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Abstract

In this paper, Gain Compression, Expansion and
Intermodulation Distortion (IMD) phenomena in power
amplifiers is studied and predicted using a new mathematical
basis. This type of nonlinear model enabled the design of
power amplifiers specially tailored to present a desired IMD
versus drive level pattern. Finally, illustrative application
examples are presented.

 I. INTRODUCTION

One of the major issues in a power amplifier design
process is the level of nonlinear distortion allowed, in order to
fulfill the specifications of SNR. Normally, to solve this
problem, the Input Back-off technique is used. Since that first
order procedure consists in lowering input power in order to
reduce distortion power at the output, it also decreases output
fundamental power, thus degrading efficiency and the overall
system performance.

The first objective of this paper is to present a new
mathematical model that explains nonlinear distortion
mechanisms, which are responsible for the so-called gain
compression and expansion phenomena in power amplifiers.
This will enable the accurate representation of strange
behaviors of the most important distortion effects: 3rd order
IMD and harmonic distortion. With this type of information it
became possible to understand and therefore possibly
overcome some of the associated input back-off problems.

Usual power amplifier’s fundamental output power and 3rd

harmonic distortion curves versus input power can present
two clearly distinct behaviors, as is shown in Fig.1.

Fig. 1 – First and third harmonics Pin-pout curves

Solid line corresponds to a normal gain compression
operation. That means output power first follows linearly the
input, rising 1dB for each dB of input power increase. Then,
for a determined input drive, it progressively deviates from
that curve starting to compress. Beyond this point, the
relation between input and output is less than 1dB/dB,
tending to an asymptotic rate of 0dB/dB. The corresponding
3rd harmonic distortion can be observed as beginning with a
linear behavior too, rising 3dB for each dB of input power.
And, when the fundamental starts to compress, it presents a
sudden increase, tending again to a constant. So, the ratio
between output power and distortion rapidly degrades.

On the other hand, the slashed curve of Fig. 1 represents
the case of some times observed gain expansion phenomenon.
That means the output fundamental power first linearly
follows the input power, then, it starts to get a faster rate of
rise (gain expansion), and finally, it compresses again to the
above maximum output power. Now, consider the 3rd

harmonic curve. It can be seen that first it follows the
previous solid curve within the small signal regime, rising
3dB for each dB of input level. Then, contrary the previous
case, it presents an unexpected minimum at a determined
input power. By observing the two curves, and remembering
that the design goal is a certain relation between output
fundamental and the 3rd harmonic distortion (C/I), it is no
longer evident which input back-off should be imposed. In
fact, for the same distortion characteristics, we will get a
better output C/I by selecting B as the amplifier working
point, than with A.

Other authors [1] have already observed this strange
behavior in IMD, but until now no one tried to explain its
origins, or predict it without measuring the final amplifier
circuit. Since the problem resides on how to predict these
different amplifier behaviors, we began by analyzing the
amplifier in its small signal regime, and then extended the
results to large signal operation. Small signal analysis was
based on Volterra Series (VS expansion of the amplifier’s
active device nonlinear model) [2], while large signal was
handled by Describing Function (DF) techniques [3].

In the next section this mathematical approach will be
presented. Then, in section III an application example will be
shown.

BA



 II. MATHEMATICAL APRROACH

If Volterra Series technique [2] is applied to the simplified
amplifier nonlinear transfer function of Fig. 2, a good
approximation of the characteristic function between points A
and B can be obtained with only a 5th degree Taylor series.
We called this the small signal analysis, from which output
voltage can be given by:

Y(ω)=H1(ω)X(ω)+N2H2(ω1,ω2)X(ω1)*X( ω2)+
+N3H3(ω1,ω2,ω3)X(ω1)*X( ω2)*X( ω3)+ … (1)

Where X(ω) and Y(ω) are the frequency domain
representation of the input and output signals, respectively,
and H1(.), H2(.), H3(.) are the Volterra first 3 nonlinear
transfer function of the system, and finally, N2 and N3 are
constants.
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Fig. 2 – Characteristic function

If the input is assumed as a sinusoidal single tone,
X(ω)=Xejφ, we will have for the 1st and 3rd harmonic
behavior:

Y(ω)=H1(ω)Xejφ+3H3(ω,−ω,ω)X3ejφ+10H5(ω,ω,ω,−ω,−ω)X5ej

φ (2)

Y(3ω)=H3(ω,ω,ω)X3ej3φ+5H5(ω,ω,ω,ω,−ω)X5ej3φ

(3)

As can be seen the 1st harmonic, or the output fundamental
power, will rise 1dB for each input (X) dB, until the term
H3(ω,ω,−ω)X3 starts to be important, in comparison to the
term H1(ω)X. So, when H3(.) is contrary in phase to H1(.), a
compression phenomenon will appear. Or in the opposite case
expansion if H3(.) is in phase to H1(.). This behavior remains
until the term H5 starts to be important.

Now looking to expression (3), the third harmonic curve
will rise 3dB for each dB of input, until the term
H5(ω,ω,ω,ω,−ω)X5 starts to be important, and dominates over
the term H3(ω,ω,ω)X3.

If H5(ω,ω,ω,ω,−ω) is in phase with H3(ω,ω,ω),the third
harmonic curve will have an expansion, rising with a slope of
more than 3dB for each input dB. Otherwise, if they are
opposite in phase, the third harmonic curve will present

compression and for a pre-determined input power (X) a
minimum can be generated. This minimum will appear at:

H3(ω,ω,ω)X3ej3φ=-5H5(ω,ω,ω,ω,−ω)X5ej3φ (4)

corresponding to an input power of 
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If a larger input signal is considered, like one that travels
far beyond point B, Fig.2, a larger Taylor series degree must
be used, in order to maintain Volterra series’ accuracy. Then,
combining different arrangements of Hi various nulls can be
created. It can be proved that circuit’s behavior can be very
well explained until point B using a simple 5th or 7th Taylor
approximation and a Volterra series. But, if the circuit is
biased between A and B and excited with a signal that travels
to C, more terms of the Taylor series should be used. A very
large Taylor series makes the applicability of the Volterra
series unrealizable, and so a more powerful analysis tool is
needed. In our case we will use the Describing Function (DF)
technique [3].

If the signal level is large, only quantitative information of
the DF can be retained, loosing all the qualitative information
provided by Volterra series. In that case nth harmonic
distortion for a single tone input excitation may be
represented by:
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; where vin(t)=Asin(ωt), and the 3rd harmonic distortion
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It can be proved, using the expressions above and for a
system with a characteristic function as the one presented on
Fig. 2. That the third harmonic distortion converges to a
constant power with 180º out of phase, (compared with the
fundamental output power), when the input power tends to
infinity. So, using Volterra series, some knowledge of the
third harmonic distortion can be obtained for small signal
regimes, and using the Describing Function the large signal
regime can be sought.

In conclusion, small and large signal distortion will be
integrated in the same mathematical model by using a
simplified formula. In the next sub-section this new formula
will be presented.



 III.  SMALL AND LARGE SIGNAL BEHAVIOR
MODEL

In order to integrate the small and large signal behavior
Volterra series was considered to represent the small signal
and the Describing function the large signal, the equivalent
formula will be:

Y(3ω)=H3(ω,ω,ω)X3ej3φ+5H5(ω,ω,ω,ω,−ω)X5ej3φ+LS(3ω)
(6)

for a single tone excitation, where LS(3ω) is the now
called Large-Signal Contribution:

LS(3ω)=DFIout(A,3ω)-Y(3ω) (7)

LS(3ω) is near zero, compared with the Volterra series,
between A and B (if the circuit is biased between A and B)
and is very large when the signal travels far from B towards
C.

Using DFIout(A,3ω) it can be proved that the output
distortion power of the 3rd harmonic [Y(3ω)] tends to a
constant, and its phase to 180º, as explained above. So, if
Y(3ω) has a phase of 0º in its small signal region, and then
tends to 180º for large signal, it must have a zero that results
from the iteration between LS(3ω) and the so called small
signal behavior.

It can also be proved that small signal behavior has a
strong relation with the characteristic function derivatives [4].
So, if the derivatives of the characteristic function are known,
then the device must be biased in a point where its small
signal 3rd order distortion output has a 0º phase in order to
justify a minimum at a certain output power. This minimum
will appear because the large signal phase tends to 180º

Although this mathematical derivation was developed to a
single tone excitation, it can be proved that it can be applied
to any type of input excitation.

Looking back at (6), can be seen that it is possible to
generate multiple nulls. Consider for example that the circuit
is biased between point A and B, where H3>0 >>>H5,
(positive third derivative). Then, a null will be generated by
the iteration of H3 and LS, because the phase of Y(3ω) tends
to 180º for large signal. This null will be generated when the
time domain excursion of the excitation signal approaches
point B, as LS suffers there a rapid grow. Because H3 is
positive, in-band distortion that falls over the fundamental
will add to H1, and so an expansion phenomenon will appear -
dashed lines of Fig.1.

The second case is where H3<0 >>>H5, (negative third
derivative). That means LS and H3 are always in phase, and
so, as they will add up, nulls are no longer possible. Also,
because H3<0, it will subtract to H1 and a compression
phenomenon is present - solid lines of Fig.1.

Consider now that the circuit was biased near the 3rd
order IMD sweet-spot where H3=0. Now, small signal
behavior will depend only on H5, and the same conclusions
can be taken for H5>0 or H5<0 and H5>>>H7.

Finally, when H3≠0 <H5 we can have a small signal null if
H3 is opposite in phase to H5, and a large signal null if H5>0.

In the next section, some illustrative examples will be
proposed, in order to prove its applicability to real devices
and systems.

 IV. APPLICATION EXAMPLE

In order to prove the practical validity of the above-
explained theory, a MESFET power amplifier with a
characteristic function similar to that of Fig.2 was biased in
several conditions.

The amplifier schematic is presented in the next figure:
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Fig. 3 – Schematic diagram of the power amplifier circuit.

Both, the amplifier characteristic function and that
function’s derivatives were extracted using a harmonic
balance simulator, and are presented next.

Fig. 4 – Characteristic function, 1st and 3rd derivatives.

Using [4], the relation between the Volterra series and the
nonlinear characteristic function derivatives can be taken. So,
if some bias points are chosen, we can generate minimums at
certain input power excitation.

In order to prove this, we excited the power amplifier with
a two tone signal, and used two different bias points. One at
the maximum positive third order derivative, class C, and the
other as a standard class A power amplifier. In the next
figures these different behaviors can be observed in the
fundamental output frequency and at the IMD excitation.



Fig. 5 – Output Power for two bias points, Class A(+) and Class C.

As can be seen from figure 5, the fundamental output
power for the class A amplifier compresses in all the input
sweep range, while the fundamental output power for the
class C amplifier, starts to present an expansion behavior,
tending to the same compressed output power. These results
are well predicted by the above formulas presented in this
paper.

Fig. 6 - IMD Power for two bias points, Class A(+) and Class C.

From Fig. 6, it is possible to see that the class A power
amplifier IMD rises 3dB for each input dB in its small signal
region, and then, near the 1 dB compression point, starts to
compress, having a sudden increase degrading overall IMD.
In contrast, the Class C amplifier IMD rises 3dB for each dB
of input power, and then, near the 1 dB compression point, a
minimum can be observed, like the one predicted by the
mathematical formula.

Fig. 7 - IMR for two bias points, Class A(+) and Class C.

In figure 7, the IMR (Intermodulation ratio, IMR=Pout-
IMD) is plotted versus the output power. There, it is possible
to see that for an equivalent output power near 10 dBm the
IMR is better for the class C power amplifier. Despite the
better small signal IMR presented by class A, in the large
signal regime, it is still possible to generate a better IMR for
the class C amplifier. In summary, for a certain IMR
specification it is possible to use a Class-C amplifier, taking
all its recognized advantages in power added efficiency, in
applications where traditional designs would advise the more
obvious linear Class-A.

 V. CONCLUSIONS

In conclusion, this paper shows, for the first time, a
rigorous formula to predict and to explain the so-called IMD
large signal sweet spots. Using this type of simplified
formulation, it is possible to predict compression expansion
and distortion behaviors, not only in the small signal regimes,
but also in the large signal regimes.

It was proved that by using an a priori more nonlinear
amplifier, like a class C designs, it is possible to have a better
distortion behavior in the large signal regime, where the class
C amplifier presents a better power efficiency, and is
normally used.
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