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Summary

Cell loss is an important measure of Quality of
Service (QoS) in ATM networks. Cell loss
performance of ATM elements handling bursty
sources must be evaluated in order to provide
guaranteed QoS to users and to dimension network
resources correctly.

In this paper, we make a comparative study of
two fitting algorithms for 2-MMPP ATM traffic
models, both based on cell interarrival times: one
fits the cumulative distribution and auto-
covariance functions and the other fits the first
three moments and auto-covariance function. The
2-MMPP is then evaluated as an approximation to
3-MMPP, 5-MMPP, IPP, IDP, Hyper-Exponential
On-Off and Self-Similar traffic sources. The
usefulness of both fitting procedures for cell loss
prediction is evaluated and compared. The
proposed algorithms can be used in the
characterisation of ATM traffic streams and in
connection admission control procedures.

1. Introduction

Efficient operation of ATM networks and
provision of guaranteed Quality of Service (QoS)
for many services to be supported in such
networks will require proper modelling and control
of ATM traffic. Cell loss performance of ATM
elements, which is one of the fundamental
measures of QoS, must be evaluated in order to
provide guaranteed performance levels to users
and to dimension network elements correctly.

On-Off models have been commonly used for
representing bursty sources. Particularly, the IPP
model has been found to adequately represent the
behaviour of voice sources and it has been
proposed as a model for other traffic types,
including video, data and multimedia traffic. The
MMPP model, with a variable number of states, is
a non-renewal model that has also been widely
used for modelling ATM traffic. However,
findings in a number of packet-based network
scenarios suggest that traffic in such networks
presents a certain degree of self-similarity.

The proliferation of different traffic models and
their application in various (and sometimes quite
analogous) scenarios have motivated us to study
the conditions of applicability for different traffic

models (and their associated estimation
procedures) to certain traffic  scenarios.
Specifically, here we make an exhaustive study of
the 2-MMPP process and two of its associated
fitting procedures, analysing their suitability in
approximating various types of arriving flows. In
particular, we have considered 3-MMPP, 5-
MMPP, IPP, IDP, On-Off sources with hyper-
exponential On and Off period distributions, which
are more general than exponential On-Off sources
but are still quite tractable, and Self-similar traffic
models.

The rest of the paper is structured as follows: in
section 2, we briefly summarise various commonly
used point process superposition approximations
based on the 2-MMPP process; in section 3, an
outline of the methodology followed for this study
is provided and in section 4 the main results are
presented. Finally, in section 5, we will draw some
conclusions and foresee the most relevant future
tasks.

2. 2-MMPP fitting procedures

In order to characterise the input stream at an
ATM multiplexer, two main approaches were
suggested in the literature: point process and fluid
flow approximations. We will focus on non-
renewal point process approximations based on the
MMPP process, since such approximations have
been shown to capture both the cell scale and burst
scale characteristics of traffic [2]. A number of
approaches have been proposed in the literature in
which the superimposed stream is modelled by a
2-MMPP. These approaches differ in the choice of
the traffic characteristics used to match the 2-
MMPP parameters and can be divided in two
groups: methods based on cell counting statistics
(I2], [3] and [4]) and methods based on inter-
arrival time statistics ([1], [5] and [6]).

Assuming interval-stationary 2-MMPP
processes, where X; represents the interarrival time
between the i™ and (i+1)" cells, the distribution of
the interarrival time X; is a second order
hyperexponential distribution (Hy)  with
complementary CDF:

F(x)=ce™ +{-qk™" 0<gq<t (1)
and density function given by

f(x)=que™ +@-qu,e™*, 0<gq<l. (2)



The three parameters of the hyperexponential
distribution, u;, u, and g, can be related with the 2-
MMPP parameters (the state transition rates,
(r,,r,), and the Poisson arrival rates in each state

(A1,4,)) by:
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covariance function, C[k], k =1, is given by ([6]):
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We can see from equation 6 that when one of
the cell arrival rates is zero, the correlation is null.
From equation 5, we see that the higher the
difference between the state arrival rates the higher
is A and consequently the correlation value.

The algorithm presented in [1] (called the
moments method), estimates the second-order
hyper-exponential parameters uy, Uy, q by fitting
the empirical and theoretical first three moments of
the interarrival time process and estimates the
parameter o by fitting the empirical and theoretical
auto-covariance functions.

In the fitting procedure proposed in [6], the
following characterising statistics of the arrival
stream are matched to the 2-MMPP parameters: (i)
the complementary distribution function of the
inter-arrival times; and (ii) the covariance function
of the inter-arrival times. The complementary
distribution function of the inter-arrival times,
F.(x), is characterised based on three quantities
measured from experimental data: the mean
interarrival time, the initial slope of F,(x) and the
asymptotic slope of F, (x).

In [1], a variant of this method (designated
there by cdf method) was implemented, fitting the
empirical and theoretical complementary CDFs
and the empirical and theoretical auto-covariance
functions using the NonlinearFit function of the
MATHEMATICA package. Here, the complementary
distribution function of the inter-arrival times,
F.(x), is characterised in a one-step procedure,

using the above mentioned non-linear fitting
scheme.

Note that in both estimation procedures, only
the decaying rate of the auto-correlation function,
o, is fitted, so we are not concerned with its
amplitude, A.

Most of the above methods are based on
counting rather than inter-arrival statistics, and one
of the reasons for this lies in the difficulty of
capturing inter-arrival statistics from real traffic
data. The measurement equipment must have high
resolution and huge buffer spaces in order to
capture and store every arriving cell instant.

In order to obtain cell loss in an ATM
multiplexer, the matched 2-MMPP needs to be
applied as the arrival process. The resulting
queueing model is a 2-MMPP/D/1/K queue. There
exists exact and approximate analytical methods
for evaluating cell loss in such queues using the
matrix geometric approach: exact methods [7]
become computationally expensive when dealing
with large buffer sizes (the number of required
operations is O(ks), where k denotes the buffer

size), while approximate methods can reduce the
computational complexity by two orders of
magnitude by using a truncated version of the
matrix generating function [8]. Cell loss can also
be evaluated by simulation.

3. Methodology used

An effective traffic model must reproduce the
first and second order statistics of the original
traffic sample. The distribution function defines
the first order statistics whereas the second order
statistics can be accounted for by the auto-
correlation function. The second order statistics
play an important role in traffic modelling,
because traffic auto-correlation is an important
factor in ATM cell losses due to buffer and
bandwidth limitations.

Our analysis of the 2-MMPP model (and its
associated inference procedures) as representative
of different traffic types includes some of the most
well-known and studied traffic models: the MMPP
process (with different numbers of states), the IPP
(a special case of the 2-MMPP process) and IDP
processes, the second-order Hyper-exponential
(H2) On-Off process (Figure 1) and Self-similar
traffic generated according to methods described
in [9]. The H, On-Off process was included in this
comparative study because the three parameters of
the hyper-exponential distribution give more
freedom in matching the first three moments of the
On or Off period durations for the On-Off sources
than it is possible using exponential distributions.



The suitability of each inference procedure to
describe various traffic flows was tested by
comparing the CLR obtained when driving a
buffer with finite capacity and constant service rate
with (i) traffic streams of three hundred thousand
cells each generated (through simulation) by the
original traffic model and (ii) data generated by the
2-MMPP model inferred (using moments and cdf
fitting procedures) from data of step (i). Here, 10
replicas were generated for each inferred model.
We also compared some statistics of the original
and modelled data, namely: mean, standard
deviation and Hurst parameter.

We tested the 2-MMPP model and its inference
procedures as an approximation to 3-MMPP, 5-
MMPP, IPP, IDP, H, On-Off and Self-similar
(with H=0.8) traffic models. The Hurst parameter
was considered in order to assess the self-similar
behaviour of the generated traffic streams. This
parameter was measured using the methods
described in [10].

4, Results and discussion

A comparison of the main statistics of the
original and modelled traffic is presented in Table
1. For the modelled traffic, the table shows the
mean and 95% confidence intervals corresponding
to 10 replicas.

In order to provide a reference for our
implementations of the fitting procedures, the first
original model considered was the 2-MMPP
process. From Table 1, we see that both estimation
procedures can capture all major statistics of the
original traffic. Regarding the auto-correlation
function, we can see from Figure 2a that the fitting
procedures slightly overestimate the amplitude of
the original traffic auto-correlation function, but
the results are very close to each other and the
decaying behaviour is accurately replicated.
Comparing CLR values (Figure 2b), the agreement
between original and simulated values is still very
good, indicating that these 2-MMPP fitting
procedures can accurately estimate the parameters
of the original 2-MMPP process.

For the 3-MMPP model, we see that both
fitting procedures do not accurately estimate the
main statistics of the original traffic, which are,
however, near the confidence intervals of the
modelled traffic. Comparing the auto-correlation
functions (Figure 3a), we notice that both fitting
methods capture very accurately the original auto-
correlation but they slightly overestimate the CLR
values caused by the original traffic (Figure 3b). It
was verified that both estimated 2-MMPP models
have longer bursts than the original 3-MMPP
model, resulting in higher cell losses in queue.

Comparing directly the behaviour of both fitting
procedures, we see that they behave quite similarly
for this particular model, with a light advantage for
the moments method.

In the attempt to approximate a 5-MMPP by a
2-MMPP model, both fitting procedures perform
in a satisfactory way (Figures 4a and 4b). The
moments and the cdf inference procedures both
overestimate the main statistics of the original
traffic and its CLR values. Nonetheless, the
deviation from the original values is higher for the
moments approach, reaching about 50% for CLR
values. Regarding the auto-correlation function,
both fitting methods capture the mean decaying
tendency of the original function, but they tend to
underestimate its amplitude for higher lags.

From the above analysis, we can conclude that
as the number of states of the original Markov
chain increases, the accuracy of the approximation
by a 2-MMPP process begins to degrade, for both
estimation approaches. However, for a number of
states up to 5, the error of this approximation is not
too penalising. Of course, these conclusions do not
apply to any set of parameters selected for each
model. Anyway, if the differences between (some
of) the arrival rates in each state (for the 3 and 5-
MMPP models) are not too significant, or if the
process does not change state too frequently, the
error of approximating three or five states by only
two states is not too much penalising.

The next process under consideration was the
frequently used IPP model. As known, this On-Off
process possesses no correlation [1] and so, in a
first glance, we can not expect a good
approximation of this model by a 2-MMPP. From
Table 1, we see that the moments and the cdf
methods clearly overestimate the main statistics of
the original traffic. Obviously, the null auto-
correlation of the original trace (for our generator,
the auto-correlation is not null but is still very
small — Figure 5a) is not captured by the
approximating 2-MMPP processes, in spite of the
very small values presented by the process
estimated using the moments method. This fact has
direct implications in the CLR behaviour, and we
see that traffic generated according to the selected
original IPP process generates very small CLR
values, inclusively falling to zero for buffer sizes
larger than 30 cells (Figure 5b). The 2-MMPP
process estimated using the moments method
generates CLR values one order of magnitude
larger than the original process, whereas for the cdf
approach this difference extends itself to three
orders of magnitude.

Regarding the IDP process, our first
observation is that the moments method could not



estimate a 2-MMPP model from IDP traffic. We
tested different sets of IDP parameters and for all
of them it was impossible to estimate a valid
transition rate matrix for the 2-MMPP underlying
Markov chain, that is, a matrix that satisfies the
general format of the 2-MMPP infinitesimal
generator. This is mainly due to the estimated
values of the second and third moments. The cdf
method, however, estimates a 2-MMPP process
from the original trace. The fitting is not very
accurate: the main statistics of the original traffic
are not accurately replicated by the estimated 2-
MMPP process, as well as the CLR behaviour
(Figure 6b). The auto-correlation function
decaying behaviour (Figure 6a), on the other hand,
is captured with acceptable accuracy. The ACF
function of the original IDP process has a certain
periodicity, corresponding to the cell bursts
generated in the On periods. In our simulations,
however, we have chosen an IDP process with
frequent state transitions, causing relatively small
burst lengths.

The On and Off periods of the H, On-Off
traffic model have heavy-tailed distributions.
Although the heavy-tailed property is not a
necessary condition for self-similarity, some
authors suggest that the long range dependency
property exhibited by some real traffic flows is
directly related to this behaviour of the individual
sources. However, it was essentially the fact that
these second-order hyper-exponential distributions
(which are represented by three parameters) allow
more degrees of freedom for matching the first
three moments of the distributions of the On and
Off states that lead us to include this model in our
study.

Based on this knowledge, one can expect an
original auto-correlation function with significant
values at various time scales, and this behaviour
cannot be obviously replicated by any 2-MMPP
model. Looking at the auto-correlation plots
(Figure 7a) we, effectively, see that the original
auto-correlation behaves almost in the same way
regardless of the considered lag values (although
we do not cover many time scales in these plots):
in different time scales, we still find very
significant auto-correlation coefficients, which is
one of the most striking visual characteristics of
heavy-tailed distributions. This disparity in the
correlation behaviours is directly reflected in the
CLR performance exhibited by the arrival traces
(Figure 7b): the original trace causes significant
CLR values, for buffer sizes up to 100 cells, while
the estimated traces cause much smaller and
rapidly decaying CLR values. Comparing directly

both estimation approaches, the results obtained
using the moments method are better.

Considering an original self-similar traffic
model (with Hurst parameter H =0.8), the
accuracy obtained using both fitting procedures is
not very promising: the main statistics of the
original traffic are not accurately estimated and the
auto-correlation function amplitude (Figure 8a) of
the original traffic is clearly underestimated. The
CLR values are clearly underestimated (by more
than two orders of magnitude) by both inference
approaches (Figure 8b). The self-similar generator
used has a low variability, so our results tell us that
these modelling approaches cannot be applied to
self-similar traffic with low rate variation.

5. Conclusions and further work

In this paper, we made a comparative study of
two fitting algorithms for 2-MMPP ATM traffic
models, both based on cell interarrival times: one
that fits the complementary cumulative distribution
and auto-covariance functions and the other that
fits the first three moments and the auto-
covariance function.

The 2-MMPP process and these associated
inference  procedures were evaluated as
approximations to 3-MMPP, 5-MMPP, IPP, IDP,
Hyper-Exponential On/Off and Self-Similar traffic
sources. The comparison of the fitting approaches
and the accuracy of the approximations made were
assessed through cell loss predictions obtained
using the original and modelled traffic streams.

The proposed and studied fitting algorithms can
be used in the characterisation of ATM traffic
streams, in network planning and dimensioning
and in connection admission control procedures.

This work is now being complemented through
a comparative study of other fitting algorithms for
the 2-MMPP ATM traffic model. Only such an
exhaustive task could give us a complete
understanding about the potentials of the 2-MMPP
model and its inference procedures in the
characterisation of multiple ATM traffic types, as
well as the applicability conditions of each fitting
approach.
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Table 1: Statistics of original and modelled (by the moments and
cdf fitting procedures) traffic streams.
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Figure 2a: Auto-correlation function (ACF) for the 2-MMPP
original (O) and modelled traffic (M)

Figure 2b: CLR comparison for the 2-MMPP O and M traffic
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Figure 8b: CLR comparison for the Self-similar O and M
traffic
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