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Abstract—This paper proposes a novel multifractal traffic model, and
an associated parameter fitting procedure, based on stochastic L-Systems,
which were introduced by biologist A. Lindenmayer as a method to model
plant growth. We provide a detailed comparison with a related multifrac-
tal model based on conservative cascades. Our results, that include apply-
ing the fitting procedure to real observed data with multifractal scaling
behavior, show that L-System based models can achieve excellent fitting
performance in terms of first and second order statistics and queuing be-
havior. ∗
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I. INTRODUCTION

Recent analysis of measured Internet WAN traffic has revealed
that multifractal structures, such as random cascades, can help
explaining the scaling behavior typically associated to net-
working mechanisms operating on small time scales (e.g. TCP
flow control). A cascade (or multiplicative process) is a pro-
cess that fragments a set into smaller and smaller components
according to a fixed rule, and at the same time fragments the
measure of the components by another (possibly random) rule.
Random cascades were introduced by Mandelbrot as a physi-
cal model for turbulence [1]. In the traffic modeling context,
the set can be interpreted as a time interval and the measure as
the number of arrivals or number of bytes (in that interval).

The multifractal nature of network traffic was first noticed
by Riedi and Lévy Véhel [2]. Subsequently various studies
have addressed the characterization and modeling of multifrac-
tal traffic, essentially within the framework of random cascades
[3] [4] [5] [6] [7] [8] [9]. In this paper, we propose a novel
multifractal traffic model, and an associated fitting procedure,
based on stochastic Lindenmayer-Systems (hereafter referred
to as L-Systems). L-Systems are string rewriting techniques
which were introduced by biologist A. Lindenmayer in 1968
as a method to model plant growth[10]. They are character-
ized by an alphabet, an axiom and a set of production rules.
The alphabet is a set of symbols; the production rules define
transformations of symbols into strings of symbols; starting
from an initial string (the axiom), an L-System constructs itera-
tively sequences of symbols replacing each symbol by the cor-
responding string according to the production rules. Stochas-
tic L-Systems are a method to construct recursively random
sequences with multifractal behavior [11]. When compared
with random cascades, stochastic L-Systems introduce a de-
pendence on the construction process (due to the production

∗This work was part of project POSI/CPS/42069/2001 ”Traffic Modeling and
Performance Evaluation of Multiservice Networks”, funded by Fundação para
a Ciência e Tecnologia, Portugal. P. Salvador wishes to thank Fundação para a
Ciência e a Tecnologia, Portugal, for support under grant BD/19781/99.

rules), that has a meaningful physical explanation, and can help
understanding the joint impact of network mechanisms and re-
source limitations on observed traffic. The proposed traffic
model also includes the ability of modeling multiple scaling
behavior.

This paper is organized as follows. In section II we give
some background on L-Systems. In sections III and IV we
present the traffic model and describe the associated fitting
procedure. Section V provides a detailed comparison with ran-
dom cascades and includes a physical explanation supporting
L-System based traffic models. In section VI we discuss the
results of applying the proposed fitting procedure to measured
traffic traces. Finally, section VII presents the conclusions.

II. L-SYSTEMS BACKGROUND

The basic idea behind L-Systems is to define complex objects
by successively replacing parts of a simple object using a set
rules. The L-System is a feedback machine that operates on
strings of symbols. The set of symbols is called the alpha-
bet. Starting from an initial state (called axiom), an L-System
operates, at each iteration, by applying the set of production
(or rewriting) rules simultaneously to all symbols of an input
string to give an output string. For a comprehensive introduc-
tion to L-Systems see [11].

Consider a simple example of an organism growing through
cell subdivisions. There are two types of cells represented by
letters A and B. Cell subdivisions are modeled by replacing
these symbols with strings of symbols: cell A subdivides into
two cells represented by string AB; cell B subdivides into two
cells represented by string AA. The ordering of the symbols
is relevant in an L-System. The organism modeled by this L-
System grows by repeated cell subdivisions. At birth the or-
ganism is the single cell A. After one subdivision the organism
is two cells represented by string AB. After two subdivisions,
the organism has four cells given by string ABAA, and after
three subdivisions the organism has eight cells represented by
string ABAAABAB. Using the formalism of L-Systems this
growth process can be described as:

Alphabet: {A,B}
Axiom: A
Rules: A → AB

B → AA

The production rules can be stochastic. In stochastic L-
Systems there may be several production rules for one sym-
bol, and the specific rule is selected according to a probabil-
ity distribution. Taking previous example, one production rule
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Fig. 1. Construction of an L-System based traffic model.

could be to convert A into AB with probability 0.4 or into
BB with probability 0.6 (instead of converting always A into
AB). In this case, after 3 iterations several strings are possible,
e.g., ABAAABAB, ABABBBAB, or AAAAABBB. Stochas-
tic L-Systems are a method to construct recursively random
sequences with multifractal behavior [11].

III. TRAFFIC MODEL

In this section we describe the proposed multifractal traffic
model based on a stochastic L-System construction. We work
on an alphabet of arrival rates defined by

�λ = {λ1, λ2, ..., λL}, λi ∈ IR+
0 , i = 1, ..., L. (1)

and with production rules that randomly generates two arrival
rates from a previous one. Without loss of generality, we as-
sume λ1 < λ2 < ... < λL.

The traffic process is constructed progressively, governed by
an L-System machine, where each iteration produces a new
time scale. Starting with the coarsest time scale, where traffic
is characterized by a single arrival rate over a single time in-
terval, each iteration generates a finer time scale by (i) division
of each (parent) time interval in two new equal length (child)
subintervals and (ii) association of arrival rates to each new
subinterval according to the production rules of the stochastic
L-System. We allow the grouping of time scales in time scale
ranges and the definition of different sets of production rules
for each time scale range. This is motivated by the fact that
each set of production rules maps into a distinct scaling behav-
ior [12]. Classically, there will be scaling if the log-log plot
of the qth order energies (usual energy is q = 2) as a function
of scale behaves linearly; if the plot is (globally) non-linear,
different time scale ranges can be detected where linearity is
observed (see [5], for example). The traffic process construc-
tion is illustrated in Figure 1.

To characterize the traffic process we define X
(i)
(j,r)ε

�λ as the
arrival rate at time interval i of time scale j and time scale
range r. Let the number of scales be S and the number of
ranges of scales be R. For convenience, we let j decrease from
j = S − 1 (at the coarsest time scale) to j = 0 (at the finest
time scale). Also, we let r decrease from r = R (the range of
coarsest time scales) to r = 1 (the range of finest time scales).
Thus, the number of time intervals at time scale j, which we
will denote by Nj , is 2S−j−1. Moreover, assuming a unitary

width for the intervals of the finest time scale, j = 0, the width
at scale j will be 2j . To relate time scales and time scale ranges
we define jr as the coarsest scale j in range r. Thus, in Figure
1, S = 4, R = 2, j2 = 3 and j1 = 1.

In order to assure that the average arrival rate is the same
in all time scales, so as to maintain physical meaning, we will
impose the following condition to the production rules:

X
(i)
(j,r) =

1
2
X

(2i−1)
(j−1,r′) +

1
2
X

(2i)
(j−1,r′) (2)

i.e., the mapping of arrival rates is such that the arrival rate
averaged over the left and right child subintervals will be equal
to the parent arrival rate. With this condition, the traffic process
generation can be described by axiom X

(1)
(S−1,R), the arrival

rate at the coarsest time scale, and production rules defined by

X
(i)
(j,r) = λl

p
(r)
lq−−→

{
X

(2i−1)
(j−1,r′) = λq

X
(2i)
(j−1,r′) = 2λl − λq

(3)

where
∑L

l=1 p
(r)
lq = 1,∀q. Thus, an arrival rate λl in interval

i, scale j and range r produces, with probability p
(r)
lq , arrival

rate λq at the left subinterval 2i−1 and arrival rate 2λl −λq at
the right subinterval 2i, of next scale j − 1 and range r′. The
production rules can be totally described by R L×L matrices

P(r) =
(
p
(r)
lq

)
, l, q = 1, ..., L, r = 1, ..., R (4)

In order to guarantee that the alphabet is closed with respect
to the production rules we impose the following conditions: (i)
λi − λi−1 = λL−λ1

L−1 , i = 2, 3, ..., L, i.e., the λi values will

be equidistant; (ii) p
(r)
lq = 0 if q > l + min(L − l, l − 1) or

q < l − min(L − l, l − 1).
Finally, the L-System construction defines, at scale j and

range r, the sequence

Y(j,r) = {X(i)
(j,r), i = 1, ..., Nj} (5)

IV. FITTING PROCEDURE

The fitting procedure determines the L-System parameters
from real data observations. It starts by fixing a sampling in-
terval ∆ and considering the time series representing the to-
tal number of packet arrivals in each non-overlapping sam-
pling interval. Let this (empirical) time series be {Ak, k =
1, 2, ...,K}, where Ak represents the number of arrivals in
sampling interval k. For convenience, we take the length of
the time series K to be a power of 2. The inference procedure
can then be divided in three steps: (i) determination of the L-
System alphabet and axiom, (ii) identification of the time scale
ranges and (iii) inference of the L-System production rules.

The alphabet of the L-System will consist in L equidistant
arrival rate values, ranging from the minimum to the maximum
values present in data. The value of L is a compromise be-
tween accuracy and complexity. Due to the mass preservation



property of L-Systems defined in (2), the axiom is inferred as
the average arrival rate of {Ak}, rounded to the closest alpha-
bet element, i.e.,

X
(1)
(S−1,R) = Λ

(
(1/K∆)

∑K

k=1
Ak

)
(6)

where Λ(x) represents a function that rounds x towards the
nearest element of �λ.

The identification of time scale ranges is based on wavelet
scaling analysis. We use the method described in [5], which re-
sorts to the (second-order) logscale diagram. A (second-order)
logscale diagram is a plot of yj against j, together with con-
fidence intervals about the yj , where yj is a function of the
wavelet discrete transform coefficients at scale j. The time
scale ranges correspond to the set of time scales for which,
within the limits of the confidence intervals, the yj fall on a
straight line, i.e., the scaling behavior is linear in a time scale
range. Figure 3 shows the logscale diagram of a trace measured
at the University of Aveiro (which is described in section VI).
There are 4 time scale ranges (within a total of 18 time scales)
defined by j1 = 3, j2 = 7, j3 = 10 and j4 = 17.

The final step is the inference of the L-System production
rules, which are fully characterized by the P(s) matrices. First,
data is rounded in order to define sequence Y(j,r) at each time

scale. This comprises obtaining the arrival rates X
(i)
(j,r) from

{Ak} through

X
(i)
(j,r) = Λ

(
(Nj/K∆)

∑Ki/Nj

k=K(i−1)/Nj+1
Ak

)
(7)

with i = 1, ..., Nj , for each j. Letting c
(r)
lq represent the num-

ber of times that, at scale j and range r, the parent X
(i)
(j,r) = λl

produced the left child X
(2i−1)
(j−1,r′) = λq, the production rule

probabilities can be inferred as

p
(r)
lq = c

(r)
lq /

L∑
q=1

c
(r)
lq , l = 1, ..., L, r = 1, ..., R (8)

V. RELATION WITH RANDOM CASCADES

A random cascade is characterized by an initial mass, uni-
formly distributed over a single interval, which is subdivided
along the different stages of the cascade construction. Each in-
terval is divided in two (or more) identical subintervals and the
mass is randomly assigned to each subinterval, according to a
random variable W called the generator. In the case of a traffic
process the mass can be interpreted as the number of arrivals
or bytes within a time interval. Let Wi,j , i = 1, ..., Nj , j =
S − 1, ..., 0, denote an (independent) random variable, having
the same distribution as W , that redistributes mass from time
scale j into time interval i (belonging to subsequent time scale
j − 1). The construction of the traffic process, starts at the

coarsest time scale S − 1 with an initial mass M distributed
uniformly over a unit time interval. We will restrict our discus-
sion to the case where a (parent) interval is subdivided in only
two (child) intervals. In the first iteration, a finer time scale is
produced, by dividing the time interval in two new subintervals
of length 1/2, and assigning mass MW1,S−1 to the left subin-
terval and MW2,S−1 to the right subinterval. At the second
iteration, producing time scale S − 2, each of these intervals
generates new subintervals, one at the left and another at the
right, giving rise to four subintervals of length 1/4 with masses
MW1,S−1W1,S−2, MW1,S−1W2,S−2, MW2,S−1W3,S−2 and
MW2,S−1W4,S−2, respectively. Iterating this construction
process, the mass of parent interval i from scale j is redis-
tributed into child subintervals 2i − 1 and 2i of scale j − 1
with probabilities W2i−1,j and W2i,j , respectively. Note that
the mass at each time scale is only preserved in expectation.
Note also that the way mass gets redistributed is independent
from mass itself, since the Wi,j are independent of mass.

Feldmann et al. [3] have proposed the use of conservative
cascades, a special case of random cascades, as a model for IP
traffic. In conservative cascades, the generator W takes on val-
ues in (0, 1), has mean 1/2 and is symmetric about its mean.
Furthermore, mass is redistributed such that the total mass as-
signed to left and right child subintervals remains equal to that
of the parent interval. Thus, the mass is preserved throughout
the splitting process: if the mass of the ith parent interval is Q,
the mass of the left child interval will be QW2i−1,j and that of
the corresponding right child interval will be Q(1−W2i−1,j).
As a result, the mass at all stages will be (exactly) M , if the ini-
tial mass is M . This is the mass preservation property which
also occurs in our stochastic L-System construction. Feldmann
et al. supported the adoption of conservative cascade models in
the networking context by observing that the transmitted traf-
fic is constructed through fragmentation at successive network
layers, and that the total number of bytes is roughly preserved
during this fragmentation process. A typical example is the dy-
namics of a Web session, where user clicks results in requests,
requests give rise to connections, connections are made up of
flows, and flows consist of individual packets.

In L-Systems, the mass in interval i of scale j is 2jX
(i)
(j,r). In

addition to the mass preservation property, L-Systems include
another important feature that is not present in conservative
cascades (nor in random cascades) and has a meaningful phys-
ical explanation. In L-Systems the way mass is redistributed to
left and right child subintervals can be made dependent on the
mass of the parent interval, whereas in the conservative cas-
cade construction this dependence is not allowed. Recall that a
parent arrival rate λl gives rise to a left child arrival rate λq with

probability p
(r)
lq , which depends explicitly on l. Take again the

example of Feldmann et al. and consider the way Web requests
are scheduled over time. The number of requests per time in-
terval that a Web server can handle is limited, due to resource
availability constraints. Therefore, the way user clicks pro-



duce requests depends on the overall number of clicks. If a
Web server has more requests to process it will distribute them
more sparsely over time. Thus, the mass itself (the number of
clicks, in this case) influences the way distribution takes place.
At a lower level, consider the way flows produce packets. If
the network is more congested, the feedback control exercised
by TCP imposes that packets will be more sparsely distributed
over time. Thus, once more, the mass (the number of flows, in
this case) influences the way distribution takes place.

To bring further insight into this issue, we next evaluate
whether or not the independence property of the generator,
subjacent to conservative cascades, is present in data, using the
pOct.TL Bellcore trace. The generator, as defined in the con-
text of conservative cascades, represents the fraction of mass
distributed to a left child subinterval. In L-Systems this frac-
tion is 2j−1X

(2i−1)
(j−1,r′)/2jX

(i)
(j,r) = λl/2λq. We define Wj|l as

the generator at time scale j conditioned on the arrival rate λl.
Thus, the Wj|l are discrete random variables that, for each l,
can take values λl/2λq, and can be easily inferred from data.
Clearly, if the independence assumption is true then, at each
time scale j, the Wj|l should have the same distribution. In
Figure 2 we plot the variance of the inferred conditional Wj|l,
for all λl and for j = 1, 2, 3, 4 and 5. Results show that,
within the same time scale, the generators can have very dif-
ferent variances (the same is true for the mean). For exam-
ple, at j = 0 the variance is 0.04 for λl = 21 pkts/sec and is
0.001 for λl = 100 pkts/sec. Therefore, they have dissimilar
distributions which indicates that the independence assump-
tion is not valid in the case of the pOct.TL Bellcore trace. We
have observed this same behavior in many other traces. To
conclude, the effect of resource availability limitations is an
important factor with strong impact in the traffic generation
process, which can be captured through an L-System based
construction (but not through a conservative cascade).

VI. NUMERICAL RESULTS

We have applied our fitting procedure to two traces of IP traf-
fic: (i) the well known pOct.TL Bellcore trace [13] and (ii) one
trace measured at the University of Aveiro (UA) which exhibits
non-trivial multifractal scaling behavior. The sampling inter-
val was 0.1 seconds in both traces. The UA trace is represen-
tative of Internet access traffic produced within a University
campus environment. The University of Aveiro is connected
to the Internet through a 10 Mb/s ATM link and the measure-
ments were carried out in a 100 Mb/s Ethernet link connecting
the border router to the firewall, which only transports Inter-
net access traffic. The UA trace consists of 20 millions packets
captured on July 3rd 2001 from 8.00 pm to 3.15 am. The traffic
analyzer was a 1.2 GHz AMD Athlon PC, with 1.5 Gbytes of
RAM, running WinDump. The measurements recorded the ar-
rival instant and the IP header of each packet. The mean arrival
rate of the UA trace is 766 pkts/sec.

The pOct.TL trace was fitted to a stochastic L-System with
an alphabet of L = 243 arrival rates, from the minimum to the

maximum present in data, in steps of 10 pkts/sec (the minimum
and maximum were 10 pkts/sec and 2430 pkts/sec, respec-
tively). The logscale diagram identified 5 time scale ranges
(within a total of 14 time scales) defined by j1 = 3, j2 =
6, j3 = 8, j4 = 9 and j5 = 13. In the case of the UA trace
the alphabet size was L = 469, from 170 pkts/sec to 4850
pkts/sec in steps of 10 pkts/sec. As referred before, the UA
trace has 4 time scale ranges (Figure 3). The parameter es-
timation took less than 30 seconds, using a MATLAB imple-
mentation running in the PC described above. This shows that
the fitting procedure is computationally very efficient (note that
the size of the alphabet, the number of ranges and the size of
the trace, which determine the computational time, are all rel-
atively large).

We assess the suitability of the traffic model and the accu-
racy of the fitting procedure using several criteria. We com-
pare both the probability and autocovariance functions of the
packet counts (number of packet arrivals in sampling interval)
obtained with the fitted stochastic L-System model and with
the original data trace. We also analyze the queuing behav-
ior by comparing the packet loss ratio, obtained through trace-
driven simulation, using two types of input traffic: (i) the orig-
inal trace and (ii) the trace generated according to the fitted
stochastic L-System. Our comparisons are extended to a con-
servative cascade model. The model was inferred using the
procedure presented in [7]. Here, the generator at each time
scale is fitted to a truncated normal distribution, where the
mean is always 1/2 but the variance is adjusted individually
at each time scale.

Multifractality is assessed using a linear multiscale diagram
[5]. In this case, multifractal scaling behavior is detected when
there is no horizontal alignment (within the limits of confi-
dence intervals). Figure 4 shows that the UA trace, and the
traces generated using both the L-System and conservative cas-
cade models, all have multifractal scaling behavior. A simi-
lar analysis carried out on the pOct.TL trace revealed that this
trace is not multifractal.

In the case of the probability function (Figure 5), both the
conservative cascade and the L-System models fitted very well
the UA trace. The performance of the conservative cascade
model was not so good in the case of the pOct.TL trace. This
can be explained by the symmetry imposed on the generator
W , which makes it difficult for conservative cascades to fit
asymmetric probability distributions. In the case of the autoco-
variance function (Figure 6), the fitting performance achieved
by both models was again very good in the case of the UA
trace, but clearly inferior for conservative cascades in the case
of the pOct.TL trace.

To assess the queuing behavior the buffer size was varied
from 10 Kbytes to 2 MBytes. The service rate was 501.2
KBytes/s for the pOct.TL trace (corresponding to an utiliza-
tion of 0.7) and 572 KBytes/s for the UA trace (corresponding
to an utilization of 0.8). Figure 7 shows that, for both traces,
the fitting of the queuing behavior was very good in the case
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of L-Systems but significant differences occurred with conser-
vative cascades. It is interesting to note that, in the case of
the UA trace, these differences occurred despite of a very good
fitting in the first and second order statistics. This clearly illus-
trates that first and second order statistics are not sufficient to
characterize multifractal traffic.

We also have analyzed a number of other traces. Our re-
sults show that, in general, L-Systems achieves better perfor-
mance than conservative cascades. This can be explained as
follows. First, L-Systems allow the mass redistribution to de-
pend on the mass itself, a feature that is clearly present in real
observed data. Second, L-Systems provide a higher number of
parameters, which are meaningful from the point of view of
physical reality. Third, the generator in conservative cascades
is assumed to be symmetric which restricts the fitting of the
probability function.

VII. CONCLUSIONS

This paper proposed a novel multifractal traffic model, and an
associated parameter fitting procedure, based on stochastic L-
Systems, which were introduced by biologist A. Lindenmayer
as a method to model plant growth. We provided a detailed
comparison with a related multifractal model based on conser-
vative cascades. Our results, that include applying the fitting
procedure to real observed data with multifractal scaling be-
havior, showed that L-System based models can achieve excel-
lent fitting performance in terms of first and second statistics
and queuing behavior.
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