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ABSTRACT

In this paper, we propose and study fitting algorithms
for MMPP(2) and CMPP ATM traffic models, which
are special cases of Markov Modulated Poisson
Processes (MMPP). Two fitting algorithms, both
based on the cell interarrival times, are considered for
the MMPP(2) model: one fits the cumulative
distribution and auto-covariance functions and other
fits the first three moments and auto-covariance
function. The fitting algorithm for the CMPP model is
based on the cumulative distribution and auto-
covariance functions of the arrival rate. The
MMPP(2) is evaluated as a model for the
superposition of IPP sources; the CMPP is evaluated
as a model for MMPP(2), MMPP(3), MMPP(5), IPP,
IDP, Pareto and Self-Similar traffic. The proposed
algorithms can be used in the characterisation of
ATM traffic streams and in connection admission
control procedures.
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1. INTRODUCTION

Broadband networks based on ATM technology are
expected to carry a variety of traffic types, with
multiple characteristics and requirements, in an
integrated fashion. The design and control of these
networks is carried out using a set of parameters that
describe the main traffic characteristics (e.g. the peak
cell rate, the maximum burst size, etc.). Therefore it is
important to capture cell arrival flows and describe
them through suitable stochastic models. An
appropriate traffic model allows a better resource
utilisation without performance losses. A traffic
model is a mathematical description of a specific
traffic type. In order to build a mathematical model
from a measured cell arrival flow, some of its
statistics must be known. For example, the mean,
variance and auto-correlation function of the cell
interarrival time process or the mean, variance and
peakedness of the cell counting process. These
statistics are measured or calculated from observed
traffic data. The actual set of statistics used in the

inference process depends on the impact that those
statistics may have in the main performance
measures.

An effective traffic model has to reproduce the
first and second order statistics of the original traffic
sample. The distribution function defines the first
order statistics whereas the second order statistics can
be accounted for by the auto-correlation function. The
second order statistics play an important role in traffic
modelling, because traffic auto-correlation is an
important factor in ATM cell losses due to buffer and
bandwidth limitations.

The Markov Modulated Poisson Process with two
states, MMPP(2), is a non-renewal model that has
been widely used for modelling ATM traffic. In this
paper, we present and compare two fitting algorithms
for the MMPP(2) model, based on the
characterisation of the cell interarrival time process:
one approach fits the complementary cumulative
distribution function (CDF) and the auto-covariance
function (and is adapted from the study reported in
[1]); the other approach fits the first three moments
and the auto-covariance function.

The Circulant-Modulated Poisson Process
(CMPP) is a particular case of the MMPP process,
where restrictions in the transition rate matrix assure
that the N states of the MMPP process are
equiprobable. In this paper, we present a modelling
methodology for the CMPP process based on the
characterisation of the arrival rate CDF and auto-
covariance functions (adapted from the study reported
in [3] and [4]).

This paper is organised as follows. In sections 2
and 3 we present and study the fitting algorithms for
the MMPP(2) and CMPP models, respectively.
Finally, in section 4, some conclusions are drawn.

2. FITTING ALGORITHMS FOR THE
MMPP(2) MODEL

The defining parameters of the MMPP(2) model are
([2]):
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where Q represents the infinitesimal generator, Λ is
the matrix of the Poisson arrival rates and p is the



initial probability vector of the underlying Markov
process.

Assume interval-stationary MMPP(2) processes
where Xi represents the interarrival time between the
ith and (i+1)th cells. In this case, the distribution of the
interarrival time Xi is a second order hyperexponential
distribution (H2) [2], with complementary CDF:
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and density function:
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The three parameters of the hyperexponential
distribution, u1, u2 and q, can be related with the
MMPP(2) parameters by:
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The auto-covariance function, C[k], 1≥k , is
given by ([1]):
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In the following section we present two fitting
algorithms for the MMPP(2) model. Both procedures
estimate the parameters u1, u2, q and σ.

2.1 The interarrival time distribution inference
procedure

In this approach, u1, u2, q are estimated by fitting
the empirical and theoretical complementary CDFs
and σ is estimated by fitting the empirical and
theoretical auto-covariance functions. We have used
non-linear fitting techniques (the NonlinearFit
function of MATHEMATICA). This approach is
different from the one adopted in [1]. Figure 1
illustrates the application of this procedure to one of
the scenarios under consideration (to be described in
section 2.3).

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

h is to g ra m  b in  n u m b e r

E m p ir ic a l d is tr ib u t io n  fu n c t io n
A p p ro x im a tin g  fu n c t io n

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
-0 .0 0 5

0

0 .0 0 5

0 .0 1

0 .0 1 5

0 .0 2

0 .0 2 5

0 .0 3

0 .0 3 5

la g

E m p ir ic a l c o rre la t io n  c o e ff ic ie n ts
A p p ro x im a tin g  fu n c t io n

Figure 1: (Up) Fitting the interarrival time
complementary distribution to an hyper-exponential
function; (Down) Fitting the auto-correlation to an
exponential function

The upper part of Figure 1 represents the fitting of
the complementary CDFs. As can be seen, both
curves are very close to each other. The lower part of
Figure 1 represents the fitting of the auto-correlation
functions. In this case, the approximation is not so
good and the exponential function can only capture
the mean behaviour of the empirical auto-correlation.

The parameters of the MMPP(2), λ1, λ2, r1 and r2,
can be calculated from the estimated parameters u1,
u2, q and σ, through:
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2.2 The interarrival time moments inference
procedure

In this approach, u1, u2, q are estimated by fitting the
empirical and theoretical first three moments of the
interarrival time and σ is estimated as in previous
section.

From equation (3), we obtain the Laplace
transform of f(x):
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The first three moments are given by the derivatives
of (8) calculated at s=0:
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considering that ii u1=γ . Introducing the relative

second moment 2
12 2mmr =  and the relative third

moment 3
13 6mmk = , the H2 parameters are given

by:
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2.3 Results and discussion

The evaluation of the inference procedures resorts to
a superposition of traffic sources. We compare the
cell loss ratio (CLR) and the average waiting time
(AWT) obtained when feeding a buffer with constant

service rate and finite capacity (i) directly with a set
of individual traffic sources and (ii) with MMPP(2)
traffic, where the MMPP(2) parameters where
inferred from the traffic generated by the set of traffic
sources of step (i), using the inference procedures
described above. Each individual source is modelled
by an Interrupted Poisson Process (IPP), and two
types of such sources are considered: type 1, with
mean ON and OFF durations of 350 ms and 650 ms,
respectively, and with a mean interarrival time in the
ON state of 12ms; and type 2, where the mean ON
and OFF durations are 350 ms and 5800 ms,
respectively, and in the ON state the mean interarrival
time is 1.2 ms. The output link capacity is assumed as
1.5 Mb/s. Two sets of traffic sources were considered
in this study: the first one consists of the
superposition of 120 type 1 sources (homogeneous
case) and the second one of the superposition of 80
type 1 and 10 type 2 sources (heterogeneous case).
These scenarios where also considered in [1].

The results obtained for each scenario are
represented in Figure 2 and Figure 3. We will refer to
the results obtained when driving directly the buffer
with the set of traffic sources as the original case.
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Figure 2: Results for scenario 1 (homogeneous case):
(Up) comparison of the CLR values; (Down)
comparison of the average waiting time values
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Figure 3: Results for scenario 2 (heterogeneous case):
(Up) comparison of the CLR values; (Down)
comparison of the average waiting time values

From Figure 2, we can see that for the
homogeneous scenario both inference procedures
provide good results. Concerning the CLR, the CDF
method gives results that are almost coincident with
the original case. The moments method gives slightly
worse results. Both curves corresponding to the
inference procedures have nearly the same slope of
the curve obtained with the original traffic. We note
also that, in this case, the CLR values obtained with
both inference procedures are greater than the CLR
corresponding to the original traffic yielding upper
estimates of the CLR.

Regarding the AWT, the results obtained using
the inference procedures are also close to the original
ones. The moments method, for example, matches
almost perfectly the original curve. The CDF method,
on the other hand, underestimates the AWT,
especially for larger buffer sizes, but this
underestimation never exceeds 20% of the
corresponding original value.

Observing Figure 3, we see that for the
heterogeneous case the modeling based on the
inference procedures always yield greater CLR and
AWT values. The results obtained are globally worse
than the ones corresponding to the homogeneous
case. This behavior is partly due to a more accurate
fitting of the auto-correlation function in the
homogeneous case, because this function has less
variability.

3. FITTING ALGORITHM FOR THE CMPP
MODEL

The CMPP is a special case of a Markov Modulated
Poisson Process. Like the MMPP a Markov chain
modulates the CMPP, but in the CMPP the transition
rate matrix has to obey the following form:
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transition rate between state i and state j, then
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Like the MMPP, the CMPP has an associated
vector describing the Poisson arrival rate in each state

[ ]110 ... −= Nγγγγ! . The main advantages of the

CMPP, over the MMPP, is the possibility of
constructing ( )γ!,Q  from measured data without the

necessity of solving an inverse eigenvalue problem
which has no general solution and the fact that CMPP
states are equiprobable.

3.1 CMPP inference procedure

In this paper, the CMPP model construction
methodology, first described in [3] and [4], was
adapted and tested with different kinds of traffic
streams. The entire methodology is based on the
characterisation of a arrival rate. The following steps
are required to construct a CMPP model from the
measured data: (i) fitting the empirical auto-
correlation function with a weighted sum of
exponential functions; (ii) determine the circulant
vector a

!
 from the time constants of the exponential

functions, (iii) determine the rate vector γ
!

 from the

empirical distribution and auto-correlation functions.
At the first step, the empirical auto-correlation
)(τR  is fitted to the weighted sum of exponential

functions
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with lΨ  real non-negative. The calculation of the lΨ
and lλ  coefficients is based on the Prony algorithm.

We have restricted )(τpR  to be a sum of two



exponential functions, to improve speed and because
most traffic types have auto-correlation with
exponential or hyper-exponential behaviour.
However, if required, more exponential functions can
be used in the fitting process. The Prony method does
not assure non-negative lΨ  values. In this case, the

following procedure is used: (i) an expansion of the

lλ  set is made, i.e., some new values are added using

linear interpolation; (ii) a non-negative least squares
algorithm, matching )(τR , is used to calculate new

lΨ  values, (iii) only positive lΨ  and its associated

lλ  values are used (we denote the number of positive

lΨ  values by L).

The second order statistics of a CMPP are
represented by

*FaN
!!

=λ (14)
and

*1
F

N
γβ
!!

= (15)

where F* represents the conjugate transpose Fourier

matrix. Vector β
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vector
2*

2 1
F

N
γβ
!!!

==Ψ (16)

and a phase vector
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In the second step, equation (14) is used to calculate
vector a

!
. The number of states N is pre-defined;

generally 100 states are sufficient. Vector λ
!

 is a
vector with N elements, where L < N are the lλ
calculated in previous step and the remaining N – L
have zero values. At this point, both the position of

the lλ  elements in the λ
!

 vector and vector a
!

 are

unknowns. The solution of equation (14) is found by
combining an index search algorithm (that changes
the positions of the lλ  elements) and a phase I

simplex algorithm. The positions of the lΨ  elements

in the Ψ
!

 vector are the same as the positions of the

lλ  elements in the λ
!

 vector.

To construct the vector γ!  (third step) we need to

determine an empirical vector for the rates associated
with each state. This vector will be denoted by eγ

!
.

The empirical rates are found by inverting the
empirical distribution function, under the condition

that all states are equiprobable, i.e., 
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has to be minimised. The nγ  elements can be

obtained by inverting equation (15):
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Note that the lΨ  values and positions have

already been calculated in previous steps.

3.2 Results and discussion

The inference procedure of the CMPP parameters
described in previous section was tested by
comparing the CLR obtained when driving a buffer
with finite capacity and constant service rate with (i)
data generated (through simulation) by the original
CMPP model and (ii) data generated by the a CMPP
model which was inferred (using the procedure of
previous section) from data generated in step (i). We
also compared some statistics of the original and
modelled data: mean, standard deviation, maximum,
minimum, Hurst parameter and peakedness.

We tested the CMPP model (and its inference
procedure) as an approximation to different types of
traffic. We considered MMPP(2), MMPP(3),
MMPP(5), IPP, IDP, Pareto and Self-similar traffic
models. The comparison was made using the above
procedure. The Hurst parameter (H. P.) and
peakedness (Peaked.) were considered in order to
assess the self-similar behaviour of the generated
traffic streams. These two parameters were measured
using the methods described in [5].

The first step in this test was to apply the
inference procedure to traffic streams of 500000 cells
generated according to the several models referred
above: CMPP with 100 states, MMPP(2), MMPP(3),
MMPP(5), IPP, IDP, Pareto, and Self-similar traffic
with H=0.8 and H=0.6. Self-similar traffic was
generated through the methods described in [6].

The second step is the generation of the CMPP
traffic using the results of the inference procedure.
Here 10 replicas of 200000 cells each are generated.
The comparison of the statistics of original and
modelled traffic is made in Table 1. The table shows
the mean and 95% confidence intervals
corresponding to the 10 replicas.



Mean Max Min Std H. P. Peaked.

O 2275.3 3470 0 615.61 0.7287 0.1297
C

M
P

P

M
2135.9
±37.03

3262
±39.6

0
±0

524.77
±35.47

0.7803
±0.021

0.1171
±0.008

O 1341.2 5900 100 976.21 0.9101 0.3032

M
M

P
P

(2
)

M
1324.6
±34.04

6030
±185.4

0
±0

857.0
±23.73

0.9135
±0.006

0.2704
±0.002

O 1056.3 6200 0 1147 0.8557 0.4614

M
M

P
P

(3
)

M
972.68
±45.33

6240
±82.8

0
±0

1023
±23.3

0.8687
±0.003

0.4469
±0.018

O 2303.5 3530 0 779 0.7315 0.1532

M
M

P
P

(5
)

M
2263.9
±54.2

3479
±37.7

0
±0

665
±48.4

0.7820
±0.019

0.1382
±0.011

O 865.11 4440 0 1503 0.7272 0.7323

IP
P

M
743.40
±42.3

4480
±82.6

0
±0

1310
±40.3

0.8230
±0.008

0.7400
±0.02

O 645.6 4010 0 1276.7 0.6272 0.8611

ID
P

M
612.3
±31.8

4455
±52.2

0
±0

1235.2
±43.9

0.7300
±0.025

0.8636
±0.02

O 3999.8 4940 3200 299 0.5537 0.0371

P
ar

et
o

M
3949.1
±47.2

4848
±64.2

3131
±65.9

310
±11.3

0.7403
±0.02

0.039
±0.002

O 2065.6 2250 1890 66.3 0.8093 0.0182

S
-S

 H
=

0.
6

M
2059.5
±9.98

2498
±22.6

1619
±25.1

146.6
±3.51

0.6609
±0.044

0.0338
±0.0009

O 1841.7 1890 1790 16.2 0.5995 0.0060

S
.S

H
=

0.
8

M
1821.9
±16.5

2261
±25.4

1425
±26.8

134.9
±3.00

0.4849
±0.04

0.0405
±0.002

Table 1: Statistics of original (O) and modelled (M)
traffic streams.

The third step was to drive a buffer with finite
capacity and constant service rate with the original
and modelled traffic streams, and estimate the CLR
through simulation. The results are presented in
Table 2.

Buffer Len. Trans. Rate CLR

O 2.63E-2

C
M

P
P

M
500 cells 1 Mbps

5.20E-3
± 1.8E-3

O 1.01E-2

M
M

P
P

(2
)

M
500 cells 1 Mbps

1.44E-02
± 3.9E-3

O 1.04E-3

M
M

P
P

(3
)

M
500 cells 1 Mbps

4.30E-03
± 1.6E-3

O 3.8E-2

M
M

P
P

(5
)

M
1000 cells 1 Mbps

2.36E-02
± 7.3E-3

O 3.23E-2

IP
P

M
1000 cells 1 Mbps

5.73E-2
± 9.2E-3

O 6.06E-2

ID
P

M
500 cells 1 Mbps

5.81E-2
± 2.77E-2

O 6.58E-3

P
ar

et
o

M
100 cells 1.7 Mbps

1.45E-2
± 4.5E-3

O 8.61E-2

S
-S

 H
=

0.
6

M
100 cells 800 Kbps

8.32E-2
± 4.6E-3

O 8.55E-4

S
-S

 H
=

0.
8

M
100 cells 780 Kbps

3.2E-3
± 2.3E-3

Table 2: CLR for the original (O) and modelled (M)
traffic streams.

The application of the inference procedure to
CMPP traffic, shows that the procedure can capture
all major statistics of the original traffic. The statistics
of the original traffic are close to the confidence
intervals of the modelled traffic. This is also true for
the CLR. In Figure 4 and Figure 5, we show the CDF
and the auto-correlation function of the original and
modelled traffic.



Figure 4: CDF for the CMPP original traffic rate
(darker) and modelled traffic rate.

Figure 5: Auto-correlation function for the CMPP
original traffic (darker) and modelled traffic.

In Figure 6 it can be seen that the CDF of the
modelled traffic has softer transitions than the CDF of
the original MMPP(3) traffic, reflecting the existence
of only three states in the Markov chain. However the
overall behaviour of the two CDFs is similar. The
same is true for the auto-correlation function as
represented in Figure 7.

Figure 6: CDF for the original MMPP(3) traffic
(darker) and modelled traffic rate.

It can be concluded that, under the conditions
assumed in this study, MMPP(2), MMPP(3),
MMPP(5) and IPP traffic are well approximated by
the CMPP model. Some differences observed in the
CLR we believe can be attributed to the number of
generated cells not being sufficiently large.

Figure 7: Auto-correlation function for the original
MMPP(3) traffic (darker) and modelled traffic.

The above conclusions also apply to IDP traffic.
The CDF curves, Figure 8, shows that the ON state of
the original IDP traffic (with a rate of 4000 cells/s) is
not matched perfectly since the CDF of the modelled
traffic is not able to follow the sharp transition around
4000 cells/s of the original CDF. However, this
mismatch around the peak rate does not seem to have
a great influence in the main traffic characteristics.

Pareto traffic is not well modelled by the CMPP.
Pareto traffic has an auto-correlation that is
theoretically zero but the CMPP inference procedure
can not reflect this behaviour. The modelled traffic
has higher auto-correlation (Figure 9) as well higher
Hurst parameter. The other statistics are within the
confidence intervals. The CLR of the original traffic
is significantly lower than the CLR of the modelled
one reflecting the lack of correlation in the Pareto
traffic.

Figure 8: CDF for the IDP original traffic rate
(darker) and modelled traffic rate .

The CMPP model can not match the value of the
Hurst parameter of the Self-similar traffic. It was seen
that the H.P. of the CMPP is always smaller than the
H.P. of the original Self-similar traffic. The
modelling process induces an increase in the variation
of the arrival rate, Figure 10, as well as a higher auto-
correlation, Figure 11. This shows that this modelling
process may not be applied to Self-similar traffic with
low rate variation.
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Figure 9: Auto-correlation function for the original
Pareto traffic (darker) and modelled traffic.

Figure 10: CDF for the original traffic rate with
H=0.8 (darker) and modelled traffic rate.

Figure 11: Auto-correlation function for the original
self-similar traffic with H=0.8 (darker) and modelled
traffic.

4. CONCLUSIONS

In this paper, we proposed and studied fitting
algorithms for MMPP(2) and CMPP ATM traffic
models, which are special cases of Markov
Modulated Poisson Processes (MMPP). Two fitting
algorithms, both based on the cell interarrival times,
were considered for the MMPP(2) model: one fits the
cumulative distribution and auto-covariance functions
and other fits the first three moments and auto-
covariance function. The fitting algorithm for the
CMPP model is based on the cumulative distribution
and auto-covariance functions of the arrival rate. The

MMPP(2) was evaluated as a model for the
superposition of IPP sources; the CMPP was
evaluated as a model for MMPP(2), MMPP(3),
MMPP(5), IPP, IDP, Pareto and Self-Similar traffic.
The proposed algorithms were seen to be appropriate
for the characterisation of ATM traffic streams and in
connection admission control procedures.
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