with trace pOct, we see fromfigures 7, 8 and 9 that there is a
good agreement between the PMFs of the original and dMMPP fitted traces,for the smallest, intermediate and
largest time scales. This is achieved with a dMMPP having 81 states. For traceISP, the resulting dMMPP has
74 states and the comparison between the PMFs of the original and fitted traces, shown in figures 10, 11 and 12
for the smallest, intermediate and largest time scales, also reveals a good agreement. Finally, for trace Kazaa
the resulting dMMPP has 38 states and the PMFs of the original and fitted traces, shown in figures 13, 14 and
15 for the smallest, intermediate and largest time scales, also reveal a good agreement. Note that, as stated
before, the number of states is directly related to the level of accuracy used in the fitting task that approximates

Trace original fitted
pOct 0.846 (4,11) 0.859 (4,11)
ISP 0.954 (4,10) 0.956 (4,10)

Kazaa 0.917 (8,12) 0.897 (6,12)

Table 2: Comparison between Hurst parameter values
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Figure 13: PMF at the smallest time scale, trace
Kazaa.
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Figure 14: PMF at the intermediate time scale,
trace Kazaa.
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Figure 15: PMF at the largest time scale, trace
Kazaa.
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Figure 16: Packet loss ratio, trace pOct.
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Figure 17: Average waiting time in queue, trace
pOct.
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Figure 18: Packet loss ratio, trace Kazaa.

the empirical PMF at each time scale by a weighted sum of Poisson probability functions. So, there is always
a tradeoff between the number of states of the resulting dMMPP and the intended level of accuracy.

We now verify if the close match obtained in the Hurst parameter values and in thePMFs at each time scale
is enough to guarantee a similar queuing behavior between the original traffic and the fitted models. For each
selected trace we compare the PLR and AWT values obtained through trace-driven simulation of the original
and dMMPP fitted traces. Two different sets of utilization ratios were used inthe simulations: for traces pOct
and Kazaa, we usedρ = 0.7 andρ = 0.8 and for trace ISP the selected values wereρ = 0.8 andρ = 0.9. This
is due to the lower burstiness of the ISP traffic, which leads to lower packetlosses for the same link utilization.
From figures 16 and 17 it is possible to see that, for trace pOct, PLR behavior is very well approximated by
the equivalent dMMPP for both utilization ratios, while the agreement of the AWT curves is less accurate
specially for higher utilization ratios. For trace Kazaa, the results are depicted in figures 18 and 19 and for
trace ISP the results are illustrated in figures 20 and 21. For both traces, the agreement between the PLR curves
corresponding to the original and fitted traces is good. However, as the utilization ratio increases the deviation
slightly increases, because the sensitivity of the metrics to differences in thetraces under comparison is higher.
Regarding AWT, the agreement between the curves corresponding to theoriginal and fitted traces is also good,
specially for higher utilization ratios.
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Figure 19: Average waiting time in queue, trace
Kazaa.
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Figure 20: Packet loss ratio, trace ISP.
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Figure 21: Average waiting time in queue, trace ISP.

As a final remark, we can say that the proposed fitting approach provides a close match of the Hurst
parameters and probability mass functions at each time scale, and this agreement reveals itself sufficient to drive
a good queuing performance in terms of packet loss ratio and average waiting time in queue. The computational
complexity of the fitting method is also very small.

8 Conclusions

We proposed a MMPP, and its associated parameter fitting procedure, which is able to capture self-similarity
over a range of time scales. This is accomplished through a hierarchical construction procedure that, starting
from a MMPP that matches the distribution of packet counts at the coarsesttime scale, successively decomposes
each MMPP state into new MMPPs, that incorporate a more detailed descriptionof the distribution at finner time
scales. The traffic process is then represented by a MMPP equivalentto the constructed hierarchical structure.
The accuracy of the fitting procedure was evaluated by comparing the Hurst parameter, the probability mass
function at each time scale and the queuing behavior (as assessed by the loss probability and average waiting
time), corresponding to the measured and to synthetic traces generated from the inferred models. Several
measured traffic traces exhibiting self-similar behavior were considered:the well-known pOct Bellcore trace, a
trace of aggregated IP WAN traffic, and a trace corresponding to the thepopular file sharing application Kazaa.
Our results show that the proposed model and parameter fitting procedureare very effective in matching the
main characteristics of the measured traces over the different time scales present in data.
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