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Abstract. Traffic engineering of IP networks requires the characterization and
modeling of network traffic on multiple time scales due to the existence of several
statistical properties that are invariant across a range of time scales, such as self-
similarity, LRD and multifractality. These properties have a significant impact on
network performance and, therefore, traffic models must be able to incorporate
them in their mathematical structure and parameter inference procedures.

In this work, we address the modeling of network traffic using a multi-time-
scale framework. We evaluate the performance of two classes of traffic models
(Markovian and Lindenmayer-Systems based traffic models) that incorporate the
notion of time scale using different approaches: directly in the model structure, in
the case of the Lindenmayer-Systems based models, or indirectly through a fitting
of the second-order statistics, in the case of the Markovian models. In addition,
we address the importance of modeling packet size for IP traffic, an issue that
is frequently misregarded. Thus, in each class we evaluate models that are
intended to describe only the packet arrival process and models that are intended
to describe both the packet arrival and packet size processes: specifically, we
consider a Markov modulated Poisson process and a batch Markovian arrival
process as examples of Markovian models and a set of four Lindenmayer-Systems
based models as examples of non Markovian models that are able to perform
a multi-time-scale modeling of network traffic. All models are evaluated by
comparing the density function, the autocovariance function, the loss ratioand
the average waiting time in queue corresponding to measured traces and totraces
synthesized from the fitted models. We resort to the well known BellcorepOct
traffic trace and to a trace measured at the University of Aveiro.

The results obtained show that (i) both the packet arrival and packet size
processes need to be modeled for an accurate characterization of IP traffic and (ii)
despite the differences in the ways Markovian and L-System models incorporate
multiple time scales in their mathematical framework, both can achieve very good
performance.
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1 Introduction

In the Internet, the complexity associated to mechanisms for traffic generation and
control, as well as the diversity of applications and services, have introduced several
peculiar behaviors in traffic, such as self-similarity, long-range dependence and mul-
tifractality, which have a significant impact on network performance. These behaviors
have in common a property of statistical invariance across arange of time scales. Thus,
a suitable traffic model must be able to capture statistical behavior on multiple time
scales.

In order to completely characterize a traffic model, we have to specify the model
structure and its parameter inference procedure. Multi-time-scale characteristics can
be incorporated in the parameter fitting procedure or can be embedded in the model
structure. Moreover, accurate modeling of IP traffic requires the characterization of
both the packet arrival and packet size processes. Assumingthat packet size is fixed
and equal to the average packet size of the measured data trace may lead to large errors
when packets have variable size.

In this paper, we address the modeling of network traffic under a multi-time-scale
framework. Our main goal is to evaluate and compare the performance of two classes of
traffic models (based on Markovian and Lindenmayer-Systemsmodels) that incorporate
the notion of time scale using different approaches: directly in the model structure,
in the case of Lindenmayer-Systems based models or indirectly via the fitting of the
second-order statistics, in the case of Markovian models. In addition, we also address
and evaluate the importance of modeling packet size in IP traffic, an issue that is
frequently misregarded. Thus, we evaluate in each one of theselected classes, models
that are intended to describe only the packet arrival process and models that are intended
to describe both the packet arrival and packet size processes.

The Markovian models considered in this study are a discretetime Markov
modulated Poisson process (dMMPP), intended to describe only the packet arrival
process, and a discrete time batch Markovian arrival process (dBMAP), that is intended
to describe both the packet arrival and packet size processes. The use of Markovian
models benefits from the existence of several mathematical tools for assessing queuing
behavior, such as average waiting time and packet loss ratio. Besides, using appropriate
parameters inference procedures it is possible to incorporate in their structure the
multi-time-scale characteristics of the traffic while still maintaining their analytical
tractability.

The second class of traffic models considered in this paper isbased on stochastic
Lindenmayer-Systems (hereafter referred to as L-Systems). L-Systems are string
rewriting techniques which were introduced by biologist A.Lindenmayer in 1968 as
a method to model plant growth [1]. They are characterized byan alphabet, an axiom
and a set of production rules, and can be used to generate fractals [2]. The alphabet is
a set of symbols; the production rules define transformations of symbols into strings of
symbols; starting from an initial string (the axiom), an L-System constructs iteratively
sequences of symbols through replacement of each symbol by the corresponding
string according to the production rules. If the productionrules are random, the L-
System is called a stochastic L-System. Stochastic L-Systems are a method to construct
recursively random sequences with multi-time-scale behavior. Four different variants



of L-Systems based traffic models will be proposed, one intended to describe only the
packet arrival process and three destined to describe both the packet arrival and packet
size processes.

The performance of the different traffic models is evaluatedby comparing the first
and second order statistics and the queuing behavior (in terms of packet loss and average
waiting time) of (i) original measured data traces and (ii) traces generated via discrete
event simulation of the traffic models whose parameters are inferred from the measured
data.

The results obtained show that both the packet arrival and packet size processes
need to be modeled in order to obtain an accurate and completefitting of the measured
data. Moreover, despite the differences in the way Markovian and L-System models
incorporate multiple time scales, both can achieve very good performance. This can
be attributed, on one hand, to the detail that is used in the fitting procedures of the
Markovian models and to the technique used in the matching ofthe autocovariance
function and, on the other hand, to the fact that the construction process of the L-System
models is inherently performed on a time-scale basis.

The paper is organized as follows. Section 2 presents the traffic models and
inference procedures considered in this paper; in Section 3we discuss the results of
applying the proposed models and fitting procedures to measured and synthesized traffic
traces. Finally, Section 4 presents the main conclusions.

2 Traffic models

2.1 Discrete-time Markovian models

The first Markovian model considered is a discrete-time Markov Modulated Poisson
Process (dMMPP) with a parameter fitting procedure that leads to accurate estimates
of queuing behavior for network traffic exhibiting LRD behavior. It addresses only the
characterization of the packet arrival process. The model and the respective parameter
inference procedure were proposed in [3]. The inference procedure matches both the
autocovariance and marginal distribution of the counting process. A major feature
of the model is that the number of states is not fixed a priori, but can be adapted
to the particular trace being modeled. In this way, the procedure allows establishing
a compromise between the accuracy of the fitting and the number of parameters,
while maintaining a low computational complexity. The MMPPis constructed as a
superposition ofL 2-MMPPs and one M-MMPP. The 2-MMPPs are designed to match
the autocovariance and the M-MMPP to match the marginal distribution. Each 2-MMPP
models a specific time scale of the data. Here, the specific behavior of each time
scale is incorporated through the fitting of the second-order statistics of the data. The
procedure starts by approximating the autocovariance by a weighted sum of exponential
functions that models the autocovariance of the 2-MMPPs. The autocovariance tail can
be adjusted to capture the long-range dependence characteristics of the traffic, up to the
time-scales of interest to the system under study. The next step is the inference of the
M-dMMPP probability function and the stationary probabilities of theL 2-dMMPPs
from the empirical probability function of the original data trace, within the constraints



imposed by the autocovariance matching. These parameters can be obtained through
a constrained minimization process. At this point, all parameters of the 2-dMMPPs
have been determined. The M-dMMPP probability function is then approximated by
a weighted sum of Poisson probability functions, and the number of states (M) is
determined as the number of Poisson functions necessary to perform the approximation.
The mean and weight of the Poisson probability functions determine, respectively, the
states arrival rates and the transition probabilities of the M-dMMPP. The final MMPP
with M2

L states is obtained by superposing theL 2-MMPPs and the M-MMPP (figure
1).

The second Markovian model considered is a discrete-time batch Markovian arrival
process (dBMAP), that is able to characterize both the packet arrival and packet size
processes of IP traffic. This model was proposed in [4]. In thedBMAP model, packet
arrivals occur according to a dMMPP and each arrival is characterized by a packet
size with a general distribution that may depend on the phaseof the dMMPP. Figure 2
illustrates an example of a dBMAP with four states. The fitting procedure is designed in
order to provide a close match of both the autocovariance andthe marginal distribution
of the packet arrival process, using the dMMPP previously described; then, a packet
size distribution is individually inferred for each state of the dMMPP in a such a way
that gives the best fit to the size distribution of all packetsthat arrived during the time
slots associated to that state. As in the case of the dMMPP, the number of states of the
fitted dBMAP is not fixed a priori; it is determined as part of the inference procedure
itself. The packet size characterization is independentlyperformed for each state of the
inferred M2

L-dMMPP. This task involves two steps: (i) association of each time slot to
one of the M2

L-dMMPP states and (ii) inference of a packet size distribution for each
state of the M2L-dMMPP. In the first step, we scan all time slots of the empirical data.
A time slot is randomly assigned to a state, according to a probability vector that is
calculated from the number of packets that arrived in that particular time slot and from
the inferred dMMPP parameters. The inference of the packet size distribution in each
state resorts to histograms. The construction of each histogram is only based on the
packets that arrived during the time slots previously associated with the corresponding
state of the dMMPP.

2.2 L-System models

The application of stochastic L-Systems in the traffic modeling context was first
introduced by the authors in [5]. The model proposed in that work only addressed the
characterization of the packet arrival process. In this model, which will be called here
Single L-System, iterations are interpreted as time scales, the symbols are arrival rates
that are associated with time intervals and the production rules generate two arrival rates
from a single one. Starting at the coarsest time scale with a single interval and a single
arrival rate, the construction process iteratively generates two arrival rates from a single
one, according to the stochastic production rules and, at the same time, halves the width
of the time intervals associated with the new arrival rates.We allow the grouping of
time scales in time scale ranges and the definition of different sets of production rules
for each time scale range. The traffic process construction is illustrated in Figure 3, for
the simple case of considering only four scales (j = 0, 1, 2, 3) grouped in two scale
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Fig. 1. Superposition of one
M-dMMPP and L 2-dMMPP
processes.
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Fig. 2. Example of a 4-dBMAP.

ranges (r = 1, 2). The inference procedure can then be divided in three majorsteps:
(i) determination of the L-System alphabet and axiom, (ii) identification of the time
scale ranges and (iii) inference of the L-System productionrules. The alphabet of the
L-System will consist inL equidistant arrival rate values, ranging from the minimum
to the maximum values present in data. The axiom is inferred as the average arrival
rate of the empirical data, rounded to the closest alphabet element. The identification
of time scale ranges is based on wavelet scaling analysis. Weuse the method described
in [6], which resorts to the (second-order) logscale diagram. A (second-order) logscale
diagram is a plot of the energies against scales, together with confidence intervals about
the energies, where these energies are a function of the wavelet discrete transform
coefficients at a specific scale. The time scale ranges correspond to the set of time
scales for which, within the limits of the confidence intervals, the energy values fall on
a straight line, i.e., the scaling behavior is linear in a time scale range. The last step
is the inference of the L-System production rules. First, data is rounded to the closest
alphabet element in order to define the data sequence for eachtime scale. Finally, the
production rules probabilities can be directly inferred from data inspection, specifically
from the number of times that a particular pair of arrival rates was originated from a
particular arrival rate located at the upper timescale.

Three subsequent extensions addressed the characterization of both the packet
arrival and packet size processes. The first extension corresponds to a model with two
independent L-Systems, one for the packet arrival and the other for the packet size
process, called Double L-System model [7]. Due to the independence of the two L-
Systems, this model is not able to capture the correlations between packet arrivals and
sizes, although it captures multifractal behavior on both the packet arrival and packet
sizes processes. The second extension is based on a single bi-dimensional L-System
and is called Joint L-System [8]. In this model, the alphabetelements are pairs of
arrival rates and mean packet sizes and the production rulesgenerate two pairs, each
one consisting of an arrival rate and a mean packet size, froma single pair. Opposite to
the previous model, this one is able to capture correlationsbetween arrivals and sizes.
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Fig. 4. Construction of a Joint L-System
based traffic model.

Trace nameCapture period Trace size Mean rate Mean pkt size
(pkts) (byte/s) (bytes)

pOct Bellcore trace 1 million 362750 568
UA 12.41pm to 14.27pm, July6th

2001 7 millions 654780 600

Table 1.Main characteristics of measured traces.

The traffic process construction is illustrated in Figure 4,once again for the simple case
of considering only four scales (j = 0, 1, 2, 3) grouped in two scale ranges (rb = 1, 2).
One potential disadvantage of this model is that it may require a large number of
parameters. The third extension, which was proposed in [9],was devised in order to
allow a lower number of parameters and also to provide a more detailed modeling of
the packet size. In this case, only the packet arrival process is modeled through an
L-System and the characterization of the packet size is performed by associating, at
the finner time scale, a probability mass function (PMF) of packet sizes to each packet
arrival rate. In this way, the model is able to capture correlations between packet arrivals
and packet sizes, and multifractal behavior on packet arrivals (but not on packet sizes).
Note that in this extension the packet sizes are characterized individually, whereas in the
previous ones only the mean packet sizes were modeled. This model is called L-System
with PMFs.

3 Numerical results

We have applied our fitting procedures to two traces of IP traffic: (i) the well known
pOct Bellcore trace and (ii) one trace measured at the Universityof Aveiro (UA). The
UA trace is representative of Internet access traffic produced within a University campus
environment. University of Aveiro is connected to the Internet through a 10 Mb/s ATM
link and the measurements were carried out in a 100 Mb/s Ethernet link connecting
the border router to the firewall, which only transports Internet access traffic. The main
characteristics of the used traces are summarized in Table 1. The parameter estimation
took, in all cases, less than 2 minutes, using a MATLAB implementation running in



Fig. 5.Density functions approximation,pOct Fig. 6. Autocovariance approximation,pOct

a 1.2 GHz AMD Athlon PC, with 1.5 Gbytes of RAM. This shows thatall fitting
procedures are computationally very efficient.

The suitability of the traffic models and the accuracy of the fitting procedures
was assessed using several criteria. For the original data traces and for traces syn-
thesized according to the inferred models, we compare both the probability mass and
autocovariance functions of the packet arrival process. For the same two traces, we
compare queuing behavior as assessed by packet loss ratio and average waiting time
estimated through trace-driven simulation. In the case of the Single L-System and
dMMPP models, we have considered a fixed packet length equal to the mean packet
size of the original data.

Figure 5 shows that, for the case of thepOct trace, all models were able to match
relatively well the PMF of the original data. This agreementis not so good in the case
of the autocovariance function (Figure 6). The dMMPP was able to closely match the
autocovariance function and the Single L-System has also performed quite well. Similar
results were obtained for the other trace.

To assess queuing behavior, the buffer size was varied from 10 Kbytes to 70 Mbytes.
The service rate was 518 Kbytes/s for thepOct trace and for an utilization ratio (ρ) of
0.7, 403 Kbytes/s in order to have an utilization ratio of 0.9for the same trace, and
666 Kbytes/s for the UA trace (corresponding to an utilization ratio of 0.98). Figures
7, 9, 11, 13, 15 and 17 show that the Single L-System and the dMMPP model are
able to reproduce the queuing behavior of the empirical traffic when the packet size is
considered as a fixed value, but both models failed to reproduce the queuing behavior
of the traffic when the variable packet size of the IP traffic isconsidered. In Figures 8,
10, 12, 14, 16 and 18 it is possible to observe the queuing results corresponding to the
traffic models that include the ability to reproduce the arrival and packet size processes.
The fitting of the queuing behavior was very good for all considered models. From
these results, we first conclude that it is important to characterize both the packet arrival
and packet size processes. In general, the three L-System based traffic models and the
BMAP model that incorporate these characteristics achievegood fitting performance.
The best one, which was able to track almost perfectly the queuing behavior of all traces,
is the Joint L-System. This can be attributed to its ability of capturing correlations in and



Fig. 7. Packet loss ratio, tracepOct ρ = 0.7

(without packet size modeling)
Fig. 8. Packet loss ratio, tracepOct ρ = 0.7

(with packet size modeling)
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Fig. 9. Average waiting time, tracepOct ρ =

0.7 (without packet size modeling)
Fig. 10.Average waiting time, tracepOct ρ =

0.7 (with packet size modeling)

between the packet arrival and packet size processes, as well as multifractal behavior
on the byte arrival process. The Double L-System is somewhatimpaired by its inability
to capture the correlation between arrivals and sizes and the L-System with PMFs by
its inability to capture correlations and multifractal behavior on the packet size process.
However, the L-System with PMFs has a lower number of parameters and therefore can
be considered a good alternative.

4 Conclusion

Time scales are an important ingredient for the modeling of today’s Internet traffic.
In this paper, we addressed the modeling of network traffic using a multi-time-scale
framework by evaluating and comparing two classes of trafficmodels: Markovian
models and models based on Lindenmayer-Systems. We also addressed the importance
of modeling the packet size for IP traffic, an issue that is frequently misregarded. Our
results indicate that both the packet arrival and packet size processes need to be modeled



Fig. 11.Packet loss ratio, tracepOct ρ = 0.9

(without packet size modeling)
Fig. 12.Packet loss ratio, tracepOct ρ = 0.9

(with packet size modeling)
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Fig. 13.Average waiting time, tracepOct ρ =

0.9 (without packet size modeling)
Fig. 14.Average waiting time, tracepOct ρ =

0.9 (with packet size modeling)

for an accurate characterization of IP traffic and that, despite the differences in the way
Markovian and L-System models incorporate multiple time scales in their mathematical
frameworks, both can achieve very good performance.
Acknowledgements: This research was supported in part by Fundação para a Cîencia
e a Tecnologia, the project POSI/42069/CPS/2001, and the grant BD/19781/99.
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