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Multisine signals are used in the laboratory and in the
field to provide a periodic, well-characterized wave-
form that can simulate complex modulated radio fre-

quency (RF) signals. For example, in the field of wireless
telecommunications, multisines are often used to provide real-
istic test signals that have statistics similar to various types of
digitally modulated signals. Multisines are used for system test-
ing [1]–[3], for verifying technology standard masks [4]–[6], and
more and more for device and system modeling [7]–[12] in
order to extract robust models for computer-aided design/com-
puter-aided engineering (CAD/CAE) solutions. Recently, their
use as calibration signals is also being explored [13], [14].

It was not so long ago that practical communication signals
had small enough amplitude variations and were narrowband
enough that simple two-tone test signals were sufficient to
characterize the nonlinearity of wireless system components.
Two-tone test signals have been extremely popular for nonlin-
ear characterization because they are conceptually straightfor-
ward to understand and use in analytic descriptions of non-
linear circuits. Indeed, many fundamental concepts regarding
nonlinear circuit response, such as intermodulation distortion,
cross-modulation, memory effects [15], and gain compres-
sion/expansion, are clearly illustrated by the use of two-tone
test signals. Unfortunately, the amplitude, phase, and band-
width characteristics of modern wireless signals can no longer

be accurately represented by a simple two-tone test signal. The
digital cellular and wireless local area network (WLAN) sig-
nals of today are wideband and contain significant amplitude
variations as a byproduct of implementing high-spectral-effi-
ciency modulation schemes to increase the amount of data
transmitted for a fixed amount of bandwidth.

In general, the best signals to use in laboratory testing are
those that exactly match the signal that will be input to the
system in real operation, or those that place the system into a
wide variety of operating states. One commonly used signal
in this category is white Gaussian noise (WGN). However,
this nonperiodic signal has a continuous spectrum that is dif-
ficult to generate and measure using instruments designed to
measure bandpass signals. This is one reason why test signals
such as multisines are gaining importance in the world of
instrumentation and measurement, because they can be gen-
erated and recorded very efficiently for systematic measures. 

Multisines consist of a sum of several simultaneously
generated sinusoids (tones). Equation (1) presents a typical
multisine signal:

x(t) =
N∑

k =1

Ak cos(ωk t + θk) , (1)

where Ak is the amplitude and θk is the phase of the kth sinu-
soid, N is the number of sinusoids, and ωk = ω0 + (k − 1)�ω,
with ω0 being the frequency of the first tone and �ω the con-
stant frequency separation between them. 

By changing the relative phase between each of the fre-
quency components in the multisine, we are able to change
the time-domain envelope associated with the multisine.
“Defining Relative Phase in a Multisine Signal” illustrates
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the concept of relative phase in a signal. Figure 1 presents
some of the many different time-domain waveforms that can
be generated depending on the relative phase and amplitude
of each tone in the multisine. In this case, the power spectral
density (PSD) is identical for each multisine; however, the
statistics of the waveforms such as peak-to-average power
ratio (PAPR) are vastly different. So, a careful design of the
excitation multisine both in amplitude and phase is funda-
mental for correctly predicting laboratory experiments. 

There are many reasons to use multisine signals in
design and test. First, as mentioned above, multisines are
periodic signals. Periodic signals are straightforward to
generate and measure by using many instruments com-
monly used to characterize bandpass modulated signals
such as vector signal generators, spectrum analyzers, vector
signal analyzers, and large-signal network analyzers
(LSNAs). In fact, some instruments such as the LSNA [16],
[17] require the use of periodic excitations.

Defining Relative Phase in a Multisine Signal

Relative phase for a signal consisting only of a funda-
mental and harmonics is a straightforward quantity to
understand and calculate. Using the fundamental tone
as a reference, we compute the difference in phase
between this reference and all other harmonically
related phases measured at a given instant. Because
the frequency components are harmonically related,
we can always find the difference in phase no matter
at what point in the waveform we collect our sample.

Relative phase as it relates to the nonharmonically
related components in a multisine is somewhat more
complicated. (In fact, these components are also har-
monically related as integer multiples of �ω; however,
we do not typically measure all of these components
when we are measuring a bandpass signal.)

It is easiest to understand the concept of relative
phase for a multisine in the time domain. At each
point in the time-domain envelope signal, the phase
relationships between the frequency components of a
multisine are different, as illustrated in Figure A. Here
we see a three-tone multisine whose frequency com-
ponents were specified to have zero-degree relative
phases. At time t = tref , when the multisine was gen-
erated, this phase relationship holds. However, at
other times in the envelope time period, other vastly
different phase relationships occur. 

Thus, we need to understand that when a multisine is
specified to have a given phase relationship between its
tones, this relationship will only hold at integer multiples
of the envelope period relative to the reference time.
And, more importantly, since we will typically measure
this waveform at some random time in the envelope, we
will have to find a way to determine the reference time.
Various techniques exist for carrying out this alignment
either in postprocessing [30] or during the measurement.

The concept of relative phase alignment in a multi-
sine can be extended to distortion products as well. By
sampling the input and output waveforms at the same
instant, and determining the time in the waveform that
best fits the specified phase values, we can read off the
phase of output frequency components, including intermodu-
lation products, directly. Figure B shows an example of a two-
tone excitation signal and a third-order intermodulation prod-

uct. Once the reference time is determined (0 ns in this
example), the phase of the intermodulation product relative
to the specified input phases can be determined directly.

Figure A. This three-tone multisine was generated with relative
phases of 0◦. However, the phases may appear different from zero
depending on when the waveform is sampled. For example, if the
waveform is sampled at time t = tM, the phases have values of 115◦,
345◦, and 280◦ [30].

Figure B. The relative phase of an intermodulation product can be
found by measuring the output waveform at the same instant as the
input waveform and aligning (or detrending) the measurement to the
reference time.
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Second, it is straightforward to change the statistics of
multisine signals by changing the relative phase between
their components. Using algorithms such as the one pre-
sented in the “Statistical Behavior of Multisines” section,
we can readily synthesize different types of excitations that
can mimic digital modulations of interest.

Third, because a multisine is composed of sine waves, it is
a relatively straightforward task to characterize the harmonic
distortion in the excitation signal by a simple fit to ideal sine
waves. Also, the relative phase between the sinusoidal fre-
quency components is straightforward to measure and char-
acterize, as discussed in “Defining Relative Phase in a
Multisine Signal”.

Finally, when carrying out common wireless system
measurements such as harmonic distortion, intermodula-
tion distortion, frequency-selective fading, or other tests
where phase plays a role, knowledge of the phases at the
input and output of the system under test can yield insight

into distortion-causing mechanisms. The use of sine waves
facilitates this.

This article first presents multisine representations
using discrete Fourier transform (DFT) coefficients. We
describe some of the statistical characteristics of multi-
sines, and we present issues related to developing correct
statistics and choosing the correct values of the ampli-
tude and phase of each tone. Then, we address some of
the test setups for measuring multisines and issues relat-
ed to their use. Finally, we present some examples of the
use of multisines to simulate digital modulation in the
design and test of wireless communication systems.

Accurate Multisine Representations 
Using DFT Coefficients
One goal of multisine signal analysis is to extend the analyt-
ic simplicity of two-tone nonlinear system analysis to more
complicated signals. However, the two questions that quick-

Multisine with Predetermined Higher-Order Statistics
For a memoryless nonlinearity, first-order statistics such as the PDF and its associated moments are sufficient for describing
the integrated value of distortion power. Nevertheless, we can prove [11] that in nonlinear dynamic systems this description
is not sufficient for signal characterization because we can generate multisines having similar PDFs but having different out-
put spectral-regrowth masks. That is why an alternative multisine design technique for dynamic nonlinear systems is neces-
sary.

In nonlinear dynamic systems, the output does not change instantaneously with the input signal. This is why the statistical
relations of the output should include not only static statistical behavior, such as the PDF, but also higher-order statistics [11].
If we consider a polynomial description for a nonlinearity, the output can be described as

y(t) =
N∑

n=1
yn(t) , (a)

where

yn(t) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
hn(τ1, . . . , τn) x(t − τ1) . . . x(t − τn)dτ1 . . . dτn , (b)

and hn(τ1, . . . , τ2) is the nth order nonlinear operator.
Since our goal is to calculate the output PSD or the spectral mask of the output, for a third-order nonlinearity the PSD will

then be

Syy(ω) = |H1(ω)|2Sxx(ω) + 2Re
{∫ +∞

−∞

∫ +∞

−∞
H1(ω)H3(ω1, ω2, ω − ω1 − ω2)∗E[X(ω)X(ω1)∗

× X(ω2)∗X(ω − ω1 − ω2)∗] dω1 dω2

}
+

∫ +∞

−∞
· · ·

∫ +∞

−∞
H3(ω1, ω2, ω − ω1 − ω2)

× H3(υ1, υ2, ω − υ1 − υ2)∗ E[X(ω1)X(ω2)X(ω − ω1 − ω2)X(υ1)∗X(υ2)∗

× X(ω − υ1 − υ2)∗] dω1 dω2dυ1 dυ2 . (c)

In (c), Hnωi, . . . , ωj ), the nonlinear frequency operator may be easily determined because it depends exclusively on the
DUT nonlinear model. The value of the average E[X(ω1)X(ω2)X(ω − ω1 − ω2)X(υ1)∗X(υ2)∗X(ω − υ1 − υ2)∗] should be
equal for both the multisine signal and the real signal that we want to describe. That is why the multisine signals used to
approximate the digitally modulated signal should obey, for a third-order nonlinearity,

Sxxxx(ω1, ω2, ω3) = E[X(ω1)X(ω2)X(ω3)∗X(ω1 + ω2 − ω3)∗] . (d)
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ly arise when designing multisine signals to accurately rep-
resent wireless communication signals are: 1) How many
sinusoids should be used? and 2) How should the amplitude
and phase of each sinusoid be determined? One straightfor-
ward approach to answering both questions is to consider a
Fourier series representation of the communication signal,
since it defines the signal as a sum of sinusoids. In practice, a

DFT is used to obtain Fourier series coefficients of a complex
signal of finite time duration

x(n) =
N−1∑
k =0

Ak · e j(2πkn/N+θk) = 1
N

N−1∑
k =0

X(k) · e j2πkn/N ,

(2)

Expectations such as (d) are known as the signal’s higher-order statistics [11] because they can be understood as being
higher-order extensions of the first-order PSD, Sxxω). We conclude that two signals, x(t) and xr(t), are similar up to order n
in the sense that they will present similar PSDs if they have similar nth-order spectra Sxx(ω) ≈ Sxrxr(ω),
Sxxxx(ω1, ω2, ω3) ≈ Sxrxrxrxr (ω1, ω2, ω3), . . . , Sx... x(ω1, . . . , ωn−1) ≈ Sxr ... xr (ω1, . . . , ωn−1) .

The main problem in this multisine signal design is the high number of unknowns to be matched. For instance, if the
noise is sampled with 2K + 1-points and then transformed using the DFT, Sxx(ω) will involve only an average made over
2K + 1 complex numbers per signal realization. On the other hand,
a second-order analysis utilizing Sxxxx(ω1, ω2, ω3) already involves
an average over (2K + 1)3 complex entities and, for third-order
analysis, Sx... x(ω1, ω2, ω3, ω4, ω5) must be estimated from averag-
ing complex matrices of size (2K + 1)5 .

This implies that the design algorithm for this type of multisine
signal is extremely burdensome computationally. While, on the one
hand, a lower number of sines is better for implementing the algo-
rithm, on the other it restricts the number of unknowns and thus
the number of free states.

So a better approach is to consider a large number of sines, but
approximate the PSD only in selected frequency bins. In fact, this is
exactly what many RF designers do when they simulate and/or
measure a DUT with a large number of pseudo-random samples.
Essentially, this corresponds to a large number of different multi-
sines. Figure C presents this idea.

The design algorithm to generate this multisine consists of the
optimization of the PSD of our multisine and the real signal in those
bins by utilizing the higher-order statistics. For instance, for a third-
order nonlinearity, the errors to be minimized are expressed in (e).

Figure C. Original signal’s PSD function and the
approximating multisine matched in a certain number
of predefined frequency bins [11].
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Reference [11] gives more information on the design of this type of multisine.

Multisine with Predetermined Higher-Order Statistics (continued)
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where Ak and θk are obtained from a DFT of the desired time-
domain signal. The DFT generates N Fourier coefficients for
N time samples. Signal length is defined in the time domain
by the end time sample minus the start time sample. This is
inversely related to the frequency resolution of the DFT. The
longer the signal length, the finer the frequency resolution. A
simple solution to minimize the number of sinusoids is to
simply remove the frequencies that are outside the band-
width of the desired signal. In practice, the truncated band-
width should be larger than the actual signal bandwidth by
approximately 20% to minimize any error between the origi-
nal signal and the truncated multisine representation of the
signal [18]. The resulting signal is an accurate multisine rep-
resentation of the original signal that is suitable for use in cir-
cuit simulations or laboratory measurements.

To illustrate this technique, we modeled a 163-μs
reverse-link segment of a code division multiple access
(CDMA) signal under the interim standard IS95A. For
modulation, we used offset quadrature-phase-shift-keying
(OQPSK) modulation corresponding to 200 symbols. We

modeled this signal using 240 tones obtained from the DFT
of a time-domain signal. The signal sampling rate was
4.9512 MHz, which is four times the information signal
bandwidth. The number of necessary tones is calculated
from the number of DFT tones that occur over the signal
bandwidth including the 20% margin,

Ntones = 1.2 · fbw

fres
= 1.2 · fbwT , (3)

where T is the duration of the signal being modeled. A compari-
son of the measured spectrum of the CDMAIS95Asignal and the
240-tone multisine representation is shown in Figure 2. Note that
the number of tones increases proportionally to the increase in
signal length. The spectra of the two signals are nearly identical
because the multisine representation was generated directly from
the DFT of the time-domain signal. The one spectral feature that
distinguishes one from the other is the truncated out-of-band
spectral components for the multisine signal. The original CDMA
signal contains spectral content outside the signal bandwidth due

to the finite rejection
of the baseband filters
used to filter the in-
phase and quadrature
OQPSK datastreams.
The multisine signal is
truncated to just the
signal bandwidth, so
the out-of-band spec-
tral components are
removed. In reality,
there is very little dif-
ference between the
multisine representa-
tion and the time-
domain representa-
tion. But that is the
point of the exercise—
to illustrate that a real
signal can be defined
by a multisine derived
from the Fourier coef-
ficients. 

Our method main-
tains high accuracy in
representing the ampli-
tude, phase, and band-
width characteristics
of the original signal;
however, there may
be cases where the
signal length of inter-
est generates too
many tones to be
practical for circuit
simulations or ana-
lytical techniques.

Figure 1. Time-domain waveforms of two signals composed of ten evenly spaced tones of equal amplitude:
(a) independent tones with a randomized phase arrangement and (b) all ten tones phase-locked to a common
reference [21].
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This motivates the need to investigate alternative techniques
for generating compact multisine representations with the
characteristics of practical communication signals for nonlinear
circuit analysis. Some of these techniques are based on the sta-
tistics of the signal, as discussed in the following section.

Statistical Behavior of Multisines
The response of nonlinear memoryless systems to the excita-
tion’s value is instantaneous. So, in principle, we could state that
the instantaneous output of such systems is completely deter-
mined by the domain of stimulus amplitudes. However, many
commonly used system output metrics such as output power,
PSD, and adjacent channel power ratio (ACPR) are based on the
statistics of a collection of measurements over time. As important
as the range of amplitude values covered by the output is, the
probability with which they are reached is also fundamental.

This leads us to the intuitive thought that, on average,
what matters is not the instantaneous amplitude itself, but the
value weighted by the probability density function (PDF) of
the signal [19]. For instance, although a very high instanta-
neous amplitude can determine the signal’s amplitude span,
the distortion caused by clipping this high-amplitude signal
will actually become almost irrelevant to the system’s output
if it occurs very infrequently. 

Thus, while PAPR continues to be an important figure of
merit, PDF also plays a key role in the design and verification of
bandpass wireless systems. We see this when manufacturers of
arbitrary waveform generators (AWGs) start to include infor-
mation on the PDF or, more commonly, the complementary
cumulative distribution function (CCDF) in their equipment.

To help us better understand this problem, several signals of
zero mean (zero dc offset) and equal power, but with signifi-
cantly different PDFs, were selected. Figure 3 presents the
PDF(x) of three signals commonly used for model extraction and
validation. Here x refers to the voltage value of each sample.

In the figure, one of the signals is an equal-amplitude, two-
tone signal. The others are multisines of uniform and Gaussian
PDF. The multisines could be used to test a system requiring
uniformly or Gaussian-distributed, band-limited white noise
waveforms of total power equal to that of the two-tone signal. 

There are several ways to synthesize a desired multisine PDF.
One useful technique involves an algorithm that automates the
procedure of generating a multisine PDF to approximate the
PDF of previously synthesized noise sequences [7], [20].

The algorithm functions as follows:
1) Synthesize a noisy signal with the specified PDF statis-

tics pattern and reorder its instantaneous amplitude
values in descending order. This creates the vector of
PDF bins for the noise.

2) Synthesize an equal-amplitude multisine with the pre-
scribed number and frequency position of tones.

3) Reorder its instantaneous amplitude values in descend-
ing order, recording the time samples where they stood.
This creates the vector of PDF bins for the multisine.

4) Substitute the amplitudes of the multisine vector of
PDF bins by the one for the noise.

5) Restore these amplitudes in the original time samples of the

multisine, creating a new multisine with the desired PDF.
6) Calculate the DFT of this signal, and level off the result-

ing tone amplitudes so that the total power is kept,
maintaining the phases obtained. This represents the
desired multisine we seek.

7) If the process of tone amplitude level-off has modified
the multisine PDF to an unacceptable error, repeat the
algorithm, using as the starting multisine the one syn-
thesized with this technique, until an acceptably small
error is reached.

Figure 4 shows the in-band output obtained by using the
two-tone signal and multisines with uniform and Gaussian
PDFs to excite a nonlinear memoryless system defined by

y(t) = tanh
(

x(t)
20

)
. (4)

This memoryless nonlinearity is representative of the nonlin-
earity found in practical circuits, such as those encountered in
power amplifiers.

The integrated value of the nonlinear distortion tones is dif-
ferent for each of the multisine statistics, despite the fact that
the input signals had equal amplitudes and number of tones.
This implies that a correct description of the signal statistics is
fundamental for multisine characterization. “Multisine with
Predetermined Higher-Order Statistics” presents the general-
ization of this problem to higher-order statistics.

Multisine Characterization Figures of Merit
After defining the excitation-signal pattern that can be gener-
ated in the laboratory, let us now define some common mul-
tisine figures of merit. First of all, let us calculate the output of
a polynomial model of a nonlinear amplifier, given in (5),
when it is considered memoryless and excited by a continu-
ous signals with PSD Sxx(ω) [21]:

yNL(t) = a1x(t) + a2x(t)2 + a3x(t)3 + . . . . (5)

Figure 3. PDF(x) of a two-tone and two multisines of uniform and
Gaussian distribution, all with the same integrated power [21].
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From [21], the output will be

Syy(ω) = a2
2Rxx(0)2δ(ω) +

[
a2

1 + 6a1a3Rxx(0)

+ 9a2
3.Rxx(0)2

]
Sxx(ω) + 2a2

2Sxx(ω)∗Sxx(ω)

+ 6a2
3Sxx(ω)∗Sxx(ω)∗Sxx(ω) , (6)

where Rxx(0) is the autocorrelation function Rxx(t) =
E{x(t)x(t + τ)} for τ = 0, corresponding to the average
power of the input signal. In (6), δ(ω) is a Dirac delta func-
tion at ω = 0 and ∗ stands for spectral convolution. 

A careful look at (6) reveals that different arrangements
appear that may allow or prevent us from distinguishing dif-
ferent terms through measurement. For instance, a2

1Sxx(ω)

(the linear part) and [6a1a3Rxx(0) + 9a2
3Rxx(0)2]Sxx(ω) are cor-

related in phase and appear at the same frequency and thus
are indistinguishable from each other. Measurements at these
frequencies are normally termed the underlying linear system
[3]. The term 6a2

3Sxx(ω)∗Sxx(ω)∗Sxx(ω) also has components
appearing in the in-band zone. The triple convolution is
defined in [21]. But these are uncorrelated to the other ones
and thus can be distinguished. Understanding these relation-
ships can help us define figures of merit that are appropriate
for multisines that mirror those in the wireless world.

The first figure of merit to be presented is the extension
from two-tone signals of the intermodulation ratio (IMR). For
the case of multisine excitation, this figure of merit is usually
called ACPR. This quantity is nothing more than the integrat-
ed power of the spectral regrowth due to nonlinear distortion
related to the output power, as seen in Figure 5.

Expression (7) represents the multisine-based figure of
merit,

ACPRT ≡ Po

PLA + PUA
=

ωU1∫
ωL2

So(ω)dω

ωL2∫
ωL1

So(ω)dω +
ωU2∫
ωU1

So(ω)dω

,

(7)

where the subscript T denotes integration of power across
the entire adjacent channel bandwidth, Po denotes the total
measured output power, PLA and PUA refer to the power in
the lower and upper adjacent channels, and ωU and ωL are
defined in the figure. The ACPR presented in expression (7)
is the total integrated power of the spectral regrowth. To
better mimic the ACPR defined in some wireless standards,
slightly different figures can also be defined as the ACPR,
when enough tones exist in the multisine to make this
meaningful. This could be done when only one of the sides
of the spectral regrowth needs to be accounted for. This may
represent only a small part, perhaps 10%, of the frequency
bandwidth in the upper or lower spectral regrowth, as
given in (8) and Figure 6:

Figure 4. Output power spectrum of the memoryless system
excited by equal power (a) two-tone signal, (b) uniformly distrib-
uted, and (c) Gaussian distributed multisines [21].
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ACPSP ≡ Po

PSPL/U
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωU1∫
ωL2

So(ω)dω

ωNBL2∫
ωNBL1

So(ω)dω

Lower

ωU1∫
ωL2

So(ω)dω

ωNBU2∫
ωNBU1

So(ω)dω

Upper

(8)

ACPR measurements account exclusively for the spectral
regrowth outside the channel, despite the fact that this does
not coincide with the useful transmitted signal. It is very dif-
ficult to extract the nonlinear distortion that appears exactly
over the main channel signal. In order to do this, other figures
of merit have been defined, such as noise power ratio (NPR)
and cochannel power ratio (CCPR).

In the case of NPR, the idea is to filter from within the exci-
tation signal a notch where the distortion is to be measured
(see Figure 7).

The input excitation signal is the same as the real one, but
at the notch only the residual thermal noise is visible. At the
output, the nonlinear distortion noise will appear at the notch
and thus can be measured. The expression for NPR is

NPR(ωT) ≡ So(ωT)

Swd(ωT)
, (9)

where ωT is the center frequency of the notch, So is the out-
put PSD, and Swd is the output PSD
within the notch. In this case, we are
measuring exclusively the uncorrelated
distortion of (6).

In the case of CCPR, the measure-
ment is much more difficult, since no
shaping of the input signal is used. In
that case, the idea is to eliminate the lin-
ear part of the measured output [3] (or
the underlying linear system), plus the
part of the output distortion that has
some correlation with the input signal,
as was presented in [22]. Figure 8 pre-
sents the overall idea.

Thus, the CCPR normally represents a figure of merit that
eliminates only the linear part of the distortion [22],

CCPR ≡ Po

PDcorr
=

ωU1∫
ωL2

So(ω)dω

ωU1∫
ωL2

So(ω)dω − Glinear

ωU1∫
ωL2

Si(ω)dω

,

(10)

where PDcorr is the distortion power that has some correla-
tion with the input signal minus the linear part of the dis-
tortion, So and Si are the PSDs of the output and input,
respectively, and Glinear is the linear gain of the device
under test (DUT). Additional discussion on CCPR can be
found in [22]. The cochannel interference ratio (CIR) [23]
stands for the figure of merit that eliminates the underly-
ing linear system,

CIR ≡ Po

PDunc
=

ωU1∫
ωL2

So(ω)dω

ωU1∫
ωL2

So(ω)dω − GUL

ωU1∫
ωL2

Si(ω)dω

,

(11)

where PDunc is the distortion power uncorrelated with the
input signal and GLU is the underlying linear gain of the DUT.

Figure 6. Narrowband ACPR definition [21]. Figure 7. Notch used to measure distortion using NPR [21].

Figure 8. Cochannel distortion [21].
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Multisine Measurement Setups

Multisine Signal Generators
Multisine test signals are often synthesized at baseband fre-
quencies by use of an AWG, then up-converted to radio fre-
quency. In fact, many manufacturers sell vector signal gener-
ators that are capable of creating multisines directly. Or, a sys-
tem can be created in-house using phase-locked signal gener-
ators and/or an AWG. 

In either case, bear in mind that the multisine test signal
will not be ideal. Every signal generator is subject to internal
distortion, and the stringent requirements placed on the sam-
plers, frequency converters, filters, and other components in
the creation of complex modulated signals such as multisines
will introduce some degree of distortion. Impedance mis-
match can also play a role in altering the desired signal.
Characterizing the excitation and understanding the level of
impedance mismatch need to be completed before carrying
out multisine measurements.

Multisine Receivers
Because multisines contain multiple frequency components,
spectral measurements are a convenient way to understand
the effects of distortion that is introduced into multisines by a
DUT or other system.  Measurements with a spectrum ana-
lyzer can provide insight into the magnitude of each frequen-
cy component. 

To gain insight into the phase distortion, we need to measure
the relative phase relationships between all frequency compo-
nents in the signal. For this, instruments that sample time-
domain waveforms may be used, such as VSAs [24], LSNAs
[16], [17], [25], or sampling oscilloscopes [14]. Or, the spectrum
analyzer can be configured with additional instrumentation, as
described below. Examples of measurement considerations for
these instruments are also described in the following.

Direct Measurements of Multisines
Spectrum analyzers can directly measure the magnitude of
the frequency components in a multisine signal. These instru-
ments are commonly found in the laboratory and are straight-
forward to use. Because spectrum analyzers sweep across the
frequency spectrum, we can extract the power associated
with each frequency component in a multisine by integrating
across a narrow frequency band containing that component.
This typically involves a bit of postprocessing, but it is a fair-
ly straightforward procedure. 

VSAs, real-time signal analyzers, and other instruments
that rely on downconversion, sampling, and Fourier transfor-
mation of the input signal can also easily be used to measure
multisine signals. These instruments have some measurement
advantages over a spectrum analyzer in acquiring bandpass
RF signals. As discussed above, we can acquire both magni-
tude and phase information directly in each measurement
because a time-domain capture is used. These instruments
provide a highly sampled, downconverted waveform in
order to yield a large amount of spectral detail around the car-
rier frequency. Using these instruments for acquisition of
multisines is fairly straightforward; however, some possible
difficulties should be kept in mind.

As with spectrum analyzers, we typically sift through all
of the spectral data and use only those frequency compo-
nents that contribute to the multisine. The power in each fre-
quency component must be found by integration over a band
of interest. However, for signal analyzers, methods exist for
eliminating spectral leakage [24], thereby ensuring that all of
the power in a given frequency component appears at only
one frequency. Elimination of spectral leakage negates the
need for time-domain filtering (windowing) of the received
signal, which is a potential additional source of distortion in
the measurement. Multisines lend themselves to these tech-
niques since the sinusoidal frequency components appear
only on a fixed grid.

Most VSAs and real-time analyzers have limited modula-
tion bandwidths. Experiments must be designed so that sig-
nals in the main channel, as well as the distortion products,
are contained within the passband of the instrument, unless a
technique such as that of [26] or [27] is utilized to stitch
together multiple measurement bands.

Finally, many of these instruments are single channel. To
compare the input and output signals directly, multiple mea-
surements must be made. In this case, we can readily lose the
phase response of the DUT unless special alignment signals
are used, such as those discussed in [28] and [29]. 

One instrument that is a natural for measuring multisines
is the LSNA, sometimes called the nonlinear vector network
analyzer. This is a two-port instrument that measures across a
limited bandwidth at fundamental and harmonic frequency
components. LSNAs maintain phase relationships across the
harmonics. The use of postprocessing will also recover the rel-
ative phases of the signals measured in the passband [30].
Commercially available LSNAs suffer the same modulation-
bandwidth limitation as VSAs and real-time analyzers, but
this may change with the advent of mixer-based LSNAs [25].

Figure 9. Multisine measurement system for ACPR and NPR [21].

Figure 10. Cochannel distortion measurement system [21].
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Finally, multisines can also be acquired by the use of a sam-
pling oscilloscope. After transforming to the frequency
domain, some postprocessing is needed to extract the power
in the desired data frequency components as with some of the
other instruments mentioned above. The advantage of the
sampling oscilloscope is that it can measure very-wideband
modulation bandwidths. One limitation of the oscilloscope is
its reduced dynamic range compared to that of the other
instruments. Time-domain averaging can overcome this to a
certain extent [14]. A comparison of the LSNAs, VSAs, and
sampling oscilloscopes in the measurement of multisines is
discussed in [14].

Multisine Measurement Bench Using a 
Spectrum Analyzer for ACPR and NPR
We next discuss a technique whereby a spectrum analyzer
and other common test equipment can be used to measure
ACPR and NPR by use of multisines. The setup consists of a
vector signal generator, a dc bias supply, and a spectrum ana-
lyzer, as shown in Figure 9. The generator should be capable
of synthesizing the proposed excitation signal.

The proposed setup is able to measure both ACPR and NPR,
since the idea in both cases is to measure power over a given
bandwidth. Nevertheless, CCPR and CIR are difficult to mea-
sure by use of this type of test system. That is the main reason
why the test system depicted in Figure 10 is used for this type
of measurement [22].

The idea is to mimic the first stage of a feed-forward lin-
earizer, since the objective is to extract the linear contribution
from the output signal, in the case of CCPR, or the underly-
ing linear contribution, in the case of CIR. In the case of
CCPR, the setup is tuned in the small-signal regime, where
the nonlinearity is not so severe, and thus the output can be
considered almost linear. In that case, the phase shifter and
attenuator are tuned so that the output measured by the
spectrum analyzer nulls the cochannel signal. When the
input is restored to its desired value, the output is measured
based only on the nonlinear part, since the linear one has
been eliminated by the lower branch.

For the case of CIR, the idea is to tune the setup exactly at
the desired output power of the input signal. In that case,
since the lower arm is linear, only the signal components in

the output signal that have some correlation to the input sig-
nal will be minimized by the lower arm branch, which is
mimicking the lower branch of (11). Thus, the residual signal
is the uncorrelated nonlinear contribution of the DUT output
signal. We should mention that this minimization is better
realized for the case of truly noisy signals. For the case of syn-
chronous multisines, the statistical behavior of the input sig-
nal should be carefully taken into account.

Multisine Applications
We have seen in the previous sections how to generate and how
to measure multisine signals. In this section, we will see the use-
fulness of those signals when applied to the simulation of modu-
lated signals and the modeling of nonlinear devices and systems.

For Simulating Modulated Signals
The first application is based on the fact that a multisine can be
designed to simulate the statistics of a modulated signal, as
explained earlier. Such a multisine can be employed when
using measurement instrumentation that cannot handle digi-
tally modulated signals directly, such as an LSNA. This allows
for measurements in real-world applications on this type of
instrumentation. Practical uses are in testing circuits under
realistic operating conditions, as well as using realistic excita-
tions for modeling purposes. An example of the latter can be
found in the next section. 

For More Efficient Modeling
The second application for multisines is in rendering more effi-
cient the experiment design for behavioral model extraction. We
describe a specific application in behavioral modeling
approaches that are based on large-signal, time-domain mea-
surement data. Conventionally, such models are extracted from
single-tone measurement data. Single-tone excitation is no
longer representative of the type of signals to which RF devices
are subjected in modern telecommunication systems. Also,
many measurements are required for model construction. 

To illustrate how multisines can help, the so-called state-
space-based modeling approach is considered [31]. In this
approach, the dependent variables—typically the port cur-
rents—are expressed as a function of the independent vari-
ables—typically the port voltages and their higher-order
derivatives—up to the higher-order derivatives of the port
currents. To ensure good model accuracy over a wide range of
experimental conditions, the measurement data used to con-
struct the model must cover the device’s state space well. This
is a high-dimensional problem that can be illustrated by con-
sidering the two-dimensional (2-D) projection on the (V1,V2)

plane, with V1 and V2 being the port voltages of a two-port.
Figure 11 shows the (V1,V2) trajectory in the case of a single-
tone excitation. The data points are on the contour. This graph
shows that to cover the (V1,V2) plane with sufficient density,
a large number of measurements is required. 

The number of measurements can be reduced drastically
by instead using a multisine excitation [10]. Figure 12 shows
the trajectory corresponding to a multisine excitation. In this
case, the data points are not only on the contour, but also

Figure 11. Trajectory in the (V1,V2) plane in the case of a sin-
gle-tone excitation [32].
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densely cover the area within the contour. This can be
understood as follows: one trajectory corresponds to one
period of the intermediate frequency (IF) envelope. As one
IF envelope encompasses thousands of RF periods, the com-
binations of instantaneous (V1,V2) values are much greater.
For example, assuming that the fundamental frequency is 1
GHz and the IF period is 40 μs, one IF period encompasses
40,000 RF periods, resulting in at least 800,000 data points (if
the number of harmonics considered is ten) when applying
the Nyquist theorem. As this number of data points is
impractical, subsampling can be performed. This is justified,

because data points that are neighbors in the state space add
little information due to the high density of data points.
Various approaches to execute this subsampling have been
developed, such as sampling equidistantly in time or
according to the degree of nonlinearity [33].

Finally, we show that this approach yields accurate behav-
ioral models. The DUT is a packaged buffer amplifier
designed for 4.9-GHz wireless applications. A 63-tone multi-
sine was designed to mimic a 1.6-MHz bandwidth QPSK-
modulated digital signal [27]. Figure 13 compares the PDFs
of the multisine and the QPSK-modulated digital signal.

Figure 12. Trajectory in the (V1,V2) plane in the case of a multi-
sine excitation [10].

Figure 13. PDF of a QPSK-modulated digital signal (solid line)
and optimized 63-tone multisine (dotted line) [27].

Figure 14. Measured (circles) and simulated (solid trace) b2 scattered travelling voltage wave: (a) magnitude waveform, (b) phase
waveform of the complex envelope around RF carrier frequency, (c) magnitude waveform, and (d) phase waveform of the complex enve-
lope around the second RF harmonic. The input power is 6 dBm [27].
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After the behavioral model using the multisine
measurements was constructed, the model was tested using
another set of QPSK-modulated data [27]. The set of plots in
Figure 14 depicts the time-domain simulation results (solid
trace) together with the corresponding measurements (cir-
cles) of the b2 scattered travelling voltage wave at port 2. The
graphs in Figure 14(a) and (b), respectively, show the magni-
tude and phase of the complex envelope around the carrier
frequency. Similar results for the complex envelope around
the second RF harmonic are plotted in Figure 14(c) and (d),
respectively. We notice very good agreement between the
measurements and the model predictions around the RF car-
rier frequency as well as around its second harmonic. 

Conclusions
In summary, we can say that the multisine approach is well suit-
ed for evaluating a nonlinear system excited by real communi-
cation signals. Multisine signals enable us to gather important
information about the in-band distortion and to excite long-
term memory effects by generating baseband components.
They are periodic and straightforward to characterize, making
them ideal for identifying both magnitude and phase distortion
during test and verification. Using multisines to simulate stan-
dard wireless system excitations and figures of merit allows for
very good laboratory nonlinear distortion measurement setups.
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