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Abstract

This paper presents and compares a set of traffic models, and associated parameter fitting procedures, based on so-called stochastic

L-Systems, which were introduced by biologist A. Lindenmayer as a method to model plant growth. Starting from an initial symbol, an

L-System generates iteratively sequences of symbols, belonging to an alphabet, through successive application of production rules. In a

traffic modeling context, the symbols are interpreted as packet arrival rates or mean packet sizes, and each iteration is associated to a finest

time scale of the traffic. These models are able to capture the multiscaling and multifractal behavior sometimes observed in Internet traffic.

We describe and compare four traffic models, one characterizing the packet arrival process, and the other three characterizing both the packet

arrival and the packet size processes. The models are tested with several measured traffic traces: the well-known pOct Bellcore, a trace of

aggregate WAN traffic and two traces of specific applications (Kazaa and Operation Flashing Point). We assess the multifractality of these

traces using Linear Multiscale Diagrams. The traffic models are evaluated by comparing, for the measured traffic and for traffic generated

according to the inferred models, the probability mass function, the autocovariance function and the queuing behavior. Our results show that

the L-System based traffic models that characterize both the packet arrival and packet size processes can achieve very good fitting

performance in terms of first- and second-order statistics and queuing behavior.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Traffic modeling has an increasing importance in the

management and dimensioning of telecommunications net-

works. Traffic models are used, for example, in the

dimensioning of links and buffers (while taking into account

statistical multiplexing effects) and in performance analysis

of networks. In the Internet, the complexity associated to the

mechanisms for traffic generation and control, as well as the

diversity of applications and services, have introduced several

peculiar behaviors in the traffic, such as self-similarity, long-

range dependence and multifractality. These behaviors have a

significant impact on the network performance and, therefore,

need to be adequately characterized.
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Accurate modeling of Internet traffic also requires the

characterization of both the packet arrival and the packet size

processes [1]. In particular, this is important for accurate

prediction of the queuing behavior (i.e. the packet loss ratio

or average packet delay suffered on a network node). The

queuing behavior addresses the effect of traffic on network

performance, and is one of the most important criteria to

assess the suitability of traffic models (and associated

parameter fitting procedures). Here, the analysis consists in

comparing the curves of packet loss ratio (or average packet

delay) versus buffer size, obtained with the measured traces

(through trace-driven simulation) and with the inferred traffic

model (using again trace-driven simulation or numerical

computation of the performance measures whenever poss-

ible). When dealing with models that characterize only the

arrival process, it is common practice to assume that

the packet size is fixed and equal to the average packet size

of the measured trace. This may lead to large errors when the

packets have variable size, such as in IP traffic.
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www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom


P. Salvador et al. / Computer Communications 27 (2004) 1799–18111800
Recent analysis of measured Internet WAN traffic has

revealed that multifractal structures, such as random

cascades, can help explaining the scaling behavior typically

associated to networking mechanisms operating on small

time scales (e.g. TCP flow control). A cascade (or multi-

plicative process) is a process that fragments a set into

smaller and smaller components according to a fixed rule,

and at the same time fragments the measure of the

components by another (possibly random) rule. Random

cascades were introduced by Mandelbrot as a physical

model for turbulence [2]. In the traffic modeling context, the

set can be interpreted as a time interval and the measure as

the number of arrivals or number of bytes (in that interval).

The multifractal nature of network traffic was first

noticed by Riedi and Lévy Véhel [3]. Subsequently, various

studies have addressed the characterization and modeling of

multifractal traffic, essentially within the framework of

random cascades [4–11]. Feldmann et al. [4,9] proposed

conservative cascades, which are closely related with

random cascades, as a model for Internet WAN traffic.

They provided plausible physical explanations supporting

the adoption of conservative cascades and developed tools

to analyze the scaling behavior of this type of cascades. Gao

and Rubin considered two extensions of the conservative

cascade model: they introduced a dual cascade model,

where one cascade characterizes packet inter-arrivals and

the other packet sizes [8]; moreover, they considered a

cascade model for the counting process representing the

aggregation of the packet arrival and packet size processes,

i.e. the number of bytes arriving in every time interval [12].

The latter model precludes estimating the packet loss ratio,

since the detail of packet sizes is lost through aggregation.

In this paper, we propose a set of traffic models, and

associated fitting procedures, capable of capturing multi-

fractal behavior. The traffic models are based on stochastic

Lindenmayer-Systems (hereafter referred to as L-Systems).

L-Systems are string rewriting techniques which were

introduced by biologist A. Lindenmayer in 1968 as a

method to model plant growth [13]. They are characterized

by an alphabet, an axiom and a set of production rules, and

can be used to generate fractals [14]. The alphabet is a set of

symbols; the production rules define transformations of

symbols into strings of symbols; starting from an initial

string (the axiom), an L-System constructs iteratively

sequences of symbols through replacement of each symbol

by the corresponding string according to the production

rules. If the production rules are random, the L-System is

called a stochastic L-System. When compared with

conservative cascades, stochastic L-Systems introduce a

dependence on the construction process (due to the

production rules), that has a meaningful physical expla-

nation, and can help understanding the joint impact of

network mechanisms and resource limitations on observed

traffic [15].

The application of stochastic L-Systems in the traffic

modeling context was first introduced by the authors in
Ref. [15]. The model proposed in this first work only

addressed the characterization of the packet arrival process.

In this paper, it will be called the single L-System model.

This model is relevant for traffic with fixed packet size, such

as ATM traffic and IP, traffic of specific applications where

the packet sizes remain approximately constant (e.g. V61P).

Three subsequent extensions addressed the characterization

of both the packet arrival and packet size processes. The first

extension introduced a model with two independent

L-Systems, one for the packet arrival and the other for the

packet size processes, called double L-System model [16].

Due to the independence of the two L-Systems, this model is

not able to capture the correlations between arrivals and

sizes, although it captures multifractal behavior on both

packet arrivals and packet sizes. The second extension was

based on a single bi-dimensional L-System, where the

alphabet elements are pairs of arrival rates and mean packet

sizes, called the joint L-System model [17]. Opposite to the

previous model, this one is able to capture correlations

between arrivals and sizes. One disadvantage, however, is

that it may require a large number of parameters. Also, the

multifractal behavior is only captured in the (aggregate)

byte arrival process. This paper introduces a third extension,

which was devised in order to allow a lower number of

parameters and also to provide a more detailed modeling of

the packet size. In this case, only the packet arrival process

is modeled through an L-System. The characterization of

the packet size is performed by associating, at the finest time

scale, a probability mass function (PMF) (of packet sizes) to

each packet arrival rate [18]. In this way the model is able to

capture correlations between packet arrivals and packet

sizes, and multifractal behavior on packet arrivals (but not

on packet sizes). Note that in this extension the packet sizes

are characterized individually, whereas in the previous ones,

only the mean packet sizes were modeled. This model will

be called the L-System with PMFs.

This paper is organized as follows. In Section 2 we give

the required background on L-Systems. In Sections 3 and 4

we present the traffic models and describe the associated

fitting procedures. In Section 5 we discuss the results of

applying the different procedures to measured traffic traces.

Finally, Section 6 presents the conclusions.
2. L-Systems background

The basic idea behind L-Systems is to define complex

objects by successively replacing parts of a simple object

using a set rules. The L-System is a feedback machine that

operates on strings of symbols. The set of symbols is called

the alphabet. Starting from an initial state (called axiom), an

L-System operates, at each iteration, by applying the set of

production (or rewriting) rules simultaneously to all

symbols of an input string to give an output string. For a

comprehensive introduction to L-Systems see the book by

Peitgen et al. [14].
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Consider a simple example of an organism growing

through cell subdivisions. There are two types of cells

represented by letters A and B. Cell subdivisions are

modeled by replacing these symbols with strings of

symbols: cell A subdivides into two cells represented by

string AB; cell B subdivides into two cells represented by

string AA. The ordering of the symbols is relevant in an

L-System. The organism modeled by this L-System grows

by repeated cell subdivisions. At birth the organism is the

single cell A. After one subdivision the organism has two

cells represented by string AB. After two subdivisions, the

organism has four cells given by string ABAA, and after

three subdivisions the organism has eight cells represented

by string ABAAABAB. Using the formalism of L-Systems

this growth process can be described as:
Alphabet:
 {A,B}
Axiom:
 A
Rules:
 A/AB
B/AA
The production rules can be stochastic. In stochastic

L-Systems, there may be several production rules for one

symbol, and the specific rule is selected according to a

probability distribution. Taking previous example, one

production rule could be to convert A into AB with

probability 0.4 or into BB with probability 0.6 (instead of

converting always A into AB). In this case, after three

iterations several strings are possible, e.g. ABAAABAB,

ABABBBAB, or AAAAABBB. Stochastic L-Systems are a

method to construct recursively random sequences with

multifractal behavior [14].

As another example, consider the following stochastic

L-System:
Alphabet:
 {X1,X2,X3,X4,X5}
Axiom:
 X3
Rule 1:
 X1/X1X1
Rule 2:
 X2/X1X3, with prob. 1/3
X2/X3X1, with prob. 1/3
X2/X2X2, with prob. 1/3
Fig. 1. Example of stochastic L
Rule 3:
-System with
X3/X3X3, with prob. 1/5
X3/X2X4, with prob. 1/5
X3/X4X2, with prob. 1/5
X3/X1X5, with prob. 1/5
X3/X5X1, with prob. 1/5
Rule 4:
 X4/X3X5, with prob. 1/3
X4/X5X3, with prob. 1/3
X4/X4X4, with prob. 1/3
Rule 5:
 X5/X5X5
The alphabet elements of this L-System can be

associated to graphical elements. For example, Xi can

represent a rectangle with an area of i units. The L-System

production rules assure that the average area of the child

rectangles is equal to the area of its parent rectangle. Some

of the possible outcomes of the L-System construction are

represented in Fig. 1.

In order to build a network traffic model, the area of a

rectangle can be interpreted as the amount of traffic (number

of arrivals or number of bytes), observed in a particular time

interval. This is precisely the idea behind the proposed

traffic model, that will be described in Section 3.
3. Traffic models

3.1. Single L-System

We first describe the traffic model based on a single

L-System, that characterizes the packet arrival process. The

single L-System is defined by an alphabet of arrival rates

L Z fl1; l2;.; lLg; li 2R
C
0 ; i Z 1;.; L; (1)

by production rules that randomly generate two arrival rates

from a previous one and by an axiom which is a predefined

initial arrival rate. Without loss of generality, we assume

l1!l2!/!lL.

The packet arrival process is constructed progressively,

governed by an L-System machine, where each iteration

produces a new time scale. Starting with the coarsest time
rectangles.
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scale, where traffic is characterized by a single arrival rate

over a single time interval, each iteration generates a finest

time scale by (i) division of each (parent) time interval in

two new equal length (child) subintervals and

(ii) association of arrival rates to each new subinterval

according to the production rules of the stochastic

L-System. We allow the grouping of time scales in time

scale ranges and the definition of different sets of

production rules for each time scale range. This is

motivated by the fact that each set of production rules

maps into a distinct scaling behavior [19]. Classically,

there will be scaling if the log–log plot of the qth order

energies (usual energy is qZ2) as a function of scale

behaves linearly; if the plot is (globally) non-linear,

different time scale ranges can be detected where linearity

is observed (see, for example, Ref. [7]). The packet arrival

process construction is shown in Fig. 2.

To characterize the packet arrival process we define

XðiÞ
ðj;raÞ

2L as the arrival rate at time interval i of time scale

j and time scale range ra. Let the number of scales be S

and the number of ranges of scales be Ra. For

convenience, we let j decrease from jZSK1 (at the

coarsest time scale) to jZ0 (at the finest time scale).

Also, we let ra decrease from raZRa (the range of

coarsest time scales) to raZ1 (the range of finest time

scales). Thus, the number of time intervals at time scale j,

which we will denote by Nj, is 2SKjK1. Moreover, assuming

a unitary width for the intervals of the finest time scale, jZ0,

the width at scale j will be 2j. To relate time scales and time

scale ranges we define jra
as the coarsest scale j in range ra.

Thus, in Fig. 2, SZ4, RaZ2, j2Z3 and j1Z1.

In order to assure that the average arrival rate is the same

in all time scales, so as to maintain physical meaning, we

will impose the following condition to the production rules:

XðiÞ
ðj;raÞ

Z 1

2
Xð2iK1Þ
ðjK1;r 0aÞ

C 1

2
Xð2iÞ
ðjK1;r 0aÞ

; (2)

i.e. the mapping of arrival rates is such that the arrival rate

averaged over the left and right child subintervals will be

equal to the parent arrival rate. This will be called the mass

preservation property. With this condition, the traffic

process generation can be described by axiom Xð1Þ
ðSK1;RaÞ

;

the arrival rate at the coarsest time scale, and production
rules defined by

XðiÞ
ðj;raÞ

Z ll /
p
ðra Þ

lq
Xð2iK1Þ
ðjK1;r 0aÞ

Z lq;

Xð2iÞ
ðjK1;r 0aÞ

Z 2ll Klq;

8<
: (3)

where
PL

qZ1 p
ðraÞ
lq Z1;cl: Thus, an arrival rate ll in interval i,

scale j and range ra produces, with probability p
ðraÞ
lq ; arrival

rate lq at the left subinterval 2iK1 and arrival rate 2llKlq

at the right subinterval 2i, of next scale jK1 and range r 0a.

The production rules can be totally described by Ra L!L

matrices

PðraÞ Z ðp
ðraÞ
lq Þ; l; q Z 1;.;L; ra Z 1;.;Ra: (4)

In order to guarantee that the alphabet is closed

with respect to the production rules, we impose the

following conditions: (i) liKliK1 ¼ ðlLKl1Þ=ðLK1Þ;

iZ2,3,.,L, i.e the li values will be equidistant; (ii) p
ðraÞ
lq Z

0; if qOlCmin(LKl,lK1) or q!lKmin(LKl,lK1).

Finally, the L-System construction defines, at scale j and

range ra, the time series

Zðj;raÞ
Z fXðiÞ

ðj;raÞ
; i Z 1;.;Njg: (5)
3.2. Double L-System

To characterize both the packet arrival and packet size

processes, we first consider a traffic model based on two

independent L-Systems, where one L-System describes

packet arrivals and the other mean packet sizes. The

L-System describing the packet arrival process is equal to

the one presented in Section 3.1. The L-System describing

the packet size process is defined by an alphabet of mean

packet sizes

G Z fg1;g2;.;gGg; gi 2R
C
0 ; i Z 1;.;G; (6)

by production rules that randomly generate two mean

packet sizes from a previous one and by an axiom which is a

predefined initial mean size. Without loss of generality, we

assume g1!g2!/!gG.

The traffic process construction follows the same steps of

the single L-System one, except that now each time interval

is associated to both a packet arrival rate and a mean packet

size, generated by each of the independent L-Systems. We

allow the ranges of time scales of mean sizes to be different
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from those of arrival rates. The time scale ranges for

mean sizes will be denoted by rs and the number of time

scale ranges by Rs. To relate time scales and time scale

ranges for mean sizes, we define jrs
as the coarsest scale j in

range rs. To characterize the traffic process we define the

pair ðXðiÞ
ðj;raÞ

;Y ðiÞ
ðj;rsÞ

Þ; where XðiÞ
ðj;raÞ

2L and Y ðiÞ
ðj;rsÞ

2G are the

packet arrival rate and the mean packet size at time interval i

of time scale j and time scale ranges ra for arrivals and rs for

sizes, respectively.

Note that there can be a different scaling phenomena for

the arrival and packet size processes, driven by the diverse

mechanisms that are involved in the traffic generation and

control at the various time scales. Consider, for example, the

traffic generated at the user level by an HTTP access. The

arrival process depends mainly on the frequency of clicks.

However, the packet sizes and flow durations depend mainly

on the type of clicks and are independent of the frequency of

clicks. For example, the download of a large file generates

many large packets and the download of a WWW page

generates a few small packets. This motivates allowing

different time scale ranges for the packet arrival and packet

size processes.

The mass conservation property also holds in the case of

mean packet sizes. Thus,

Y ðiÞ
ðj;rsÞ

Z
1

2
Y ð2iK1Þ
ðjK1;r 0sÞ

C
1

2
Y ð2iÞ
ðjK1;r 0sÞ

; (7)

i.e. the mapping of mean sizes is such that the mean size

averaged over the left and right child subintervals will be

equal to the parent mean size.

The generation of mean sizes can be described by axiom

Y ð1Þ
ðsK1;RsÞ

; the mean size at the coarsest time scale, and by

production rules defined by

Y ðiÞ
ðj;rsÞ

Z gm /
v
ðrs Þ
mn

Y ð2iK1Þ
ðjK1;r 0sÞ

Z gn;

Y ð2iÞ
ðjK1;r 0sÞ

Z 2gm Kgn;

8<
: (8)

where
PG

nZ1 v
ðrsÞ
mn Z1;cm: Thus, a mean size gm in interval i,

scale j and range rs produces, with probability v
ðrsÞ
mn ; mean

size gn at the left subinterval 2iK1 and mean size 2gmKgn

at the right subinterval 2i, of next scale jK1 and range r 0s.

The production rules of mean packet sizes can be totally

described by Rs G!G matrices

VðrsÞ Z ðvðrsÞ
mn Þ; m; n Z 1;.;G; rs Z 1;.;Rs: (9)

The closure property must also hold in this case. Thus,

(i) giKgiK1 ¼ ðgG Kg1Þ=ðGK1Þ; iZ2,3,.,G; (ii) v
ðrsÞ
mn Z0;

if nOmCmin(GKm,mK1) or n!mKmin(GKm,mK1).

Finally, the traffic process at scale j can be defined by

time series

Zðj;ra;rsÞ
Z fðXðiÞ

ðj;raÞ
; Y ðiÞ

ðj;rsÞ
Þ; i Z 1;.;Njg: (10)

Note that it is not possible to have mass conservation

simultaneously in the three processes of packet arrivals,

byte arrivals and packet sizes using finite alphabets. In our
approach, except for a trivial case, the mass conservation

property does not hold for the byte arrival process. In fact,

the number bytes in a parent interval, which is given by

XðiÞ
ðj;raÞ

Y ðiÞ
ðj;rsÞ

D2j; will not be equal to the sum of bytes in the

corresponding child intervals, given by

½Xð2iK1Þ
ðjK1;r 0aÞ

Y ð2iK1Þ
ðjK1;r 0sÞ

CXð2iÞ
ðjK1;r 0aÞ

Y ð2iÞ
ðjK1;r 0sÞ

�D2jK1

Z ½2XðiÞ
ðj;raÞ

Y ðiÞ
ðj;rsÞ

CXð2iK1Þ
ðjK1;r 0aÞ

Y ð2iK1Þ
ðjK1;r 0sÞ

KXðiÞ
ðj;raÞ

Y ð2iK1Þ
ðjK1;r 0sÞ

KXð2iK1Þ
ðjK1;r 0aÞ

Y ðiÞ
ðj;rsÞ

�D2j; (11)

due to the imposition of mass conservation on arrival rates

and mean sizes. Conservation of bytes occurs only in the

special case of XðiÞ
ðj;raÞ

ZXð2iK1Þ
ðjK1;r 0aÞ

or Y ðiÞ
ðj;raÞ

ZY ð2iK1Þ
ðjK1;r 0aÞ

; i.e. when

the arrival rates or the mean sizes of the parent and child.

intervals are the same.
3.3. Joint L-System

In this traffic model, a single bi-dimensional L-System is

used to characterize jointly the packet arrival and packet

size processes. The joint L-System is defined by an alphabet

of pairs, where one pair element is a packet arrival rate, ll,

and the other is a mean packet size, gg, i.e.

U Z fðll;ggÞ : ll 2L;gg 2Gg; (12)

by production rules that randomly generate two pairs

(of arrival rates and mean sizes) from a previous one and

by an axiom which is a predefined initial pair.

The construction of the traffic process follows directly

the case of the single L-System. Here, the time scale ranges

are defined based on the byte arrival process (process of

arrival rates times mean sizes, in bytes/seconds). We denote

a time scale range by rb and the number of time scale ranges

by Rb. To relate time scales and time scale ranges, we define

jrb
as the coarsest scale j in range rb. To characterize the

traffic process we define the pair ðXðiÞ
ðj;rbÞ

;Y ðiÞ
ðj;rbÞ

Þ2U; as the

arrival rate and mean size at time interval i of time scale j

and time scale range rb. The traffic process construction is

shown in Fig. 3.

As in the case of the previous two models, both the mass

conservation and the closure properties hold. The generation

of arrival rates and mean sizes can be described by axiom

ðXð1Þ
ðSK1;R6Þ

;Y ð1Þ
ðSK1;R6Þ

Þ; the pair of arrival rate and mean size at

the coarsest time scale, and by production rules defined by

ðXðiÞ
ðj;rbÞ;

Y ðiÞ
ðj;rbÞ

Þ

Zðll;gmÞ/
u
ðrb Þ

lmqn
ðXð2iK1Þ

ðjK1;r0
b
Þ
;Y ð2iK1Þ

ðjK1;r 0
b
Þ
ÞZðlq;gnÞ;

ðXð2iÞ
ðjK1;r0

b
Þ
;Y ð2iÞ

ðjK1;r 0
b
Þ
ÞZð2ll Klq;2gm KgnÞ;

8<
:

(13)

where
PL

qZ1

PG
nZ1 u

ðrbÞ
lmqnZ1;cl;cm: Thus, a pair with

arrival rate ll and mean size gm in interval i, scale j and

range rb produces, with probability u
ðrbÞ
lmqn; a pair with arrival
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rate lq and mean size gn at the left subinterval 2iK1

and arrival rate 2llKlq and mean size 2gmKgn at the right

subinterval 2i, of next scale jK1 and range r0b. The

production rules can be totally described by the Rb matrices

with dimension L!G!L!G, UðrbÞZðu
ðrbÞ
lmqnÞ; with

l,qZ1,.,L, m,nZ1,.,G and rbZ1,.,Rb.

Finally, the traffic process at scale j and range rb can be

defined by time series

Zðj;rbÞ
Z fðXðiÞ

ðj;rbÞ
;Y ðiÞ

ðj;rbÞ
Þ; i Z 1;.;Njg: (14)
3.4. L-System with PMFs

This traffic model resorts to a single L-System to

characterize the packet arrival process and to a set of

discrete distributions to characterize the packet size process.

The packet size is characterized only at the finest time scale.

Moreover, contrarily to the previous two models, the

L-System with PMFs characterizes the individual packet

size, instead of the mean packet size computed over a time

interval. In this scale, each possible arrival rate is assigned a

PMF describing the packet sizes. Thus, there will be a total

of L PMFs.

To characterize the packet size process, let El be a

discrete random variable representing the (individual)

packet size associated to arrival rate ll. We define L

PMFs, one for each packet arrival rate, given by

hl(e)ZP(ElZe), with e2YlZ fv1; v2;.; vQl
g and

lZ1,2,.,L; Yl is the set of Ql packet sizes associated

with arrival rate ll. Note that all packets arriving in a time

interval with associated arrival rate ll, will be assigned a

packet size according to PMF hl.

The generation of the complete traffic process has three

steps: (i) we first generate the sequence of arrival rates at the

finest time scale given by the corresponding L-System;

(ii) second, within each time interval, the packet arrival

instants are spaced uniformly (the number of arrivals is set

according to the arrival rate of the interval); (iii) at last, the

sizes of all packets are determined, based on PMFs of

the[ associated arrival rates.
4. Fitting procedures

4.1. Single L-System

The fitting procedure determines the parameters of the

single L-System from a data trace. It starts by fixing a

sampling interval D and considering the time series

representing the total number of packet arrivals in each

non-overlapping sampling interval. Let this (empirical) time

series be {Ak,kZ1,2,.,K}, where Ak represents the number

of arrivals in sampling interval k. For convenience, we take

the length of the time series K to be a power of 2.

The inference procedure can then be divided into four

steps: (i) determination of the L-System alphabet and

axiom, (ii) identification of the time scale ranges and

(iii) inference of the L-System production rules. The general

flow diagram for a L-System fitting procedure is represented

in Fig. 4.

There are several possible strategies to infer the L

alphabet elements. One choice is to consider the L

equidistant arrival rate values, ranging from the minimum

to the maximum values of the measured data. However, it is

important to include in the alphabet the mean arrival rate of

the measured data. Thus, we infer the alphabet with L

elements {li,iZ1,2,.,L} such that (i) the L elements are

equidistant, i.e. liC1KliZdO0, iZ1,2,.,LK1, (ii) the

mean arrival rate of data is included in the alphabet, i.e.

di:liZmean(Ak/D), iZ1,2,.,L, and (iii) the minimum and

the maximum values of data are within the range of the

alphabet, i.e. l1%min(Ak/D), lLRmax(Ak/D). The value of

L is a compromise between accuracy and complexity.

Due to the mass preservation property, the axiom is

inferred as the average arrival rate of {Ak}, rounded to the

closest alphabet element, i.e.

Xð1Þ
ðSK1;RaÞ

Z FL ð1=KDÞ
XK

kZ1

Ak

 !
; (15)

where FA(x) represents a function that rounds x towards the

nearest element of A.



Fig. 4. General flow diagram of a L-System inference procedure.
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The identification of time scale ranges is based on

wavelet scaling analysis. We use the method proposed by

Abry et al. [7], which resorts to the (second-order) logscale

diagram. A (second-order) logscale diagram is a plot of

energies against scale j, together with confidence intervals

about the energies, where these values are a function of the

wavelet discrete transform coefficients at scale j. The time

scale ranges correspond to the set of time scales for which,

within the limits of the confidence intervals, the energies fall

on a straight line, i.e. the scaling behavior is linear in a time

scale range. Fig. 5 shows the logscale diagram of a trace

measured at the University of Aveiro (which is described
Fig. 5. Second-order logscale diagram, with 95% confidence intervals,

trace UA.
in Section 5), with 95% confidence intervals. There are three

time scale ranges (within a total of 17 time scales) defined

by j1Z2, j2Z8 and j3Z17. Note that, with this method, it is

not possible to estimate the energies up to the last specified

time scale, due to lack of precision resulting from boundary

effects. Specifically, in our case, it was not possible to

estimate the energies for jO12, as shown in Fig. 5.

However, the usual procedure is to assume that the

alignment holds up to the highest specified time scale.

The next step is the inference of the L-System production

rules, which are fully characterized by the PðraÞ; raZ
1;.;Ra matrices. First, data is rounded in order to define

sequence Zðj;raÞ
at each time scale. This comprises obtaining

the arrival rates XðiÞ
ðj;raÞ

from {Ak} through

XðiÞ
ðj;raÞ

Z FL ðNj=KDÞ
XKi=Nj

kZKðiK1Þ=NjC1

Ak

0
@

1
A; (16)

with iZ1,.,Nj, for each j. Finally, letting c
ðraÞ
lq represent the

number of times that, at scale j and range ra, the parent

XðiÞ
ðj;raÞ

Zll produced the left child Xð2iK1Þ
ðjK1;r 0aÞ

Zlq; the pro-

duction rule probabilities can be inferred as

p
ðraÞ
lq Zc

ðraÞ
lq

.XL

qZ1

c
ðraÞ
lq ; l Z1;.;L; ra Z1;.;Ra: (17)
4.2. Double L-system

The fitting procedure of the double L-System comprises

determining the parameters of the two independent

L-Systems characterizing the arrival rates and the mean

sizes. We start by constructing the (empirical) time series

{(Ak,Bk),kZ1,2,.,K}, where Ak and Bk represent the

number of arrivals and the mean packet size in sampling

interval k. After this, the parameters of the two L-Systems

are inferred separately through the procedure described in

Section 4.1 (and shown in Fig. 4) applied to time series {Ak}

and {Bk}, respectively.

In the case of the L-System characterizing the packet size

process, the alphabet is inferred as G equidistant mean

packet size values such that one alphabet element coincides

with the mean packet size of data and the minimum and the

maximum values of data are within the range of the

alphabet. The axiom is inferred as the mean of {Bk},

rounded to the closest alphabet element, i.e.

Y ð1Þ
ðSK1;RsÞ

Z FG ð1=KÞ
XK

kZ1

Bk

 !
: (18)

The identification of time scale ranges is again based on

the (second-order) logscale diagram. The production rules,

defined by matrices VðrsÞ; rsZ1,.,Rs, are inferred by



Table 1

Main characteristics of measured traces

Trace

name

Capture period Trace size

(pkts)

Mean rate

(byte/s)

Mean packet

size (bytes)

pOct Bellcore trace 1 million 362,750 568

UA 12.41 p.m. to 14.27

p.m., July 6th 2001

7 millions 654,780 600

Kazaa 10.26 p.m. to 12.13

p.m., October 18th

2002

1 million 194,670 1225

OFP 10.26 p.m. to 12.02

p.m., October 18th

2002

0.5 million 72,552 803
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rounding the empirical times series {Bk} to obtain

Y ðiÞ
ðj;rsÞ

Z FG ðNj=KÞ
XKi=Nj

kZKðiK1ÞNjC1

Bk

0
@

1
A; (19)

with iZ1,.,Nj, for each j, and then determining the

probabilities through

vðrsÞ
mn Z dðrsÞ

mn

XG

nZ1

dðrsÞ
mn ; m Z 1;.;G; rs Z 1;.;Rs;

(20)

where d
ðrsÞ
mn represents the number of times that, over all

scales of range rs, the parent Y ðiÞ
ðj;rsÞ

Zgm produced the left

child Y ð2iK1Þ
ðjK1;r 0sÞ

Zgn:

4.3. Joint L-System

As in the case of the double L-System, the fitting

procedure of the joint L-System starts by considering the

time series {(Ak,Bk),kZ1,2,.,K}. The L-System alphabet is

inferred as the set with LG pairs (ll,gg), using the procedure

of the double L-System described in Section 4.2. Thus, the

arrival rates and the mean sizes are inferred independently.

The identification of time scale ranges is now based on the

time series of byte arrivals, i.e. {AkBk,kZ1,2,.,K}. To

infer the production rules, defined by matrices UðrbÞ;

rbZ1,.,Rb, data is first rounded as in the case of the

double L-System. Then the probabilities are inferred as

u
ðrbÞ
lmqn Z f

ðrbÞ
lmqn

XL

qZ1

XG

nZ1

f
ðrbÞ
lmqn; (21)

with lZ1,.,L, mZ1,.,G and rbZ1,.,Rb, where f
ðrbÞ
lmqn

represents the number of times that, over all scales of range

rb, the parent ðXðiÞ
ðj;rbÞ

;Y ðiÞ
ðj;rbÞ

ÞZ ðll;gmÞ produced the left child

ðXð2iK1Þ
ðjK1;r 0

b
Þ
;Y ð2iK1Þ

ðjK1;r 0
b
Þ
ÞZ ðlq;gnÞ:

4.4. L-System with PMFs

The L-System characterizing the packet arrival process is

inferred exactly as in the case of the single L-System

(Section 4.1). Note that this first step implicitly associates

each individual packet (at the finest time scale) with an

arrival rate. The inference of the packet size process starts

by considering the time series of (individual) packet sizes

{Cn,nZ1,2,.,N}, where Cn is the size of the nth packet and

N is the total number of packets. We then partition this time

series into L subsets defined by

Dl Z fCn : LðnÞ Z ll; n Z 1; 2;.;Ng; l Z 1; 2;.;L;

(22)

where L(n) represents the arrival rate that has been

associated to the nth packet. Thus subset Dl collects the

sizes of all (individual) packets that were assigned an arrival

rate ll. These subsets will be used to infer alphabets of
(individual) packet sizes for each arrival rate. Specifically,

we determine from each Dl the Ql most frequent packet size

values (e.g. using histograms) and collect them in alphabet

YlZ fv1v2;.; vQl
g: At this point, we round each element of

Dl to the nearest element in Yl, resulting in new subsets

~D
l Z fFYl ðxÞ; x2Dlg; l Z 1; 2;.;L: (23)

Finally, we infer for each set ~D
l

the corresponding PMF

hlðeÞZPfE1Zeg; e2Yl:
5. Numerical results

We have applied our fitting procedures to four traces:

(i) the well-known pOct Bellcore trace, (ii) one IP trace

measured at the University of Aveiro (UA), (iii) one IP

trace measured at a Portuguese ADSL ISP, representing the

usage of Kazaa by a group of 10 users, and (iv) a IP trace

measured in the same ISP, rep-resenting the usage of the

online game operation flashing point (OFP) also by a group

of 10 users. The sampling interval was 0.1 s in all traces.

The UA trace is representative of Internet access traffic

produced within a University campus environment. The

University of Aveiro is connected to the Internet through a

10 Mb/s ATM link and the measurements were carried out

in a 100 Mb/s Ethernet link connecting the border router to

the firewall, which only transports Internet access traffic.

The traffic analyzer was a 1.2 GHz AMD Athlon PC, with

1.5 GB of RAM, running WinDump. The measurements

recorded the arrival instant and the IP header of each packet.

WinDump reported no packet drops during the measure-

ment periods. The main characteristics of the used traces are

summarized in Table 1. Note that for the Bellcore trace the

measured sizes correspond to Ethernet packet sizes and for

the remaining traces correspond to IP packet sizes.
5.1. Single L-System

The pOct trace was fitted to an alphabet of LZ234 arrival

rates ranging from 4 and 2364 pkts/s with a step of 10 pkts/s

(because it corresponds to one arrival in the sampling

interval). The logscale diagram identified four time scale
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ranges (within a total of 14 time scales) defined by j1Z3,

j2Z6, j3Z8, j4Z9 and j5Z14. In the case of the UA trace

the fitted alphabet had LZ215 arrival rates, ranging from

441 to 2581 pkts/s, in steps of 10 pkts/s. As referred before,

the UA trace has three time scale ranges (Fig. 5). The Kazaa

and OFP traces were fitted to alphabets of LZ32 arrival

rates. These traces revealed the same two time scale ranges,

defined by j1Z5 and j2Z13.
5.2. Double L-System

The L-Systems modeling the packet arrival process were

those inferred for the single L-System model. The packet

size process of the pOct trace was fitted to an alphabet of

GZ50 mean packet sizes, ranging from 64 to 1436 bytes in

steps of 28 bytes. We identified three timescale ranges

defined by j1Z3, j2Z8 and j3Z14. The UA trace was fitted

to an alphabet of GZ50 mean packet sizes, ranging from

232 bytes to 1016 bytes in 16 bytes steps. Again three

timescale ranges were identified, defined by j1Z3, j2Z8

and j3Z17. For the Kazaa and OFP traces we obtained

alphabets with GZ30, ranging, respectively, from 29 bytes

to 1537 bytes in steps of 52 bytes and from 23 bytes to 1531

bytes in steps of 52 bytes. In the Kazaa trace four timescale

ranges were identified (defined by j1Z3, j2Z8, j3Z9 and

j4Z14) but in the OFP trace only two were identified

(defined by j1Z5 and j2Z14).
5.3. Joint L-System

For each trace, the alphabets of the joint L-System was

inferred as all possible combinations of the alphabets, for

arrivals and sizes, obtained in the previous two models. The

analysis of the (second-order) logscale diagram of the byte

arrival process identified the following time scale ranges:

(i) for the pOct trace the four timescale ranges j1Z5, j2Z8,

j3Z9, j4Z14; (ii) for the UA trace also four ranges defined

by j1Z5, j2Z8, j3Z9, j4Z14; (iii) for the Kazaa trace only

two ranges defined by j1Z5, jZ2Z14 and (iv) for the OFP

trace the three ranges j1Z5, j2Z11, j3Z14.
Fig. 6. Probability mass function, trace pOct.
5.3.1. L-System with PMFs

As in the double L-System case, the L-Systems modeling

the packet arrival process were those inferred for the single

L-System model. To infer the packet size PMFs, we have

considered the same set of packet sizes for all arrival rates.

Also, in all traces, only the 20 most frequent packet sizes

were considered. The inferred packet size sets were:

JlZ{64, 74, 94, 102, 110, 126, 130, 142, 150, 162, 174,

190, 570, 938, 986, 1082, 1090, 1242, 1282, 1518} for the

pOct trace, JlZ{40, 48, 52, 60, 77, 114, 213, 351, 386, 552,

576, 608, 628, 837, 932, 1216, 1400, 1420, 1462, 1500} for

the UA trace, JlZ{40, 48, 52, 124, 236, 576, 776, 808,

1084, 1176, 1362, 1400, 1420, 1440, 1442, 1454, 1462,

1476, 1480, 1492}, for the Kazaa trace and JlZ{40, 44, 48,
52, 208, 636, 648, 668, 674, 686, 708, 710, 1064, 1418,

1420, 1442, 1454, 1460, 1480, 1492} for the OFP trace.
5.4. Model comparison

The parameter estimation took, in all cases, less than

2 min, using a MATLAB implementation running in the PC

described above. This shows that the fitting procedures are

computationally very efficient (note that the size of the

alphabet, the number of ranges and the size of the

trace, which determine the computational time, are all

relatively large).

The suitability of the traffic models and the accuracy of

the fitting procedures was assessed using several criteria.

For the original data traces and for traces synthesized

according to the inferred models, we compare both the PMF

of the byte arrival process and the autocovariance functions

of the byte arrival, packet arrival and packet size processes.

For the same two traces, we compare the queuing behavior,

assessed by the packet loss ratio and by the average packet

delay estimated through trace-driven simulation. In the case

of the single L-System, we have considered a fixed packet

length equal to the mean packet size of the original data.

For the pOct Bellcore trace, we also considered a special

case of the L-System with PMFs model with only one PMF

(for packet sizes), i.e. with no dependence between arrivals

and sizes. Note that this special model is only able to

characterize the packet size distribution; it will not capture

the autocovariance and the multifractal behavior of the

packet size process, nor the correlations between arrivals

and sizes.

Fig. 6 shows that, in the case of the pOct trace, all models

were able to match relatively well the PMF of the byte

arrival process. The agreement is not so good in the case of

the autocovariance functions. In the packet arrival process

(Fig. 7), there is a relatively good match for all models

because all of them include an L-System of arrival rates.

In the packet size process (Fig. 8), there is a good agreement



Fig. 7. Packet arrival process autocovariance functions, trace pOct.

Fig. 8. Packet size autocovariance functions, trace pOct. Fig. 11. Average packet delay versus buffer size, trace pOct.

Fig. 10. Packet loss ratio versus buffer size, trace pOct.
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except in the case of the L-System with PMFs. This model

has null autocovariance for all positive lags, which is not the

case of both the double and joint L-System models where

the autocovariance of the packet size process is implicitly
Fig. 9. Byte arrival process autocovariance function, trace pOct.
driven by the cascaded structure of the L-System for mean

packet sizes. In the byte arrival process (Fig. 9), a good

agreement was only obtained in the case of the joint

L-System model. This model is the most complete one since
Fig. 12. Packet loss ratio versus buffer size, trace UA.



Fig. 16. Packet loss ratio versus buffer size, trace OFP.

Fig. 13. Average packet delay versus buffer size, trace UA. Fig. 15. Average packet delay versus buffer size, trace Kazaa.
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it is able to capture the autocovariance of the packet arrival

and packet size processes, correlations between arrivals and

sizes and multifractal behavior on the byte arrival process.

Note that in the case of the double L-System, although there

is a good agreement both in the packet arrival and packet

size processes, there is a deviation in the case of the byte

arrival process. This clearly illustrates the importance of

modeling the correlations between arrivals and sizes, since

the lack of such ability is the only difference between the

double and the joint L-System models. Similar results were

obtained for the other traces.

The multifractal characteristics of the packet arrival

process were assessed using a linear multiscale diagram [7],

which plots hqZaq/q against q; aq represents the qth order

scaling exponent, estimated in the qth order logscale

diagram. Multifractal scaling behavior is detected when

there is no horizontal alignment (within the limits of

the 95% confidence intervals). Fig. 18 shows that the packet

arrival processes of the UA and Kazaa traces, and of the

traces synthesized according to the inferred L-System, all
Fig. 14. Packet loss ratio versus buffer size, trace Kazaa. Fig. 17. Average packet delay versus buffer size, trace OFP.



Fig. 18. Linear multiscale diagrams of the packet arrival process, with 95% confidence intervals (from left to right and from top to bottom) trace pOct, trace

UA, trace Kazaa and trace OFP.
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have multifractal scaling behavior. The pOct trace is not

multifractal and the OFP trace is in the limit between non-

trivial and trivial multifractality. For all traces, and

independently of the presence of multifractal scaling

behavior, the L-System was able to capture the scaling

behavior of the original traces, since the curves of the

original traces are very similar to the ones of the fitted

traces.

To assess queuing behavior the buffer size was varied

from 10KB to 20 MB. The service rate was 518KB/s for

the pOct trace (corresponding to all utilization of 0.7) and
726KB/s for the UA trace (corresponding to an utilization of

0.9). Figs. 10–13 show that, for all traces, the fitting of the

queuing behavior was very good for the joint L-System

model but slight differences occurred for the double

L-System and the L-System with PMFs. The single

L-System and L-System with only one PMF both achieve

a similar performance with a large deviation from the

original data. This clearly shows the importance of

characterizing the correlations between arrivals and sizes.

We have also analyzed the queuing behavior of the Kazaa

and OFP traces (for utilizations of 0.7). The results are
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shown in Figs. 14–17. In these cases, there is a good

matching for all L-System models (characterizing both the

packet arrivals and packet sizes) but again the best match is

obtained with the joint L-System model.

From these results, we conclude first that it is important

to characterize both the packet arrival and packet size

processes and their correlations. The best model, which was

able to track almost perfectly the queuing behavior of all

traces, is the joint L-System. This can be attributed to its

ability of capturing correlations between arrivals and sizes,

as well as multifractal behavior on the byte arrival process.

The double L-System is somewhat impaired by its inability

to capture these correlations and the L-System with PMFs

by its inability to capture the autocovariance and the

multifractal behavior of the packet size process. However,

the L-System with PMFs has a lower number of parameters

and therefore can be considered a good alternative. When

the alphabet of arrivals has L elements, the alphabet of sizes

has G elements and there are R time scale ranges, the

number of parameters of the L-System with PMFs is

L2RCGL and the one of the joint L-System is G2L2R.
6. Conclusions

In this paper, we compared four traffic models, and

associated parameter fitting procedures, based on so-called

Lindenmayer Systems (L-Systems), which were introduced

by biologist A. Lindenmayer as a method to model plant

growth. One traffic model characterizes the packet arrival

process and the remaining three characterize both the packet

arrival and the packet size processes. These models are able

to capture the multiscaling and multifractal behavior some-

times observed in Internet traffic. We applied the models to

measured traffic data: the well-known pOct Bellcore, a trace

of aggregate WAN traffic and two traces of specific

applications (Kazaa and OFP). We assessed the multi-

fractality of these traces using Linear Multiscale Diagrams.

The suitability of the traffic models was evaluated by

comparing the empirical and fitted probability and auto-

covariance functions; we also compared the packet loss ratio

and average packet delay obtained with the measured traces

and with traces generated from the fitted models. Our results

highlight the importance of characterizing both the packet

arrival and packet size processes and show that L-System

based traffic models that have these characteristics can

achieve very good fitting performance in terms of first- and

second-order statistics and queuing behavior.
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