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Abstract

This paper proposes a traffic model and a parameter fitting procedure that are capable of achieving accurate pre-

diction of the queuing behavior for IP traffic exhibiting long-range dependence. The modeling process is a discrete-time

batch Markovian arrival process (dBMAP) that jointly characterizes the packet arrival process and the packet size

distribution. In the proposed dBMAP, packet arrivals occur according to a discrete-time Markov modulated Poisson

process (dMMPP) and each arrival is characterized by a packet size with a general distribution that may depend on the

phase of the dMMPP. The fitting procedure is designed to provide a close match of both the autocovariance and the

marginal distribution of the packet arrival process, using a dMMPP; a packet size distribution is fitted individually to

each state of the dMMPP. A major feature of the procedure is that the number of states of the fitted dBMAP is not

fixed a priori; it is determined as part of the procedure itself. In this way, the procedure allows establishing a com-

promise between the accuracy of the fitting and the number of parameters, while maintaining a low computational

complexity.

We apply the inference procedure to several traffic traces exhibiting long-range dependence. Very good results were

obtained since the fitted dBMAPs match closely the autocovariance, the marginal distribution and the queuing behavior

of the measured traces. Our results also show that ignoring the packet size distribution and its correlation with the

packet arrival process can lead to large errors in terms of queuing behavior.
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1. Introduction

Traffic characterization and modeling is a cru-

cial activity towards an efficient dimensioning and

resource management of IP networks. Accurate
modeling of IP traffic requires matching closely not

only the packet arrival process but also the packet
ed.
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size distribution. Surprisingly, while the arrival

process has received considerable attention [1–10],

very few works have addressed the packet size

distribution and, more so, its joint characterization

with the arrival process [11,12]. However, as it will

be made clear in this paper, a joint characterization
is required for accurate prediction of the queuing

behavior (i.e., the packet loss ratio or average

packet delay observed in a queuing system).

The queuing behavior is one of the most

important criteria to assess the suitability of traffic

models (and associated parameter fitting proce-

dures), since it addresses the effect of traffic on

network performance. The analysis consists in
comparing the curves of packet loss ratio (or

average packet delay) versus buffer size, obtained

with the measured traces (through trace-driven

simulation) and with the inferred traffic model

(using again trace-driven simulation or numerical

computation of these performance measures

whenever possible). When dealing with models

that characterize only the arrival process, it is
common practice to assume that the packet size is

fixed and equal to the average packet size of the

measured trace. This may lead to large errors when

the packets have variable size, such as in IP traffic.

Accurate prediction of the queuing behavior

also requires detailed modeling of the first and

second order statistics of the packet arrival process.

This motivated the inference procedures for circu-
lant Markov modulated Poisson processes

(MMPPs) presented in [2] and for other special

cases of MMPPs presented in [10]. Also in this

direction, the work in [6] discusses the limitations

of using only the mean and the autocorrelation

function as statistical descriptors of the input

traffic, for the purpose of analyzing queuing per-

formance. The authors show that the mean queue
length can vary substantially when the parameters

of the input process are varied, subject to the same

mean arrival rate and autocorrelation function.

Thus, in general, accurate prediction of the queuing

behavior requires detailed modeling of the mar-

ginal distribution, and not just of the mean arrival

rate, in addition to the autocovariance modeling.

Since the work by Leland et al. [13] several
studies have shown that network traffic may ex-

hibit properties of self-similarity [13–19]. More
recently, a multifractal behavior, which is typically

associated with networking mechanisms operating

on small time scales, was discovered in several

traces of Internet WAN traffic [20–24]. In general,

these characteristics include the long-range

dependence (LRD) property and can have a sig-
nificant impact on the network performance.

However, as pointed out in [25–27] matching the

LRD is only required within the time scales of

interest to the system under study. For example, in

order to analyze queuing behavior, the selected

traffic model needs only to capture the correlation

structure of the source up to the so-called critical

time scale or correlation horizon, which is directly
related to the maximum buffer size. One of the

consequences of this result is that more traditional

traffic models, such as MMPPs, can still be used to

model traffic exhibiting LRD.

We introduce a batchMarkovian arrival process

(BMAP) (see, e.g., [28–30]), that jointly character-

izes the packet arrival process and the packet size

distribution, and we develop a parameter fitting
procedure that is capable of achieving accurate

prediction of queuing behavior for IP traffic

exhibiting LRD behavior. We consider the dis-

crete-time version of the BMAP process, denoted

hereby by dBMAP. In this dBMAP, packet arrivals

occur according to a discrete-time Markov modu-

lated Poisson process (dMMPP) and each arrival is

further characterized by a packet size with a gen-
eral distribution that may depend on the phase of

the dMMPP. The fitting procedure starts by

matching both the autocovariance and the mar-

ginal distribution of the packet arrival process

using a dMMPP; it then matches the packet size

distribution in each state of the associated dMMPP

in order to fully characterize the dBMAP. This

allows having a packet size distribution closely re-
lated to the packet arrival process, and is in con-

trast with the approach followed by [11] where the

packet size distribution is fitted prior to the

matching of the packet arrival rates. In addition,

the number of states of the associated dMMPP is

not fixed a priori; it is determined as part of the

procedure. In this way, the procedure allows

establishing a compromise between the accuracy of
the fitting and the number of parameters, while

maintaining a low computational complexity.
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The associated dMMPP fits the first and second

order statistics of the packet arrival process. Spe-

cifically, we work with the counts of the packet

arrival process, i.e., the number of packet arrivals

in a pre-defined sampling interval (also called time

slot). Matching simultaneously the autocovariance
and marginal distribution of the packet arrival

process is a difficult task since every dMMPP

parameter has an influence on both characteristics.

With the purpose of achieving some degree of

decoupling when matching these two statistics, we

construct the dMMPP as a superposition of L 2-
dMMPPs and one M-dMMPP (where k-dMMPP
represents a dMMPP with k states); L and M are
determined as part of the fitting procedure. We

will denote the resulting process as M2L-dMMPP.
We use the L 2-dMMPPs to match the autoco-
variance, where each 2-dMMPP models a charac-

teristic time constant of this function, and the

M-dMMPP to match the marginal distribution

(taking into account the contribution of the L
2-dMMPPs). While, in general, the addition of a
dMMPP to a process changes both the marginal

distribution and the autocovariance function, we

devised a procedure where this is done in a con-

trolled way. Specifically, the procedure assures

that the M-dMMPP has null autocovariance, thus
forcing the autocovariance of the combined pro-

cess to equal that of the superposition of the L 2-
dMMPPs. Finally, the dBMAP is constructed by
associating a packet size distribution to each state

of the associated dMMPP.

We apply the fitting procedure to several traffic

traces exhibiting LRD. The LRD characteristics

are analyzed using the wavelet based estimator of

[31]. Results show that the dBMAPs obtained

through the fitting procedure are capable of

modeling the LRD behavior present in data, and
closely match the first and second order statistics

of the packet arrival process, the packet size dis-

tribution and the queuing behavior.

This paper is organized as follows. In Section 2

we give some background on discrete-time BMAPs

and define the specific dBMAP that we propose. In

Section 3 we describe the fitting procedure. A

study concerning the importance of the packet size
fitting is carried out in Section 4. In Section 5 we

present the results of applying the fitting procedure
to measured traffic traces. Finally, in Section 6 we

conclude the paper.

The main contributions of this paper are the

following. First, we introduce a traffic model and a

fitting procedure that provide a detailed joint

characterization of the packet size distribution and
the first and second order statistics of the packet

arrival process; the process is both accurate and

numerically efficient. Second, we show that

ignoring the packet size distribution and its cor-

relation with the packet arrival process can lead to

large errors in terms of queuing behavior. Finally,

we show that the proposed traffic model and fitting

procedure are capable of matching closely traffic
traces with LRD characteristics.
2. Background

The (continuous-time) BMAP was introduced

by Lucantoni [28] as a generalization of the (sim-

ple) Markovian arrival process introduced in [32].
The BMAP is a very general arrival process that,

as remarked by Pacheco and Prabhu [30], achieves

the full generality of the univariate Markov addi-

tive processes of arrivals when the associated

Markov component has finite state space. In

addition, it enjoys the many good properties of

Markov additive processes as, e.g., being closed

for the superposition of independent processes.
Moreover, Asmussen and Koole [33] proved that

any marked point process whose marks are real-

valued can be obtained as the weak limit, i.e., limit

in distribution, of a sequence of Markovian arrival

processes. The fitting of the BMAP to IP traffic is

used in [11] with relative success. For a history of

the BMAP and its applications, and a very

extensive list of references, see [29].
The discrete-time version of the BMAP (which we

denote by dBMAP, usually denoted by D-BMAP)

was proposed by Blondia and Casals [34] and has

received a great deal of attention (see, e.g., [35–39]

and references therein), although not as many as its

continuous-time counterpart. The dBMAP also

belongs to the class of univariate Markov additive

processes and, thus, similarly enjoys the many good
properties of this class of processes, some of

which are addressed in Section 2.1. Among other
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applications, the dBMAP has been used to model

bursty sources and in speech recognition. More-

over, it has been shown that LRD may result from

the superposition of dBMAPs [38].

A very important particular case of the dBMAP

is the dMMPP [10]. In the dMMPP the number of
arrivals at each instant has a Poisson distribution

with parameter depending on the phase (of the

modulator discrete-time Markov chain).

For the modeling of IP traffic we propose to use

a dBMAP such that: arrivals (of packets) occur

according to a dMMPP; and, each arrival is

characterized by a batch whose size has a general

distribution that may depend on the phase of the
dMMPP describing the packet arrival process.

This is in contrast with [11], where the packet size

is fitted in advance, in part, to avoid a prohibitive

number of parameters to be estimated. However

we do not have such a problem since the packet

size distribution for each phase of the dMMPP

that models the arrival of packets is fitted only

after the parameters of the dMMPP have been
adjusted. Our procedure is especially well suited to

accurately fit the packet size distribution.
1 We note that this parametrization does not correspond to

the most common parametrization used for dBMAPs, which is

of the form fDn; n 2 N0g, where the matrices Dn are finite non-

negative square matrices such that
P1

n¼0Dn is a stochastic

matrix [34]. However, the parametrization we will use is more

adequate for the dBMAPs we consider in the paper.
2.1. Characterization of the discrete-time batch

Markovian arrival process used

The dBMAP may be regarded as an Markov

random walk whose additive component takes
values on the non-negative integers, N0. Thus, we

say that a Markov chain ðY ; JÞ ¼ fðYk; JkÞ; k 2 N0g
on the state space N0 � S is a dBMAP if
P ðYkþ1 ¼ m; Jkþ1 ¼ j j Yk ¼ n; Jk ¼ iÞ

¼ 0; m < n;
pijqijðm
 nÞ; mP n;

�
ð1Þ

where P ¼ ðpijÞi;j2S is a stochastic matrix and, for
each pair ði; jÞ 2 S2, qij ¼ fqijðnÞ; n 2 N0g is a
probability function over N0, and we let

QðnÞ ¼ ðqijðnÞÞi;j2S . This implies, in particular that
J is a Markov chain, called theMarkov component
or phase of ðY ; JÞ and S is the set of modulating
states or the phase set. When the dBMAP ðY ; JÞ is
used to model an arrival process, Yk may be
interpreted as the total number of arrivals until

instant k.
Following [30], we will say that the dBMAP

ðY ; JÞ described by (1) has parametrization ðP;
fQðnÞ; n 2 NgÞ. 1
In the paper, we will refer to two dBMAPs,

ðX ; JÞ and ðY ; JÞ, where Xn (Yn) will represent the
total number of packets (bytes) that arrive until
instant n. Similarly, J will represent the state of a
non-observable environment that affects both the

number of packets that arrive at each instant and

the corresponding packet sizes (in bytes).

An important particular case of the dBMAP is

the dMMPP. We say that the process ðX ; JÞ on the
state space N0 � S is a dMMPP with parameters
ðP;KÞ, where P ¼ ðpijÞi;j2S is a stochastic matrix
and K ¼ ðkijÞi;j2S ¼ ðki1fi¼jgÞi;j2S is a diagonal ma-
trix with non-negative entries (i.e., ki P 0, i 2 S), if
it is a dBMAP with parametrization ðP; fQðnÞ;
n 2 NgÞ, where

qijðnÞ ¼ e
kj
knj
n!

ð2Þ

for i; j 2 S and n 2 N; i.e., qij ¼ fqijðnÞ; n 2 N0g is
the probability function of a Poisson random

variable with mean kj. Thus a dMMPP is a

dBMAP for which the number of arrivals in a

given instant of time is only a function of the

current phase of the dBMAP and when the process

is in phase j the number of arrivals at an instant
has a Poisson distribution with mean kj; the
parameter kj may be null, in which case no arrivals
occur in phase j.
In our analysis a dMMPP will be used to model

the packet arrival process. We will consider addi-

tionally that the packets have independent sizes,

with the size of packets arriving in phase i having
probability function qi ¼ fqiðnÞ; n 2 Ng. Accord-
ingly, if we let ðX ; JÞ denote the dMMPP, on the
state space N0 � S and having parametrization
ðP;KÞ, that models the packet arrival process, then
the byte arrival process ðY ; JÞ is a dBMAP, on the
state space N0 � S, satisfying (1) with
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qijðnÞ ¼
Xþ1

l¼0
e
kj

klj
l!
qðlÞj ðnÞ ð3Þ

for i; j 2 S and n 2 N0, where q
ðlÞ
j denotes de con-

volution of order l of qj. Thus, ðY ; JÞ is a

dBMAP on the state space N0 � S, such that, for
n;m 2 N0,

P ðYkþ1 ¼ mþ n; Jkþ1 ¼ j j Yk ¼ m; Jk ¼ iÞ

¼ pij
Xþ1

l¼0
e
kj

klj
l!
qðlÞj ðnÞ; ð4Þ

which we express by saying that ðY ; JÞ has type-II
parametrization ðP;K; fqi; i 2 SgÞ.
The alternative type-II parametrization is the

most convenient for the subclass of dBMAPs that

we will consider in the paper, since ðP;
K; fqi; i 2 SgÞ contains: (i) the parameters ðP;KÞ of
the associated dMMPP modeling the packet arri-

val process and (ii) the distribution of the size of

packets arriving in phase i, qi, for i 2 S. However,
as our construction highlights, the type-II param-

etrization is only valid for dBMAPs satisfying (4).

Given a dBMAP ðY ; JÞ with phase set S and type-
II parametrization ðP;K; fqi; i 2 SgÞ we write
ðY ; JÞ � dBMAPSðP;K; fqigÞ: ð5Þ

Similarly if ðX ; JÞ is a dMMPP with phase set S
and having parameters ðP;KÞ, we write

ðX ; JÞ � dMMPPSðP;KÞ: ð6Þ

If S has cardinality r, we say that ðY ; JÞ (ðX ; JÞ) is a
dBMAP (dMMPP) of order r, r-dBMAP (r-
dMMPP). When, in particular, S ¼ f1; 2; . . . ; rg
for some r 2 N, then
+....... )1(
1λ

)1(
1

+Lλ )1(
2

+Lλ

)1(
1

+
−

L
Mλ )1( +L

Mλ

Fig. 1. Superposition of one M-dMM
P ¼

p11 p12 . . . p1r
p21 p22 . . . p2r
. . . . . . . . . . . .

pr1 pr2 . . . prr

2
6664

3
7775;

K ¼

k1 0 . . . 0

0 k2 . . . 0

. . . . . . . . . . . .

0 0 . . . kr

2
6664

3
7775;

ð7Þ

and we write simply ðY ; JÞ � dBMAPrðP;K; fqigÞ
and ðX ; JÞ � dMMPPrðP;KÞ.

2.2. Auxiliary results for the fitting procedure

The fitting of a dBMAPM2LðP;K; fqigÞ to the
input traffic is made in two steps: (i) fitting of the

dMMPPM2LðP;KÞ modeling the packet arrival

process and (ii) fitting of the packet size distribu-
tion in phase i, qi, for i ¼ 1; 2; . . . ;M2L. Thus, we
next proceed with a description of some transfor-

mations on dMMPPs which we will use to obtain

the process dMMPPM2LðP;KÞ.
We consider the superposition of L independent

2-dMMPPs

ðX ðlÞ; J ðlÞÞ � dMMPP2ðPðlÞ;KðlÞÞ;
l ¼ 1; 2; . . . ; L ð8Þ

and one M-dMMPP

ðX ðLþ1Þ; J ðLþ1ÞÞ � dMMPPMðPðLþ1Þ;KðLþ1ÞÞ; ð9Þ
which is illustrated in Fig. 1.

Note that, in particular, for l ¼ 1; 2; . . . ; L,

PðlÞ ¼ pðlÞ11 pðlÞ12
pðlÞ21 pðlÞ22

" #
; KðlÞ ¼ kðlÞ

1 0

0 kðlÞ
2

" #
ð10Þ
...

L 2-dMMPPs

)1(
2λ )(

1
Lλ )(

2
Lλ

PP and L 2-dMMPP processes.
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and we assume that pðlÞ12 þ p
ðlÞ
21 < 1. In addition,

we consider J ð1Þ; J ð2Þ; . . . ; J ðLþ1Þ to be ergodic

chains in steady-state. For l ¼ 1; 2; . . . ; L we

denote by pðlÞ ¼ ½ pðlÞ
1 pðlÞ

2
� the stationary distri-

bution of J ðlÞ. Similarly, we denote by pðLþ1Þ ¼
½ pðLþ1Þ
1 pðLþ1Þ

2 � � � pðLþ1Þ
M � the stationary distri-

bution of J ðLþ1Þ.
The result of the superposition is the process

ðX ; JÞ ¼
XLþ1
l¼1
X ðlÞ; ðJ ð1Þ; J ð2Þ; . . . ; J ðLþ1ÞÞ

 !

� dMMPPM2LðP;KÞ; ð11Þ

where

P ¼ Pð1Þ � Pð2Þ � � � � � PðLþ1Þ; ð12Þ

K ¼ Kð1Þ � Kð2Þ � � � � � KðLþ1Þ ð13Þ
with � and � denoting the Kronecker sum and the
Kronecker product, respectively. Note that the

Markov chain J is also in steady-state. We refer to
ðX ; JÞ as being the M2L-dMMPP.
In our approach L and M are not fixed a priori

but instead are computed as part of the fitting

procedure. However, in the rest of this section they

may be thought as being fixed. We want that the L
2-dMMPPs capture the autocovariance function

of the increments of the packet arrival process (X )
and, discounting for the effect of the other L 2-
dMMPPs, the M-dMMPP approximates the dis-
tribution of the increments of the packet arrival

process. To explain how this may be accomplished,

it is convenient to define the increment processes

associated to X ð1Þ;X ð2Þ; . . . ;X ðLþ1Þ, and X , which
we denote by Zð1Þ; Zð2Þ; . . . ; ZðLþ1Þ, and Z, respec-
tively. Thus,

ZðlÞ
k ¼ X ðlÞ

kþ1 
 X
ðlÞ
k ; l ¼ 1; 2; . . . ; Lþ 1 ð14Þ

and

Zk ¼ Xkþ1 
 Xk ð15Þ
for k ¼ 0; 1; . . . Note that Zk is the (total) number
of packet arrivals at sampling interval k and ZðlÞ

k is

the number of packet arrivals that are due to the

lth packet arrival process, so that, in particular,

Zk ¼
XLþ1
l¼1
ZðlÞ
k ; k ¼ 0; 1; 2; . . . ð16Þ
Moreover Zð1Þ; Zð2Þ; . . . ; ZðLþ1Þ, and Z, are station-
ary sequences.

In order to characterize the marginal distribu-

tions of the processes Zð1Þ; Zð2Þ; . . . ; ZðLþ1Þ, and Z, we
denote, respectively, by fflðkÞ; k ¼ 0; 1; 2; . . .g, l ¼
1; 2; . . . ; Lþ 1, and ff ðkÞ; k ¼ 0; 1; 2; . . .g, their
(marginal) probability functions. As the univariate

distributions of Zð1Þ; Zð2Þ; . . . ; ZðLþ1Þ are mixtures of

Poisson distributions, we denote the probability

function of a Poisson random variable with mean

l by fglðkÞ; k ¼ 0; 1; 2; . . .g, for l 2 ½0;þ1Þ, so that

glðkÞ ¼ e
l lk

k!
; k ¼ 0; 1; 2; . . . ð17Þ

For l ¼ 1; 2; . . . ; L, the (stationary) marginal dis-
tribution of ZðlÞ (that is, the distribution of ZðlÞ

k , for

k ¼ 0; 1; . . .) is a mixture of two Poisson distribu-
tions with means kðlÞ

1 and kðlÞ
2 and weights pðlÞ

1 and

pðlÞ
2 , respectively, since pðlÞ

1 and pðlÞ
2 are the sta-

tionary probabilities of states 1 and 2 and kðlÞ
1 and

kðlÞ
2 are the corresponding Poisson packet arrival

rates. Thus the probability functions of ZðlÞ,

l ¼ 1; 2; . . . ;L, are given by

flðkÞ ¼ pðlÞ
1 gkðlÞ

1

ðkÞ þ pðlÞ
2 gkðlÞ

2

ðkÞ; k

¼ 0; 1; 2; . . . ð18Þ
and their autocovariance functions are

cðlÞk ¼ Cov ZðlÞ
0 ; ZðlÞ

k

� �
¼ pðlÞ

1 pðlÞ
2 kðlÞ

2

�

 kðlÞ

1

�2
ekcl ; k ¼ 1; 2; . . . ; ð19Þ

where cl ¼ lnð1
 pðlÞ12 
 p
ðlÞ
21 Þ. Note that, in partic-

ular, the autocovariance functions of Zð1Þ; Zð2Þ; . . . ;
ZðLÞ exhibit an exponential decay to zero.
As we want the M-dMMPP to approximate the

distribution of the increments of the packet arrival

process but to have no contribution to the au-

tocovariance function of the increments of the

M2L-dMMPP, we choose to make J ðLþ1Þ a Markov
chain with no memory whatsoever. This is

accomplished by choosing

PðLþ1Þ ¼
pðLþ1Þ
1 pðLþ1Þ

2 � � � pðLþ1Þ
M

pðLþ1Þ
1 pðLþ1Þ

2 � � � pðLþ1Þ
M

� � � � � � � � � � � �
pðLþ1Þ
1 pðLþ1Þ

2 � � � pðLþ1Þ
M

2
664

3
775: ð20Þ
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Note that this implies that ZðLþ1Þ is an independent

and identically distributed sequence of random

variables whose distribution is a mixture of M
Poisson random variables with means kðLþ1Þ

i and

weights pLþ1i , for i ¼ 1; 2; . . . ;M . As a consequence,
the probability function of ZðLþ1Þ is given by

fLþ1ðkÞ ¼
XM
j¼1

pðLþ1Þ
j g

kðLþ1Þj
ðkÞ; k ¼ 0; 1; 2; . . .

ð21Þ
and the autocovariance function of ZðLþ1Þ is null

for all positive lags; i.e.,

cðLþ1Þk ¼ CovðZðLþ1Þ
0 ; ZðLþ1Þ

k Þ ¼ 0; kP 1: ð22Þ
Taking into account (16), it follows that the

probability function of Z is given by

f ðkÞ ¼ ðf1 � f2 � � � � � fLþ1ÞðkÞ; ð23Þ
where � denotes the convolution of probability

functions. Z is a sequence of random variables

whose distribution is a mixture of Poisson random

variables (note that the sum of independent mix-

tures of Poisson random variables is also a mixture

of Poisson random variables), and the probability
function of Z may be written in the following way:

f ðkÞ ¼
X2
j1¼1

X2
j2¼1

� � �
X2
jL¼1

XM
jLþ1¼1

YLþ1
l¼1

pðlÞ
jl

 !

� gPLþ1
l¼1 kðlÞjl

ðkÞ: ð24Þ

Moreover, from (16) and taking into account (19)

and (22), we conclude that the autocovariance

function of Z is given by

ck ¼ CovðZ0; ZkÞ ¼
XLþ1
l¼1
CovðZðlÞ

0 ; ZðlÞ
k Þ

¼
XL
l¼1

pðlÞ
1 pðlÞ

2 ðkðlÞ
2 
 kðlÞ

1 Þ2 ekcl ð25Þ

for k ¼ 1; 2; . . .
3. Inference procedure

In the rest of the paper we will refer to
Zð1Þ; Zð2Þ; . . . ; ZðLÞ as the 2-dMMPPs that are used
to match the autocovariance of packet arrival

counts, to ZðLþ1Þ as the M-dMMPP that is incor-
porated in order to match the marginal distribu-

tion of packet arrivals counts, to Z as the counts of
X , the aggregate M2L-dMMPP that models the
packet arrival process, and to Y as the M2L-
dBMAP that models the arrival process of bytes.

The inference procedure can be divided in four

steps: (i) approximation of the empirical autoco-

variance of packet arrival counts by a weighted

sum of exponentials and identification of time

scales, (ii) inference of the M-dMMPP probability
function and of the 2-dMMPPs parameters, (iii)

inference of the M-dMMPP packet arrival rates
and transition probabilities, and subsequent cal-

culation of the M2L-dMMPP parameters, and (iv)
fitting of the packet size (in bytes) distribution for

each of the M2L phases and calculation of the final
M2L-dBMAP parameters. The flow diagram of

this procedure is represented in Fig. 2. In the fol-

lowing four subsections we describe these four

steps in detail.
3.1. Autocovariance approximation and time scales

identification

Our approach is to approximate the autoco-

variance (of packet arrival counts) by a large

number of exponentials and then aggregate expo-

nentials with a similar decay into the same time

scale. This is close to the approaches considered in

[5,8,40]. As a first step, we approximate the

empirical autocovariance by a sum of K expo-

nentials with real positive weights and negative
real time constants. We chose K as

ffiffiffiffiffiffiffiffiffi
kmax

p
, where

kmax represents the number of points of the

empirical autocovariance. This is accomplished

through a modified Prony algorithm [41]. The

Prony algorithm returns two vectors,

~aa ¼ a1 � � � aK½ �; ~bb ¼ b1 � � � bK½ �;
which correspond to the approximating function

Ckð~aa;~bbÞ ¼
XK
i¼1
ai e
bik; k ¼ 0; 1; 2; . . . ð26Þ

At this point we identify the components of the

autocovariance that characterize the different time



Fig. 2. Flow diagram of the inference procedure.
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scales. We define L different time scales, in which
the autocovariance decays, bi, i ¼ 1; . . . ;K, fall in
the same logarithmic scale. To explain how this is

accomplished it is useful to order the bj coefficients
in non-decreasing order, i.e., bj6 bjþ1, 16 j6
K 
 1, and let d� � �e denote the integer round to-
wards plus infinity. The value L is computed

through the following iterative process. Starting
with l ¼ 1 and il ¼ 1 compute ilþ1 through

ilþ1 ¼ minfK þ 1; inffj : il < j6K ^ dlog10 ðbjÞe
> dlog ðbj
1Þegg:
10
If ilþ1 > K then make L ¼ l and stop; otherwise
increment l by one and repeat the procedure. Note
that, in particular,

dlog10 ðbilÞe ¼ dlog10 ðbilþ1Þe ¼ � � �
¼ dlog10 ðbilþ1
1Þe;

but, if ilþ16K,

dlog10 ðbilÞe < dlog10 ðbilþ1Þe:

For l ¼ 1; 2; . . . ; L, we consider that the decays bil
to bilþ1
1 characterize the same traffic time scale
and we aggregate the nl ¼ ilþ1 
 il components in
one component with the following parameters:

al ¼
Xilþ1
1
k¼il

ak and bl ¼
Pilþ1
1

k¼il akbk
al

: ð27Þ

Taking into account (26) and (27), the autoco-
variance function of the 2-dMMPP ZðlÞ, cðlÞk , is
fitted by al ekbl . Thus, in view of (19), it results that

al ¼ d2l p
ðlÞ
1 pðlÞ

2 and bl ¼ cl; ð28Þ
where dl ¼ kðlÞ

2 
 kðlÞ
1 , and the fitted autocovariance

function of Z1 þ Z2 þ � � � þ ZL is

XL
l¼1

al e
kbl ; k ¼ 1; 2; . . . ð29Þ

The parameters al and bl are obtained via the
autocovariance approximation just described; in

the next steps, the inference procedure will restrict

d2l , p
ðlÞ
1 and pðlÞ

2 to satisfy (28).
3.2. Inference of the M-dMMPP probability func-

tion and of the L 2-dMMPP parameters

The next step is the inference of the M-dMMPP
probability function from the empirical probabil-

ity function of the original data trace. The relation

between the probability functions of the 2-

dMMPPs, the M-dMMPP and the M2L-dMMPP
is defined by (23).

In order to simplify the deconvolution of

fLþ1ðkÞ and flðkÞ, l ¼ 1; . . . ; L, we reduce the

number of parameters to be fitted by considering

that the Poisson packet arrival rate is zero in one

state of each 2-dMMPP source; that is, kðlÞ
1 ¼ 0

and kðlÞ
2 ¼ dl, for l ¼ 1; . . . ; L. From (28),
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dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

al

pðlÞ
1 pðlÞ

2

s
; l ¼ 1; 2; . . . ; L: ð30Þ

The probability function of the M-dMMPP, fLþ1,
is inferred from the empirical probability function

of the packet data, denoted by f e, and the L 2-
dMMPP probability functions, denoted by f̂fl,
l ¼ 1; 2; . . . ; L, based on the fitted parameters,

after fixing the probabilities pðlÞ
1 , l ¼ 1; 2; . . . ; L,

through (23). More precisely, fLþ1 is fitted jointly
with the parameters pðlÞ

1 , l ¼ 1; . . . ; L, through the
following constrained minimization process:

minimize
fpðlÞ
1
;l¼1;...;Lg;ffLþ1ðkÞ;k¼0;1;...g

X
k

joeðkÞj; ð31Þ

where

oeðkÞ ¼ f eðkÞ 
 ðf̂f1 � � � � � f̂fL � fLþ1ÞðkÞ ð32Þ
subject to (28) and

0 < pðlÞ
1 < 1; l ¼ 1; 2; . . . ; L;

fLþ1ðkÞP 0; k ¼ 0; 1; . . .

and
Xþ1

k¼0
fLþ1ðkÞ ¼ 1:

ð33Þ

We denote by f̂fLþ1 the fitted probability function
of the M-dMMPP. Note that pðlÞ

1 is not allowed to

be 0 or 1 because, in both cases, the lth 2-dMMPP
would degenerate into a Poisson process. The

empirical probability function, f eðkÞ, is inferred
for the range of values defined by

k ¼ 0; 1; . . . ;max 1:1
XL
l¼1
dlDt;max

k
Zk

( )
;

where Dt is the sampling interval and Zk is the
number of packet arrivals at sampling interval k.
The probability functions f̂flðkÞ, l ¼ 1; . . . ; L are
also calculated for the same range of values.

However, in order to the reduce the number of

points used in the convolutions, only the subrange
of values defined by

k ¼ min
j

ff̂flðjÞ > nlg;min
j

ff̂flðjÞ > nlg þ 1;

. . . ;max
j

ff̂flðjÞ > nlg;

where nl ¼ 10
4 maxðf̂flÞ, is considered. The con-
strained minimization process given by (31)–(33) is
a non-linear programming problem and in general,

it is computationally demanding to obtain the

global optimal solution. Accordingly, to solve this

problem we consider two approximations: (i) we

make pðlÞ
1 ¼ pðlþ1Þ

1 , l ¼ 1; . . . ; L
 1 and (ii) we re-
strict the range of possible pðlÞ

1 solutions to be

discrete and such that pðlÞ
1 ¼ 0:001k, k ¼ 1; . . . ;

999. Then a search process is used to find the

minimum value of the objective function. The

complexity of the minimization process is essen-

tially proportional to L, due to the convolution of
the L 2-dMMPPs. The considered approximations
have had negligible impact on the results obtained
so far with the fitting procedure, in particular on

those presented in Section 5.

At this point all parameters of the 2-dMMPPs,

X ð1Þ;X ð2Þ; . . . ;X ðLÞ, have been determined and their

corresponding 2-dMMPP matrices

fðPðlÞ;KðlÞÞ; l ¼ 1; 2; . . . ; Lg

can be constructed in the following way:

PðlÞ ¼
1
 pðlÞ

2 ð1
 eblÞ pðlÞ
2 ð1
 eblÞ

pðlÞ
1 ð1
 eblÞ 1
 pðlÞ

1 ð1
 eblÞ

" #
;

KðlÞ ¼
0 0

0 dl

� �
:

3.3. Inference of the M-dMMPP packet arrival

rates and transition probabilities

The next step is the inference of the number of

states and Poisson packet arrival rates of the M-
dMMPP from f̂fLþ1. To do this we infer f̂fLþ1 as a
weighted sum of Poisson probability functions.
The matching is carried out through an algo-

rithm that progressively subtracts a Poisson

probability function from f̂fLþ1. This algorithm is

described in the flowchart of Fig. 3. We represent

the ith Poisson probability function with mean ui
by guiðkÞ. We define hðiÞðkÞ as the difference be-
tween f̂fLþ1ðkÞ and the weighted sum of Poisson

probability functions at the ith iteration. Initially,
we set hð1ÞðkÞ ¼ f̂fLþ1ðkÞ. In each step, we first detect
the maximum of hðiÞðkÞ. The corresponding k-
value, ui ¼ argmaxkhðiÞðkÞ, will be considered the
ith Poisson rate of the M-dMMPP. We then cal-
culate the weights of each Poisson probability



Fig. 3. Algorithm for calculation of the number of states and

Poisson packet arrival rates of the M-dMMPP.
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function, ~wwi ¼ ½w1i;w2i; . . . ;wii�, through the fol-
lowing set of linear equations:

f̂fLþ1ðulÞ ¼
Xi
j¼1
wjigujðulÞ; l ¼ 1; . . . ; i:

This assures that the fitting between f̂fLþ1ðkÞ and
the weighted sum of Poisson probability functions

is exact at ui points, for l ¼ 1; 2; . . . ; i. The final
step in each iteration is the calculation of the new
difference function

hðiÞðkÞ ¼ f̂fLþ1ðkÞ 

Xi
j¼1
wjigujðkÞ:

The algorithm stops when the maximum of hðiÞðkÞ
is lower than a pre-defined percentage e of the
maximum of f̂fLþ1ðkÞ and M is made equal to i.
Other methods for parameter estimation of fi-

nite Poisson mixtures with an unknown number of

components, have been proposed, e.g., based on

moment estimation or maximum likelihood (see,

e.g., [42] and references therein). These methods

lead to the solution of a system of non-linear
equations with a number of variables equal to

twice the number of components of the Poisson

mixture model. By contrast, in the algorithm de-

scribed above the rates of the Poisson mixture

model are fitted directly and the weights are fitted

by solving a system of linear equations with the

weights as variables, thus obtaining a more com-

putationally efficient procedure. Moreover, the
proposed procedure leads to the fitting of a small

number of components for the fitted IP traces.

Note also that the proposed procedure is in line

with the global heuristic approach followed in the

paper, which seeks a fast method to fit a particular

class of MMPPs instead of a purely statistical fit-

ting of an MMPP.

After M has been determined, the parameters of
the M-dMMPP, fðpðLþ1Þ

j ; kðLþ1Þ
j Þ; j ¼ 1; 2; . . . ;Mg,

are then set equal to

pðLþ1Þ
j ¼ wjM and kðLþ1Þ

j ¼ uj:

Finally, the M2L-dMMPP process can be con-

structed using Eqs. (12) and (13), where KðLþ1Þ,

PðLþ1Þ, KðiÞ and PðiÞ, i ¼ 1; . . . ; L, were calculated in
the last two subsections.
3.4. Packet size distribution fitting and calculation

of the final parameters

The packet size characterization is made inde-

pendently for each state of the inferred M2L-
dMMPP. There are two steps: (i) association of

each time slot to one of the M2L-dMMPP states
and (ii) inference of a packet size distribution for

each state of the M2L-dMMPP.
In the first step, we scan all time slots of the

empirical data. A time slot in which k packet
arrivals were observed is randomly assigned to a

state, according to the probability vector ~hhðkÞ ¼
fh1ðkÞ; . . . ; hM2LðkÞg, where hiðkÞ represents the
probability that the observed k packet arrivals
were originated in state i. This is given by
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hiðkÞ ¼
pigkiðkÞPM2L

j¼1 pjgkjðkÞ
; ð34Þ

where kj represents the Poisson packet arrival rate
of the jth state of the M2L-dMMPP and pj the
corresponding steady-state probability (as stated

before, gkðyÞ represents a Poisson probability dis-
tribution function with mean k).
The inference of the packet size distribution in

each state resorts to histograms. The inference of

each histogram uses only the packets that arrived

during the time slots previously associated with the
state for which we are inferring the packet size

distribution. Note that some low-probability states

may have no packets associated with them, mak-

ing impossible the packet characterization specifi-

cally for these states. We associate a packet size

distribution to these states that considers all data

packets, i.e., the packet size distribution uncondi-

tioned on the M2L-dMMPP states. The histograms
result in the packet size distributions qi ¼ fqiðnÞ;
n 2 Ng for i ¼ 1; 2; . . . ;M2L.
This step completes the inference procedure.

According to (5), theM2L-dBMAP that models the
input traffic is fully characterized by the qi; i ¼ 1;
2; . . . ;M2L, inferred in this section and by matrices
K and P inferred in previous sections.
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Fig. 4. Packet loss ratio versus buffer size, dBMAP.
4. The importance of fitting the packet size

The purpose of this section is to illustrate,
through a worked example, the impact in terms of

queuing behavior of modeling the packet size and

its correlation with the packet arrivals. We com-

pare the packet loss ratio versus buffer size curves

obtained with three dBMAPs where the packet

size distribution differs but the packet arrival

process is kept the same. The packet arrival pro-

cess is modeled by a 2-dMMPP with parameters
p1 ¼ 0:2, p2 ¼ 0:8, k1 ¼ 1000 pkts/s and k2 ¼ 300
pkts/s. We consider two possible packet sizes: 50

and 1000 bytes. In the first dBMAP, which we take

as our reference in this study, the packet size dis-

tribution is 80% of 50 bytes and 20% of 1000 bytes

in state 1, i.e., q1ð50Þ ¼ 0:8 and q1ð1000Þ ¼ 0:2,
and 50% of both sizes in state 2, i.e., q2ð50Þ ¼ 0:5
and q2ð1000Þ ¼ 0:5. In the second dBMAP, we
consider that the packet size distribution is the

same in both states, and is given by the uncondi-

tional packet size distribution of the first dBMAP,

i.e., the packet size distribution that considers all

packets irrespective of the 2-dMMPP states. Thus
the packet size distribution is, in both states,

63.63% of 50 bytes and 36.37% of 1000 bytes. In

the third dBMAP, we assume that the packet size

is fixed and equal to the average packet size of the

first and second dBMAPs (395 bytes). Note that

the second and third dBMAPs correspond to

simplifications of the first one, which are usually

taken when characterizing the input traffic and
assessing queuing behavior. In particular, both

simplifications consider independence between

packet arrivals and packet sizes.

We estimated the packet loss ratio via trace-

driven simulation using traces of 1 million packets

generated from the three dBMAPs described

above. The sampling period was 0.1 s, the service

rate was 210 Kbytes/s and the buffer size was
varied from 1 to 100 Kbytes. The results are shown

in Fig. 4. As can be observed, there is a large dif-

ference between the packet loss ratio obtained with

the first dBMAP and with the second and third

ones. For example, for a buffer size of 20 Kbytes

the packet loss ratios were 1.39 · 10
3, 3.79 · 10
2
and 6.36 · 10
2 for the first, second and third

dBMAP traces, respectively. This clearly indicates
that the simplifications subjacent to the second

and third dBMAPs can lead to large errors in
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terms of queuing behavior. Thus detailed modeling

of the packet size and of the correlations with the

packet arrivals is clearly required. In the next

section, we complete this study through the con-

sideration of measured data traces.
5. Results

We have applied our fitting procedure to five

traces of IP traffic: (i) the well known pAug.TL

Bellcore trace [13] and (ii) four traces measured at

the University of Aveiro (UA), all of them exhib-

iting LRD. The UA traces are representative of
Internet access traffic produced within a University

campus environment. The University of Aveiro is

connected to the Internet through a 10 Mbit/s

ATM link and the measurements were carried out

in a 100 Mbit/s Ethernet link connecting the bor-

der router to the firewall, which only transports

Internet access traffic.

We assess the fitting procedure using several
performance evaluation criteria. In the case of

the packet arrival process, we compare both the

probability and autocovariance functions of the

packet arrival counts obtained with the fitted

dBMAPs (theoretical) and with the original data

traces. The sampling interval of the counting

process was 0.1 s. In the case of the packet size

distribution, we compare the probability function
of the original trace and of a trace generated from

the fitted dBMAP (hereafter called fitted trace).

We analyze the presence of LRD behavior, in

both the original and fitted traces, using the

method described in [31]. This method resorts to

the so-called logscale diagram which consists in the

graph of yj against j, together with confidence
Table 1

Fitting results for the packet arrival process

Trace name Inferred model p1 L

pAug.TL 56-dBMAP 0.1 3

UA1 24-dBMAP 0.1 3

UA6 12-dBMAP 0.2 2

UA10 16-dBMAP 0.1 2

UA19 12-dBMAP 0.2 2
intervals about the yj, where yj is a function of the
wavelet discrete transform coefficients at scale j.
Traffic is LRD if, within the limits of the confi-

dence intervals, the yj fall on a straight line with
slope a 2 ð0; 1Þ, in a range of scales from some

initial value j up to the largest one present in data.
The Hurst parameter is related to the slope a by
H ¼ ða þ 1Þ=2. Thus LRD behavior implies an

Hurst parameter H 2 ð0:5; 1Þ. To relate scales with
seconds we note that octave j corresponds to
0:1� 2j s.
Table 1 indicates the number of states of the

fitted dBMAPs and summarize the fitting results

relative to the probability function (PF) and au-
tocovariance function (AF) of the packet arrival

counts. The fitting error is defined as the quotient

between the integral of the absolute difference be-

tween the curves of the original and fitted traces,

and the integral of the original trace curve. The

results indicate that a close match was obtained in

case of the PF; the match is not so good for the AF

due to the oscillatory behavior in the case of the
original data, but this has negligible impact on the

queuing behavior. This type of behavior has been

observed in other data traces. Table 2 lists the

estimated Hurst parameters of both original and

fitted traces, showing that all traces exhibit LRD

behavior and that the fitted dBMAPs were able to

capture this behavior. The table also includes the

range of largest scales where alignment (in the
logscale diagram) was obtained.

We also analyze the queuing behavior by com-

paring the packet loss ratio, obtained through

trace-driven simulation, using four types of input

traffic: (i) original traces, (ii) traces generated

according to the fitted dBMAP, (iii) traces where

the arrival instants were generated according to
Mean rate

(pkts/s)

PF IC (%) AF IC (%)

318 7.25 29.05

776 10.02 7.31

527 13.62 5.70

1111 9.70 17.88

1125 10.75 5.23



Table 2

Estimated Hurst parameters of original and fitted traces

Trace

name

Hurst parameter

(original)

Hurst parameter

(fitted)

pAug.TL 0.866 (3–11) 0.880 (4–11)

UA1 0.985 (7–15) 0.956 (8–15)

UA6 0.969 (6–15) 0.943 (7–15)

UA10 0.986 (6–15) 0.981 (6–15)

UA19 0.982 (6–15) 0.977 (5–15)
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Fig. 6. Autocovariance of the packet arrival rate, trace

pAug.TL.
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the fitted dMMPP arrival process and the packet

size according to the unconditional packet size

distribution of the fitted dBMAP and (iv) traces

where the arrival instants were also generated

according to the fitted dMMPP arrival process but

the packet size is fixed and equal to the average
packet size of the original trace. The results of

trace-driven simulation for the fitted traces were

based on 10 replicas.
5.1. Belcore trace

A 56-dBMAP was fitted to the pAug.TL trace.

In Figs. 5 and 6 we show the results of the packet
arrival fitting. There is an excellent agreement in

terms of probability functions. In terms of auto-

covariance, it can be seen that the fitted model is

able to reproduce the average behavior of the

empirical autocovariance (but not its oscillatory

behavior).
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Fig. 5. Probability function of the packet arrival rate, trace

pAug.TL.
In order to analyze the queuing behavior we

considered a queue with a service rate of 175

Kbytes/s, corresponding to a link utilization of

q ¼ 0:79, and varied the buffer size from 100

Kbytes to 8 Mbytes. As it can be observed in Fig.
7, there is a close agreement between the curves

corresponding to the original trace and to the trace

generated according to the fitted 56-dBMAP, for

all buffer size values. In contrast, for the other two

curves corresponding to traces where the packet

size is fitted independently of the packet arrival

process, significant deviations are obtained. This

confirms the conclusions of the previous section.
The packet size distributions of the original and

fitted traces are shown in Figs. 8 and 9, respectively.
Fig. 7. Packet loss ratio versus buffer size, trace pAug.TL.



Fig. 8. Packet size histogram of original data, trace pAug.TL.

Fig. 9. Packet size histogram of fitted trace, trace pAug.TL.

Table 4

Main statistics of measured traces

Trace

name

Mean rate

(pkts/s)

Mean rate

(Kbytes/s)

Mean pkt size

(bytes)

UA1 766 461.0 598

UA6 533 441.8 692

UA10 1074 645.4 600

UA19 1138 629.0 557
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An excellent agreement between the original and

fitted distributions was obtained.

5.2. UA traces

The main characteristics of the UA traces are

described in Tables 3 and 4. Each UA trace cor-
Table 3

Main characteristics of measured traces

Trace name Capture date C

UA1 Tue, July 3rd 2001 8

UA6 Thu, July 5th 2001 3

UA10 Fri, July 6th 2001 1

UA19 Tue, July 10th 2001 1
responds to a different day period. All measure-
ments captured 20 million packets. However, to

assure stationarity, traces UA6 and UA10 were

truncated to 10 million packets. The traffic ana-

lyzer was a 1.2 GHz AMD Athlon PC, with 1.5

Gbytes of RAM, running WinDump. The mea-

surements recorded the arrival instant and the IP

header of each packet.

In the following we will make a detailed anal-
ysis of the results relative to trace UA19. Fig. 10

shows that the trace has LRD, since there is

alignment from scale 6 up the maximum one

present in data. The slope of the straight line is

a ¼ 0:964, leading to an Hurst parameter of

H ¼ 0:982. This analysis considered the traffic in
bytes/s, i.e., including arrivals and packet sizes.

Similar results were obtained when considering
only the arrival process (traffic in packets/s).

A 12-dBMAP was fitted to the trace. The

parameter estimation took less than 30 s, using a

MATLAB implementation running in the PC de-

scribed above. This shows that the fitting proce-

dure is computationally very efficient.

In Figs. 11 and 12 we show the results of the

packet arrival fitting. There is an excellent agree-
ment in terms of probability functions. In terms of

autocovariance, the empirical function shows

some oscillatory behavior. However, the dBMAP

succeeded in capturing the main trend and, as will

be seen later, this is enough for accurate queuing
apture interval Trace size (pkts)

.00 p.m. to 3.15 a.m. 20 millions

.58 a.m. to 9.11 a.m. 10 millions

2.41 p.m. to 3.16 p.m. 10 millions

0.15 a.m. to 3.08 p.m. 20 millions
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Fig. 11. Probability function of the packet arrival rate, trace

UA19.
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Fig. 12. Autocovariance of the packet arrival rate, trace UA19.
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Fig. 13. Packet size histogram of original data, trace UA19.
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behavior assessment. Note that the autocovariance

was fitted up to time lags of 500 s. In general, the

accuracy of packet arrival fitting is similar to the

ones reported in [2] for the case of the autoco-

variance and marginal distribution and in [5] for

the case of the autocovariance and mean arrival
rate.

The packet size distributions of the original and

fitted traces are shown in Figs. 13 and 14, respec-

tively. The distribution is essentially bimodal with

two pronounced peaks around 40 and 1500 bytes;

it also presents non-negligible values at 576 and
885 bytes. We note that the minimum IP packet

size is 40 bytes and that, in many implementations,

the maximum is 1500 bytes. Again, an excellent

agreement between the original and fitted distri-

butions was obtained. Note, in particular, the fit-

ting accuracy on the lowest probability packet

sizes.

In order to analyze the queuing behavior we
considered a queue with a service rate of 700

Kbytes/s, corresponding to a link utilization of

q ¼ 0:90, and varied the buffer size from 10 Kbytes
to 60 Mbytes. As it can be observed in Fig. 15,

there is a close agreement between the curves



0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536
0

0.05

0.1

0.15

0.2

0.25

bytes

pr
ob

ab
ili

ty

Fig. 14. Packet size histogram of fitted trace, trace UA19.

Fig. 15. Packet loss ratio versus buffer size, trace UA19.

Fig. 16. Packet loss ratio versus buffer size, trace UA1.

Fig. 17. Packet loss ratio versus buffer size, trace UA6.

Fig. 18. Packet loss ratio versus buffer size, trace UA10.
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corresponding to the original trace and to the trace
generated according to the fitted 24-dBMAP, for

all buffer size values. In contrast, for the other two

curves corresponding to traces where the packet

size is fitted independently of the packet arrival

process, significant deviations are obtained. This

confirms the conclusions of the previous section.

The results obtained with the other three traces

are similar. The queuing results for the three traces
are shown in Figs. 16–18. The service rate was 625

Kbytes/s (q ¼ 0:72), 500 Kbytes/s (q ¼ 0:88) and
650 Kbytes/s (q ¼ 0:99) for traces UA1, UA6 and
UA10, respectively. In all cases the buffer size was

varied from 10 Kbytes to 60 Mbytes. As in the case

of the UA19 trace, there exist a close agreement

for the fitted dBMAPs, but large differences when

the packet size is fitted independently of the packet
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arrival process. When compared with the queuing

results reported in [11], our results show a closer

fitting, despite the fact that we are considering

higher link utilizations.

The number of states of the resulting dBMAPs

can, in some cases, restrict the applicability of the
model to very simple analytical performance

studies. However, we note that the number of

states is determined as part of the fitting procedure

and that it can be reduced by alleviating the

accuracy requirements on the fitting of the M-
dMMPP probability function.
6. Conclusions

We have developed a fitting procedure for dis-

crete-time batch Markovian arrival processes

(dBMAPs), which allows for the simultaneous

matching of both: (i) the autocovariance and

marginal distribution of the packet arrival process

and (ii) the distribution of the packet size.
The procedure was applied to several measured

traces exhibiting LRD. Our numerical results,

have shown that the procedure matches closely the

autocovariance and the probability function of the

packet arrival process and also the packet size

distribution. The queuing behavior, as assessed by

the packet loss ratio suffered by data and fitted

traces, also shows a very good agreement, when
the packet size distribution is fitted individually for

each state of the dMMPP modeling packet arriv-

als. Our results also point out that matching only

the packet arrival process and considering that

packets have a fixed size or distribution can lead to

significant errors in the estimation of the packet

loss ratio.

A direction for future work is the consideration
of continuous-time BMAPs. In fact, continuous-

time BMAPs are popular for a large range of

performance models and there are performance

modeling tools available using continuous-time

BMAPs. Thus, it is of interest to develop traffic

modeling procedures similar to the one presented

in the paper using continuous-time BMAPs. As

our approach is based at first on the fitting of the
autocovariance function of packet arrival counts,

a discrete-time characteristic, a first step in this
direction would be to obtain a proper continuous-

time function substitute of the autocovariance

function of packets counts.
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