
Modeling Correlated and Uncorrelated Distortion
in Communication Systems

Frank P. Hart∗, Nuno B. Carvalho†, Kevin G. Gard∗, and Michael B. Steer∗
∗Department of Electrical and Computer Engineering

North Carolina State University, Raleigh, North Carolina 27695-7914
Email: fphart@eos.ncsu.edu, kggard@ncsu.edu, mbs@ncsu.edu

† Instituto de Telecommunicações, Universidad de Aveiro, 3810-193 Aveiro, Portugal
E-mail: nbcarvalho@ua.pt

Abstract— Simulation technology suitable for extracting
correlated and uncorrelated distortion in communication sys-
tems is presented. This is achieved through a new frequency-
indexing scheme with the Arithmetic Operator Method that
separately tracks correlated and uncorrelated intermodu-
lation products when multi-tone signals with uncorrelated
phase are amplified through a nonlinear system. The indexing
scheme is illustrated with a three-tone example and results
from a fifth-order nonlinear amplifier excited by fifteen
independent tones are considered. In the example it is shown
that undesirable uncorrelated in-band distortion is lower than
the innocuous correlated in-band distortion.

Index Terms— Multi-tone signals, uncorrelated phase, non-
linear amplifiers, computer-aided analysis, co-channel distor-
tion, in-band distortion

I. INTRODUCTION

In recent years it has become apparent that uncorrelated
intermodulation (IM) distortion components appearing in
the same frequency band as the amplified output are
the major contributors to performance degradation of mi-
crowave power amplifiers. Correlated IM is a minute in-
phase degradation of the linearly amplified output signal
and has no impact on the performance of a system.
Correlated IM can be viewed as the multi-tone equivalent
of gain compression or enhancement rather than as sig-
nal impairment. Uncorrelated IM, however, is viewed as
undesirable and is included as distortion in the signal-to-
interference, noise, and distortion (SINAD) ratio. Unfortu-
nately, commercial simulation environments, by the inher-
ent nature of their time-domain nonlinear solvers, enforce
correlation of frequency domain artifacts that appear at the
same numerical frequency, thus making it impossible to
separate correlated IM from uncorrelated IM. Furthermore,
recently-published results [1] have shown that correlated
IM occurs at higher power levels than uncorrelated IM.
It is easy to speculate that commercial product designs
have been completed with SINAD ratios that included the
correlated IM in the ratio’s denominator, thus exceeding
the necessary SINAD ratio specification at the expense
of other design parameters or resulting in components
that were more costly than necessary. The shortcomings
of enforced correlation in commercial environments has

spurred researchers to develop analytical and simulation
methods to distinguish correlated and uncorrelated IM
along with laboratory measurement schemes for separating
these two forms of distortion.

On the analytical front, researchers at the Universidad
de Aveiro have developed methods for predicting power
levels of correlated and uncorrelated IM products in the co-
channel band [1]. The methodology combines the use of
3rd order Volterra transfer function models including mem-
ory and cross-correlation post-processing of the results of
time-domain or Harmonic Balance simulations. The work
is the culmination to date of analytical work that began on
uncorrelated multi-tones several years ago [2]. At that time,
the analytical results were validated through a modifica-
tion of a previously-disclosed simulation environment [3],
[4] that enforced use of equally-spaced frequencies, thus
eliminating the possibility of storing output spectral con-
tent of differing input frequency mixtures that mapped
to the same output frequency. However, the response to
uncorrelated multi-tones was computed at each frequency
during the mixing computations, thus giving the correct
output spectra without attempting to separate correlated
and uncorrelated IM. In [5], [6] Gharaibeh, Gard, and
Steer developed and disclosed a methodology for analyzing
and measuring the correlated and uncorrelated co-channel
band distortion produced by a multisine representation of
a CDMA signal. Boulejfen et al [7] developed memoryless
5th order Volterra transfer functions (and methods for
analyzing them) and implemented them in commercial
simulators with good results, but no attempt was made to
distinguish correlated and uncorrelated IM output power
in the co-channel band.

Here, for the first time, a frequency-domain simulation
environment (called the AOM Toolbox) is used to predict
in-band correlated and uncorrelated IM power levels. The
separation of correlated and uncorrelated power data is fa-
cilitated by simple inspection of the Basic Intermodulation
Product Description (BIPD) table, a table of vectors that
forms an underlying vector decomposition of the numerical
frequency domain such that statistically orthogonal output
frequency mixtures occurring at the same numerical fre-
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quency are assigned to unique phasors in the vectors used
to compute the output spectra. The predicted correlated
and uncorrelated power is computed from stored data that
was previously used to demonstrate that the AOM Toolbox
accurately predicts the response of a 5th order nonlinearity
to a 15-tone uncorrelated phase source [8].

II. CONSTRUCTION OF A THREE-TONE BIPD TABLE

Consider three unit-amplitude independent tones, f1, f2,
and f3 located at 449, 450, and 451 MHz, respectively, and
let them have identically distributed random phases φ1, φ2,
and φ3, respectively. Expressed in a compact form,

x(t) =
1
2

3∑
q=1

[
ejφej2πfqt + e−jφe−j2πfqt

]
, (1)

where j ≡ √−1 and x(t) has the Fourier Transform

X(f) =
1
2

3∑
q=1

[
ejφδ(f − fq) + e−jφδ(f + fq)

]
. (2)

Now suppose x(t) is passed through a memoryless non-
linear transfer function limited to the 3rd order, so,

y(t) =
3∑

n=1

[
an[x(t)]n

]
, (3)

and y(t) has the Fourier Transform

Y (f) = a1X(f) + a2X(f) ∗ X(f)
+ a3X(f) ∗ X(f) ∗ X(f) , (4)

where ∗ denotes convolution. Since X(f) is comprised
of Dirac delta functions, the form of the output signal
will be comprised of Dirac delta functions at frequency
mixtures of two tones at the second order and three tones
at the third order. If the input frequencies are assigned to a
column vector fin = [f1 f2 f3]T and the weightings of the
input frequencies appearing at the output are expressed
as a row vector ηT

k = [ηk,1 ηk,2 ηk,3], then a compact
expression for the numerical frequency locations of the
output spectra is given by the dot product of ηT

k ·fin, where
the permissible frequency weightings in ηT

k are determined
by the discrete frequency convolution in (4). Tabulating
these frequency weightings is a combinatorial problem at
each order of nonlinearity, but construction of the table is
relatively straightforward, and for real signals of the sort
used here, the conjugate symmetry of the spectral content
permits a simplification of the table to DC and positive
frequencies, i.e. a one-sided spectrum.

The construction process begins with the linear re-
sponse, which is given simply by entering the rows of a 3
by 3 identity matrix as the first entries of the table. Next,
the second order response is determined by adding and
subtracting the span of the 3 by 3 space of upper circulant

shift matrices to the linear response. Thus the matrices
added and subtracted to the linear response are:

⎡
⎢⎣

0 1 0
0 0 1
1 0 0

⎤
⎥⎦

⎡
⎢⎣

0 0 1
1 0 0
0 1 0

⎤
⎥⎦

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦

Unit shift Two shifts Three shifts

The Unit shift matrix is the basic upper circulant matrix;
when multiplied by itself, it gives the Two shifts matrix,
and a further multiplication by the Unit shift matrix yields
the Three shifts or identity matrix. Adding and subtracting
the Unit shift and Two shifts matrices to the identity matrix
for the linear response creates candidate matrices of BIPD
table entries that correspond to IM products, while adding
the Three shifts matrix yields harmonic products. Row
vectors from these candidate matrices are added to the
BIPD table if:

• The 1-norm of the row vector is equal to the current
nonlinear order under construction

• The numerical frequency of the row vector is non-
negative

• The row is not a duplicate of an existing table entry

The result of the construction process for the second order
response is the addition of the rows of the Second Order
matrix below to the BIPD Table.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1
−1 1 0
0 −1 1
2 0 0
0 2 0
0 0 2
1 1 0
0 1 1
1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 2 0
0 −1 2
−1 1 1
1 −1 1
−1 0 2
3 0 0
0 3 0
0 0 3
2 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 −1
2 1 0
0 2 1
1 0 2
2 0 −1
2 0 1
1 2 0
0 1 2
1 1 −1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Second Order Third Order Third Order

The third order response portion of the BIPD table, shown
above and to the right (as two matrices), is constructed
from the second order portion through application of the
same process used to construct the second order response
from the linear response. The all-zero DC row vector is
prepended to complete construction of the BIPD table,
and the resulting table contains 32 rows of vectors, each
containing 3 elements and representing a unique possible
mixing output. The fully constructed the BIPD table is
sorted by increasing 1-norm, not by frequency. Before its
further use in the AOM Toolbox, the BIPD table is sorted
by numerical frequency, with the result in Table I.

Note that the AOM Toolbox algorithm that constructs
the BIPD table is not limited to three tones and a 3rd order
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nonlinearity. Extension to greater numbers of arbitrarily-
spaced input tones and higher orders of nonlinearity is
straightforward and has been implemented in Matlab R©.
While the algorithm is practically bound by combinatorial
complexity as described in [8], it has computed the BIPD
table for a 220 tone input through a 3rd order nonlinearity
in about two hours while 100 tones through a 3rd order
nonlinearity takes about 4 minutes.

III. DATA MINING THE BIPD TABLE ILLUSTRATED

Notice that each row of Table I contains a unique vector
of frequency weightings, but numerical frequencies are
not unique. This poses no problem to the AOM Toolbox
simulation environment, which maintains a 1-to-1 relation-
ship between the number of rows in the BIPD table and
the number of phasors in vectors used to compute output
spectra. The convolutions in (4) are performed via matrix-
vector multiplications where the row and column spaces
of the matrices also maintain a 1-to-1 phasor relationship
with the number of rows in the BIPD table.

Focusing on the co-channel band frequencies, i.e. the
rows at Frequency Indices 7 through 12 in Table I, note that
the unit vector entries at indices 7, 9, and 11 correspond
to the input (and linear output) frequencies while the
entries at indices 8, 10, and 12 correspond to in-band
3rd order IM products at the same respective frequencies.
Consider Frequency Indices 7 and 8 first. Here, the IM
term at index 8 is composed of a mixture of twice f2

minus f3. Since f1 does not appear (η8,1 = 0), the IM
term at index 8 is statistically independent and therefore
uncorrelated [9] from the input at index 7. A similar
observation can be made about the IM term at index 12
relative to the input at index 11. Turning to Frequency
Indices 9 and 10, notice that the IM term at Index 10 is
a mixture of all three input frequencies and specifically
η10,2 = −1, so that this IM term statistically depends
upon f2. However, a correlation analysis, assuming zero-
mean uniformly distributed random variables for the input
phases, yields a result of 0 for the cubic function of the
complex exponentials producing the IM term at frequency
index 10 with the linear term at frequency index 9.
Thus, although the random phase variables are statistically
dependent, the spectral content created is orthogonal and
uncorrelated. In general, the spectral content at each BIPD
is orthogonal and uncorrelated from the other BIPDs.

Since the BIPD table shows all possible output fre-
quency combinations, it follows (and can be shown by
correlation analysis) that correlated components occur only
when a second-order IM term in the BIPD Table (‖ηk‖1 =
2) is mixed (BIPDs are added or subtracted) with one
of the inputs (‖ηk‖1 = 1) such that the resulting BIPD
corresponds to an input. Such mixtures necessarily involve
phase cancellation. For example, adding the BIPDs at
frequency indices 7 and 1 yields the BIPD at frequency

TABLE I
ILLUSTRATIVE FREQUENCY-SORTED BIPD TABLE

Freq. 1- f1 f2 f3 Num.
Index Norm Weight Weight Weight Freq.

k ‖ηk‖1 ηk,1 ηk,2 ηk,3 (MHz)

0 0 0 0 0 0

1 2 −1 1 0 1

2 2 0 −1 1 1

3 2 −1 0 1 2

4 3 2 0 −1 447

5 3 2 −1 0 448

6 3 1 1 −1 448

7 1 1 0 0 449

8 3 0 2 −1 449

9 1 0 1 0 450

10 3 1 −1 1 450

11 1 0 0 1 451

12 3 −1 2 0 451

13 3 0 −1 2 452

14 3 −1 1 1 452

15 3 −1 0 2 453

16 2 2 0 0 898

17 2 1 1 0 899

18 2 0 2 0 900

19 2 1 0 1 900

20 2 0 1 1 901

21 2 0 0 2 902

22 3 3 0 0 1347

23 3 2 1 0 1348

24 3 2 0 1 1349

25 3 1 2 0 1349

26 3 0 3 0 1350

27 3 1 1 1 1350

28 3 0 2 1 1351

29 3 1 0 2 1351

30 3 0 1 2 1352

31 3 0 0 3 1353

index 9 ([1 0 0] + [−1 1 0] = [0 1 0]), which is an input
frequency, while subtracting the BIPD at index 7 from the
BIPD at index 17 also yields the input frequency at index
9 ([1 1 0] − [1 0 0] = [0 1 0], similarly when index
2 is subtracted from index 11, when index 9 is subtracted
from index 18, and when index 11 is subtracted from index
20, respectively). The convolution operations produce this
correlated (vectorially-added) result in the spectral vector
for the 3rd order output phasor (thus keeping it separate
from the linear output) corresponding to frequency index
9.

IV. RESULTS AND DISCUSSION

The method for distinguishing correlated and uncor-
related in-band IM distortion described in Sec. III was
applied to the previous results of simulations that were in
good agreement with measurements of a microwave ampli-
fier response to 15 independently-generated tones [8]. The
power of the uncorrelated IM terms occurring in the co-
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(b) Magnification of the Co-channel band.

Fig. 1. Results of mining the BIPD table to separate correlated and uncorrelated co-channel power.

channel band was computed by summing the squared mag-
nitudes of the orthogonal phasors from a single simulation,
and the power of the correlated IM terms was computed
by performing an averaging of the squared magnitudes
of the results of 30 simulations, with each simulation
having a different set of random input phases. Figure 1(a)
shows the total output power along with the correlated
and uncorrelated co-channel IM power while Fig. 1(b)
provides a magnified view of the co-channel power band.
Good agreement can be seen between the results predicted
here and those obtained by applying analytical cross-
correlation methods to a memoryless nonlinearity in [1].
Specifically, the correlated power is several dB higher than
the uncorrelated power at each frequency in the co-channel
band. In [1], the correlated power is flat across the band,
while here there is a 1.5 dB variation. This is due to the
fact that there is a 0.6 dB variation in the amplitudes of
the 15-tone physical source used and an approximate 0.2
dB in-band loss variation in the cable and combiner chain
(and reflected in the simulation environment here) from
the sources to the amplifier input, while in [1] the sources
were of equal amplitude.

V. CONCLUSION

Simulation data which were previously used to validate
the AOM Toolbox against measurements have been easily
mined to predict the in-band correlated and uncorrelated
IM power, and agreement was seen between these pre-
dictions and those predicted for memoryless nonlinearities
using analytical methods. The key to facilitating the data
mining is the BIPD table, which orthogonally decomposes
the numerical frequency domain such that the spectra for
correlated and uncorrelated outputs are stored at different
locations.
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