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Abstract. Traffic engineering of IP networks requires the characterization and
modeling of network traffic on multiple time scales due to the existence ofaleve
statistical properties that are invariant across a range of time scatbsasself-
similarity, LRD and multifractality. These properties have a significant impac
network performance and, therefore, traffic models must be abletogorate
them in their mathematical structure and parameter inference prosedure

In this work, we address the modeling of network traffic using a multi-time-
scale framework. We evaluate the performance of two classes ot tnadfilels
(Markovian and Lindenmayer-Systems based traffic models) thatgocate the
notion of time scale using different approaches: directly in the modedtstey in

the case of the Lindenmayer-Systems based models, or indirectly thadiiting

of the second-order statistics, in the case of the Markovian modelsditicad

we address the importance of modeling packet size for IP traffic, ae ibat

is frequently misregarded. Thus, in each class we evaluate modelsrthat a
intended to describe only the packet arrival process and models¢hatended

to describe both the packet arrival and packet size processesficaily, we
consider a Markov modulated Poisson process and a batch Markavieal a
process as examples of Markovian models and a set of four LinderSystems
based models as examples of non Markovian models that are able tonperf
a multi-time-scale modeling of network traffic. All models are evaluated by
comparing the density function, the autocovariance function, the lossaiatio
the average waiting time in queue corresponding to measured tracesteazbto
synthesized from the fitted models. We resort to the well known BellpGat
traffic trace and to a trace measured at the University of Aveiro.

The results obtained show that (i) both the packet arrival and padket s
processes need to be modeled for an accurate characterizationadfitRaind (ii)
despite the differences in the ways Markovian and L-System modelginicie
multiple time scales in their mathematical framework, both can achieve vexy g
performance.
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1 Introduction

In the Internet, the complexity associated to mechanismgré&ific generation and
control, as well as the diversity of applications and sesjdave introduced several
peculiar behaviors in traffic, such as self-similarity, darange dependence and mul-
tifractality, which have a significant impact on network foemance. These behaviors
have in common a property of statistical invariance acrassge of time scales. Thus,
a suitable traffic model must be able to capture statistiedbior on multiple time
scales.

In order to completely characterize a traffic model, we havepecify the model
structure and its parameter inference procedure. Muftetscale characteristics can
be incorporated in the parameter fitting procedure or cannfigedded in the model
structure. Moreover, accurate modeling of IP traffic reggithe characterization of
both the packet arrival and packet size processes. Assutmatgacket size is fixed
and equal to the average packet size of the measured daartegclead to large errors
when packets have variable size.

In this paper, we address the modeling of network traffic uradeaulti-time-scale
framework. Our main goal is to evaluate and compare the pagbce of two classes of
traffic models (based on Markovian and Lindenmayer-Systapdgels) that incorporate
the notion of time scale using different approaches: diydatthe model structure,
in the case of Lindenmayer-Systems based models or inlyirget the fitting of the
second-order statistics, in the case of Markovian modeladdition, we also address
and evaluate the importance of modeling packet size in Ificiran issue that is
frequently misregarded. Thus, we evaluate in each one cfalexted classes, models
that are intended to describe only the packet arrival psoard models that are intended
to describe both the packet arrival and packet size prosesse

The Markovian models considered in this study are a disctiete Markov
modulated Poisson process (dMMPP), intended to describetba packet arrival
process, and a discrete time batch Markovian arrival pgo@BMAP), that is intended
to describe both the packet arrival and packet size prose3se use of Markovian
models benefits from the existence of several mathematiold for assessing queuing
behavior, such as average waiting time and packet loss Begides, using appropriate
parameters inference procedures it is possible to incatpan their structure the
multi-time-scale characteristics of the traffic while Istitaintaining their analytical
tractability.

The second class of traffic models considered in this papeased on stochastic
Lindenmayer-Systems (hereafter referred to as L-System§ystems are string
rewriting techniques which were introduced by biologistlAndenmayer in 1968 as
a method to model plant growth [1]. They are characterizedrbglphabet, an axiom
and a set of production rules, and can be used to generatal$r§?]. The alphabet is
a set of symbols; the production rules define transformatigisymbols into strings of
symbols; starting from an initial string (the axiom), an ¥sEm constructs iteratively
sequences of symbols through replacement of each symbohdycdrresponding
string according to the production rules. If the productiates are random, the L-
System is called a stochastic L-System. Stochastic L-8ystre a method to construct
recursively random sequences with multi-time-scale bienakour different variants



of L-Systems based traffic models will be proposed, one dedrto describe only the
packet arrival process and three destined to describe betbacket arrival and packet
size processes.

The performance of the different traffic models is evaludtgdomparing the first
and second order statistics and the queuing behavior (irstef packet loss and average
waiting time) of (i) original measured data traces and (aces generated via discrete
event simulation of the traffic models whose parametersdeered from the measured
data.

The results obtained show that both the packet arrival ac#gbtasize processes
need to be modeled in order to obtain an accurate and coniiiietg of the measured
data. Moreover, despite the differences in the way Markodad L-System models
incorporate multiple time scales, both can achieve verydgmerformance. This can
be attributed, on one hand, to the detail that is used in ttingfiprocedures of the
Markovian models and to the technique used in the matchinfpefautocovariance
function and, on the other hand, to the fact that the construprocess of the L-System
models is inherently performed on a time-scale basis.

The paper is organized as follows. Section 2 presents thfictrmodels and
inference procedures considered in this paper; in Sectine 8liscuss the results of
applying the proposed models and fitting procedures to medsund synthesized traffic
traces. Finally, Section 4 presents the main conclusions.

2 Traffic models

2.1 Discrete-time Markovian models

The first Markovian model considered is a discrete-time Marklodulated Poisson
Process (dA(MMPP) with a parameter fitting procedure thatsléadiccurate estimates
of queuing behavior for network traffic exhibiting LRD beliav It addresses only the
characterization of the packet arrival process. The maalthe respective parameter
inference procedure were proposed in [3]. The inferencequtare matches both the
autocovariance and marginal distribution of the countimgcpss. A major feature
of the model is that the number of states is not fixed a prian, dan be adapted
to the particular trace being modeled. In this way, the pilace allows establishing
a compromise between the accuracy of the fitting and the numbearameters,
while maintaining a low computational complexity. The MMRPconstructed as a
superposition of. 2-MMPPs and one M-MMPP. The 2-MMPPs are designed to match
the autocovariance and the M-MMPP to match the marginailigion. Each 2-MMPP
models a specific time scale of the data. Here, the specifiavimhof each time
scale is incorporated through the fitting of the second-ostiistics of the data. The
procedure starts by approximating the autocovariance bsighted sum of exponential
functions that models the autocovariance of the 2-MMPPes.dllltocovariance tail can
be adjusted to capture the long-range dependence chastcsenf the traffic, up to the
time-scales of interest to the system under study. The tiegtis the inference of the
M-dMMPP probability function and the stationary probatieé of the L 2-dMMPPs
from the empirical probability function of the original datrace, within the constraints



imposed by the autocovariance matching. These parameterbec obtained through
a constrained minimization process. At this point, all paegers of the 2-dMMPPs
have been determined. The M-dMMPP probability functionhisnt approximated by
a weighted sum of Poisson probability functions, and the lmemof states (M) is
determined as the number of Poisson functions necessaeyftrm the approximation.
The mean and weight of the Poisson probability functionsreine, respectively, the
states arrival rates and the transition probabilities efNidMMPP. The final MMPP
with M2~ states is obtained by superposing th&-MMPPs and the M-MMPP (figure
1).

The second Markovian model considered is a discrete-tinhBbaarkovian arrival
process (ABMAP), that is able to characterize both the paakival and packet size
processes of IP traffic. This model was proposed in [4]. IndB®AP model, packet
arrivals occur according to a dMMPP and each arrival is atarized by a packet
size with a general distribution that may depend on the pbadee dMMPP. Figure 2
illustrates an example of a dBMAP with four states. The fiffimocedure is designed in
order to provide a close match of both the autocovariancetentharginal distribution
of the packet arrival process, using the dMMPP previouskcdbed; then, a packet
size distribution is individually inferred for each statetoe dAMMPP in a such a way
that gives the best fit to the size distribution of all packbtt arrived during the time
slots associated to that state. As in the case of the dMMERUmber of states of the
fitted dBMAP is not fixed a priori; it is determined as part oé timference procedure
itself. The packet size characterization is independeyetjormed for each state of the
inferred M2Z-dMMPP. This task involves two steps: (i) association ofretame slot to
one of the MX-dMMPP states and (i) inference of a packet size distrisufor each
state of the 0“-dMMPP. In the first step, we scan all time slots of the emplritata.
A time slot is randomly assigned to a state, according to aghility vector that is
calculated from the number of packets that arrived in theiqadar time slot and from
the inferred dAMMPP parameters. The inference of the padketdistribution in each
state resorts to histograms. The construction of eachdrmto is only based on the
packets that arrived during the time slots previously assed with the corresponding
state of the dAMMPP.

2.2 L-System models

The application of stochastic L-Systems in the traffic mivdelcontext was first
introduced by the authors in [5]. The model proposed in tharkvonly addressed the
characterization of the packet arrival process. In this ehaghich will be called here
Single L-System, iterations are interpreted as time scHiessymbols are arrival rates
that are associated with time intervals and the producti@sigenerate two arrival rates
from a single one. Starting at the coarsest time scale withggesinterval and a single
arrival rate, the construction process iteratively getesréwo arrival rates from a single
one, according to the stochastic production rules andeagdme time, halves the width
of the time intervals associated with the new arrival rat#s.allow the grouping of
time scales in time scale ranges and the definition of diffesets of production rules
for each time scale range. The traffic process construdidlustrated in Figure 3, for
the simple case of considering only four scalgs=( 0,1, 2, 3) grouped in two scale



gKs

5 @)
oL

+

L 2-dMMPPs

Fig. 1. Superposition of one
M-dMMPP and L 2-dMMPP
processes.

Fig. 2. Example of a 4-dBMAP.

ranges{ = 1,2). The inference procedure can then be divided in three nsifqos:
(i) determination of the L-System alphabet and axiom, @Britification of the time
scale ranges and (iii) inference of the L-System produatides. The alphabet of the
L-System will consist inl. equidistant arrival rate values, ranging from the minimum
to the maximum values present in data. The axiom is infereetha average arrival
rate of the empirical data, rounded to the closest alphdbetemt. The identification
of time scale ranges is based on wavelet scaling analysisisé/éhe method described
in [6], which resorts to the (second-order) logscale diagra (second-order) logscale
diagram is a plot of the energies against scales, togetltleicanfidence intervals about
the energies, where these energies are a function of thelatvaliscrete transform
coefficients at a specific scale. The time scale ranges omesto the set of time
scales for which, within the limits of the confidence intdsyghe energy values fall on
a straight line, i.e., the scaling behavior is linear in adtistale range. The last step
is the inference of the L-System production rules. Firstadarounded to the closest
alphabet element in order to define the data sequence fortieaelscale. Finally, the
production rules probabilities can be directly inferreahfrdata inspection, specifically
from the number of times that a particular pair of arrivabsatvas originated from a
particular arrival rate located at the upper timescale.

Three subsequent extensions addressed the characterirditiboth the packet
arrival and packet size processes. The first extensionsponels to a model with two
independent L-Systems, one for the packet arrival and therdbr the packet size
process, called Double L-System model [7]. Due to the inddpace of the two L-
Systems, this model is not able to capture the correlatiensden packet arrivals and
sizes, although it captures multifractal behavior on bbthpgacket arrival and packet
sizes processes. The second extension is based on a sidjiednisional L-System
and is called Joint L-System [8]. In this model, the alphadlements are pairs of
arrival rates and mean packet sizes and the production gelesrate two pairs, each
one consisting of an arrival rate and a mean packet size, drsimgle pair. Opposite to
the previous model, this one is able to capture correlatimiaeen arrivals and sizes.
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Fig.4. Construction of a Joint L-System
based traffic model.

Trace namgCapture period Trace size Mean rate Mean pkt size
(pkts)  (byte/s) (bytes)

pOct Bellcore trace 1 million 362750 568

UA 12.41pm to 14.27pm, July"2001 7 millions 654780 600

Table 1. Main characteristics of measured traces.

The traffic process construction is illustrated in Figurerdge again for the simple case
of considering only four scaleg & 0, 1, 2, 3) grouped in two scale ranges, (= 1, 2).
One potential disadvantage of this model is that it may meqgailarge number of
parameters. The third extension, which was proposed in8% devised in order to
allow a lower number of parameters and also to provide a metaldd modeling of
the packet size. In this case, only the packet arrival poéesnodeled through an
L-System and the characterization of the packet size isopedd by associating, at
the finner time scale, a probability mass function (PMF) afkes sizes to each packet
arrival rate. In this way, the model is able to capture catiehs between packet arrivals
and packet sizes, and multifractal behavior on packetasrflbbut not on packet sizes).
Note that in this extension the packet sizes are charaetkizlividually, whereas in the
previous ones only the mean packet sizes were modeled. Tuslis called L-System
with PMFs.

3  Numerical results

We have applied our fitting procedures to two traces of IHittafi) the well known
pOct Bellcore trace and (ii) one trace measured at the Unived§iyveiro (UA). The
UA trace is representative of Internet access traffic predwdthin a University campus
environment. University of Aveiro is connected to the Intrthrough a 10 Mb/s ATM
link and the measurements were carried out in a 100 Mb/s B#¢héink connecting
the border router to the firewall, which only transports tn&t access traffic. The main
characteristics of the used traces are summarized in Tableelparameter estimation
took, in all cases, less than 2 minutes, using a MATLAB impatation running in
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a 1.2 GHz AMD Athlon PC, with 1.5 Gbytes of RAM. This shows ttal fitting
procedures are computationally very efficient.

The suitability of the traffic models and the accuracy of thenfi procedures
was assessed using several criteria. For the original datag and for traces syn-
thesized according to the inferred models, we compare Ihattptobability mass and
autocovariance functions of the packet arrival process.tf® same two traces, we
compare queuing behavior as assessed by packet loss rdt@varage waiting time
estimated through trace-driven simulation. In the casehef $ingle L-System and
dMMPP models, we have considered a fixed packet length equhbtmean packet
size of the original data.

Figure 5 shows that, for the case of th@ct trace, all models were able to match
relatively well the PMF of the original data. This agreemisntot so good in the case
of the autocovariance function (Figure 6). The dMMPP was &bliclosely match the
autocovariance function and the Single L-System has aldorpeed quite well. Similar
results were obtained for the other trace.

To assess queuing behavior, the buffer size was varied féokbgtes to 70 Mbytes.
The service rate was 518 Kbytes/s for fi@ct trace and for an utilization ratig) of
0.7, 403 Khytes/s in order to have an utilization ratio of fb®the same trace, and
666 Kbytes/s for the UA trace (corresponding to an utilimatratio of 0.98). Figures
7,9, 11, 13, 15 and 17 show that the Single L-System and the ERlvhodel are
able to reproduce the queuing behavior of the empiricalitrafhen the packet size is
considered as a fixed value, but both models failed to rep®the queuing behavior
of the traffic when the variable packet size of the IP trafficossidered. In Figures 8,
10, 12, 14, 16 and 18 it is possible to observe the queuindtsesarresponding to the
traffic models that include the ability to reproduce thevalrand packet size processes.
The fitting of the queuing behavior was very good for all cdeséd models. From
these results, we first conclude that it is important to aftar&ze both the packet arrival
and packet size processes. In general, the three L-Systsed braffic models and the
BMAP model that incorporate these characteristics achyeal fitting performance.
The best one, which was able to track almost perfectly thaiggédehavior of all traces,
is the Joint L-System. This can be attributed to its abilftgapturing correlations in and
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between the packet arrival and packet size processes, hasvaultifractal behavior
on the byte arrival process. The Double L-System is someintgzired by its inability
to capture the correlation between arrivals and sizes andl{Bystem with PMFs by
its inability to capture correlations and multifractal laglor on the packet size process.
However, the L-System with PMFs has a lower number of parara@ind therefore can
be considered a good alternative.

4 Conclusion

Time scales are an important ingredient for the modelingodfy’s Internet traffic.

In this paper, we addressed the modeling of network trafficgua multi-time-scale
framework by evaluating and comparing two classes of traffadels: Markovian
models and models based on Lindenmayer-Systems. We alsgsadd the importance
of modeling the packet size for IP traffic, an issue that igdently misregarded. Our
results indicate that both the packet arrival and packetmiacesses need to be modeled
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for an accurate characterization of IP traffic and that, idespe differences in the way
Markovian and L-System models incorporate multiple timedes in their mathematical
frameworks, both can achieve very good performance.
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