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Abstract – This work discusses the use of standard two-tone 
tests for assessing the nonlinear distortion performance of 
microwave power amplifiers under real telecommunications 
stimuli. Although it is shown that critical points of 
intermodulation distortion behavior found in the two-tone 
responses may not be exactly identified under real stimuli, the 
deduced similarity of behavior proved the utility of these 
traditional two-tone tests as a first and simple performance 
check. 

Index-Terms – Intermodulation distortion, power amplifiers, 
measurement. 

I. INTRODUCTION 

Two-tone intermodulation distortion, IMD, tests have been, 
for many years, the workhorse in nonlinear distortion 
assessment. However, the difficulty in directly mapping this 
simplified behavior onto the response obtained with real 
telecommunications stimuli has always raised an 
understandable group of doubts and criticisms. This can be 
traced to the inexistence of either a solid theoretical 
formulation for analyzing these two cases, in a sufficiently 
general sense, or even any reliable empirical knowledge, i.e., a 
set of irrefutable experiments. 

A general formulation that could give us bounds of the 
validity of extrapolating two-tone results for other complex 
signals is a task of extreme difficulty. The mathematical 
problem has an unavoidable nonlinear nature, aggravated by 
the wide range of possible telecommunication signal formats. 
In fact, by only realizing that a typical complex modulated RF 
carrier may have base-band components that extend from zero 
to several MHz, while a two-tone only involves the tone 
separation, we would immediately give up from the attempt of 
deriving any theoretical relation in the case of a nonlinear 
system presenting long-term memory effects.   

Designing a set of experiments (of laboratorial or computer 
simulation nature), whose results can be generalized is also 
not easy, as seen from the plots shown if Fig. 1. It depicts 
three illustrative pairs of measured output nonlinear distortion 
power in the adjacent channel, ACP, (integrated in a 10% 
channel bandwidth) versus input power, Pin, curves. Each of 
the pairs corresponds to the distortion obtained under a two-
tone and a W-CDMA excitation applied to the same 
nonlinearity, in this case a typical power transistor biased for 
Class A, Class AB and Class C operation, respectively. 

-70

-60

-50

-40

-30

-20

-10

0

10

-50 -45 -40 -35 -30 -25 -20 -15 -10
Pin [dBm]

A
C

P,
 IM

D
 [d

B
m

]

IMDL 2t C-C
ACP Low WCDMA C-C
IMDL 2t C-AB
ACP Low WCDMA C-AB
IMDL 2t C-A
ACP Low WCDMA C-A

Class AB

Class A

Class C

Class C

 
Fig. 1. Measured nonlinear distortion power in the adjacent channel 
in a microwave transistor biased for Class A, Class AB and Class C 
operation, when subject to two-tone and W-CDMA excitations. 

 
As is shown, although both pairs of curves are similar in 

shape (considering the constant scaling factor imposed by the 
way ACP was defined), the IMD minimum observed in Class 
C is much less pronounced for the stochastic signal than for 
the two-tone. 

The primary objective of this paper is to contribute to this 
problem by giving power amplifier designers general rules for 
the validity of their two-tone tests. 

It starts by identifying the mechanisms involved in the 
process of nonlinear distortion generation. Then, it is shown 
how the differences between a real modulated signal and its 
associated two-tone stereotype can impact the distortion 
prediction in a nonlinear system. This allowed the derivation 
of some general relations useful to guide the extrapolation of 
two-tone IMD measurements to real ACP data. For simplicity, 
this theoretical analysis was restricted to memoryless 
nonlinearities, although of arbitrary shape. Finally, some 
experimental and simulation results are presented to illustrate 
and validate these general theoretical conclusions. 

II. NONLINEAR DISTORTION GENERATION PROCESS IN A 
GENERAL MEMORYLESS NONLINEARITY 

2.1 Problem Formulation 
In a compromise between the desired generality and 

analytical treatment, we restricted the analysis to a 
memoryless nonlinearity of arbitrary shape. As a matter of 
fact, this restriction must only be imposed on the low-pass 
equivalent. This means that, since we are only interested in the 
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fundamental zone response of narrowband band-pass circuits, 
the circuit can present any dynamic behavior to the RF signal, 
but must operate in a static way to the base-band modulation, 
i.e., the circuit can not show any long-term memory effects. 

Given that system class, let us consider the static input-
output relation defined by: 

 
[ ])()( txfty NL=  (1) 

 
in which fNL(.) is a general algebraic nonlinear function. 
Assuming, continuity, the Weierstrass theorem guarantees that 
this function can be approximated, with any arbitrary 
accuracy, by the following polynomial: 
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If x(t) is an evenly spaced multi-tone signal given by: 
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whose frequency components are ωk = ω0 + (k-1)∆ω (1 ≤ k ≤ 
K) and ωk = -ω0 + (k+1)∆ω (-K ≤ k ≤ -1), then the system’s 
output falling at the fundamental zone, the in-band response, 
will be: 
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2.2 Two-Tone IMD Behavior 

In case of a two-tone test, x(t) has only two frequency 
components, ω1 and ω2, and the upper (lower) IMD sidebands 
appear at ω3 = 2ω2-ω1 (2ω1-ω2), ω4 = 3ω2-2ω1 (3ω1-2ω2), …, 
ωn+2 = (n+1)ω2-nω1  [(n+1)ω1-nω2]. ω3 corresponds to what 
could be understood as the generalization for the two-tone of 
the upper adjacent channel concept usually associated with 
real communication signals, ω4 to the upper alternate channel, 
and so on.  

Each of these side-bands is the result of the addition of 
many mixing products of order greater or equal than (2n+1). 
For example, the 2ω2-ω1, usually identified as a 3rd order 
mixing product, really involves a 3rd order component, but 
also two 5th order ones, 2ω2-ω1+ω1-ω1 and 2ω2-ω1+ω2-ω2, 

three other of 7th order, 2ω2-ω1+ω1-ω1+ω1-ω1, 2ω2-ω1+ω1-
ω1+ω2-ω2, and 2ω2-ω1+ω2-ω2+ω2-ω2, and so on. However, 
since these mixing products share the same phase, φ3 = 2φ2-φ1, 
(they are correlated in phase) they all add voltage-wise. So, 
depending on the signs of the C2n+1 coefficients, and thus on 
the shape of the nonlinearity, these mixing products of various 
orders may interfere in a constructive or destructive way. 

In well behaved nonlinearities, in which the amplitudes of 
the monomials decrease with increasing degree, each mixing 
product will be dominated by its lowest order component 
(reason why e.g. 2ω2-ω1 is known as a 3rd order mixing 
product) under small-signal excitation regimes. But then, at a 
certain excitation level, this lowest order contribution will be 
overcome by the other products of higher order. The result is 
the well known IMD behavior in which, for example, the 
adjacent channel side-band 2ω2-ω1 starts to rise at 3dB/dB, at 
small-signal, to then have its slope suddenly increased or 
decreased when, at the on-set of saturation, the 5th, 7th, …, 
higher order mixing products have an amplitude comparable 
to the lowest 3rd order [1]. 

In particular, if the 3rd and higher order coefficients have 
opposite signs, there is a certain x(t) amplitude in which their 
contributions cancel exactly, and the IMD shows what has 
been called a large-signal IMD sweet-spot: a perfect dip in the 
IMD vs. Pin plot [2]. 

As we will show next, and despite of the justified attention 
it deserves on the design of highly linear power amplifiers, 
this is a very particular situation that has no exact counter part 
for any other type of signal. To understand why, let us start by 
extending these results to a three-tone signal. 

 
2.3 Three-Tone IMD Behavior 

Under a three-tone excitation, the inputs will be at ω1, ω2 
and ω3 and the upper adjacent channel will now have two 
distinct frequency components located at ω4 and ω5. Their 3rd 
order components will appear at ω4 = 2ω3-ω2, ω4 = ω3+ω2-ω1 
and ω5 = 2ω3-ω1, and 5th and 7th order components at ω4 = 
3ω2-2ω1, ω4 = 3ω3+ω1-3ω2 and ω5 = 3ω3-2ω2, ω5 = 4ω2-3ω1, 
beyond the previous higher-order phase correlated 
components created by simply adding pairs of ω1-ω1, ω2-ω2, 
or ω3-ω3. 

Now, and contrary to what happened in the two-tone case, 
there will be side-bands whose contributing components may 
have equal or distinct phases. For example, at ω4 we will have 
two 3rd order components whose phases are φ4,1 = 2φ3-φ2, φ4,2 
= φ3+φ2-φ1, one 5th order component of φ4,3 = 3φ2-2φ1 and a 
component of 7th order with a phase of φ4,4 = 3φ3+φ1-3φ2. 
Assuming, as before, that the three tones are uncorrelated, so 
that φ1, φ2 and φ3 are independent random variables, then all 
φ4,1, .., φ4,4 are uncorrelated, the addition is now power-wise, 
and the previous exact cancellation becomes no longer 
possible. Nevertheless, since the products of the form 
ω4+m(ωi-ωi) (in which ωi = ω1, ω2 or ω3 and m is any positive 
integer) share the same phase, there will be many components 
that can still cancel. 
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As seen from the comparison of the two-tone and three-tone 
distortion plots shown in Fig. 2, the overall result of this 
vector addition between the correlated and uncorrelated 
components is that, contrary to the exact IMD null observed 
under a two-tone excitation, the distortion power integrated in 
the adjacent channel will never be null when the excitation is 
composed of more than two uncorrelated tones. However, it 
still presents a valley, which justifies its interest in linear 
power amplifier design. 

 
2.4 IMD Behavior Under a Stochastic Excitation 

In order to get a better view of what happens with real 
stochastic telecommunication signals, let us now extended this 
analysis to a very large number of tones of uncorrelated 
phases. As is known, in the limit when the number of tones, K, 
tends to infinity, but the tone amplitudes are kept constant, 
such a signal becomes a band-limited white Gaussian noise (a 
stochastic excitation prototype commonly used to represent 
real telecommunications excitations) [3]. Since the signal lost 
its previous deterministic nature, it must now be described by 
the autocorrelation function, Rxx(τ), and power spectral 
density, Sxx(ω). 

In that case, the output distortion autocorrelation function, 
Ryy(τ), and power spectral density, Syy(ω), up to, say, 5th order, 
can be expressed by [4]: 
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where the symbol “*” stands for the spectral convolution 
operator. 

Again, (5) and (6) contain correlated and uncorrelated 
distortion components. The terms 32

3 )(6 τxxRC and 

52
5 )(120 τxxRC  correspond to the uncorrelated 3rd and 5th 

order distortion components, respectively, while the terms 

[ ] 322
553 )()0(600)0(120 τxxxxxx RRCRCC +  account for the 5th 

order components that are correlated with the 3rd order ones. 
As the distortion correlated terms add in a voltage-wise way 
and vary with the signal average power, Rxx(0), there will be a 
signal level for which they can add up or cancel exactly. This 
means again that the adjacent channel distortion would face a 
sudden increase, or, alternatively, an eventual more or less 
pronounced valley. 

Assuming the dominance of the 3rd and 5th order 
components in the overall IMD, this predicted valley will take 
place whenever 

0)0(600)0(1206 22
553

2
3 =++ xxxx RCRCCC  (7) 

 
or 
 

5

3
10

)0(
C

CRxx −=  (8) 

 
Since, for a two-tone excitation of equal amplitude, A – and 

thus normalized input average power Rxx(0) = A2 – a 5th order 
approximation would lead to an output adjacent channel 
voltage prediction of 
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and thus to a large-signal IMD sweet-spot at 
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about 3.8dB higher than the position of the predicted valley 
when the input is Gaussian. 

However, and similarly to what we have seen for the three-
tone case, there will always remain the uncorrelated 5th order 
distortion components that, extending from the signal channel 
up to the alternate channel, will determine the adjacent 
channel distortion. 

This is shown in Fig. 2 where IMD simulation results of 
two-tone, three-tone and Gaussian noise tests are compared. 
First, the inexistence of the IMD null is confirmed for the 
three-tone and Gaussian noise stimuli. And second, as 
theoretically predicted, it is shown that the two-tone IMD null 
indeed appears at an input power slightly higher than the one 
corresponding to the much smoother Gaussian noise 
minimum. 
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Fig. 2. Simulated IMD results for two-tone, three-tone and Gaussian 
noise excitations versus input power, when the device presents a 
large-signal IMD sweet-spot. 
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III. EXPERIMENTAL VALIDATION 

To validate the proposed theory, let us now present some 
experimental results of a real power transistor (a microwave 
HEMT) biased for two distinct operation regimes: class C and 
class A. 

Fig. 3a presents fundamental power, two-one IMD and ACP 
for W-CDMA and band-limited white Gaussian noise, WGN, 
excitations for the class A case, while Fig. 3b depicts similar 
results obtained when the device was biased for class C. 
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Fig. 3. Fundamental, IMD and ACP measured in our example 
nonlinearity biased for class A (a) and class C (b), when subject to a 
two-tone, WGN and W-CDMA stimuli. 
 

These plots clearly show that two-tone tests indeed permit 
to infer the distortion performance of real power devices both 
under small- and large-signal regimes. Moreover, as 
previously shown theoretically for the small-signal case in [3],  

two-tone tests present distortion values that are simply scaled 
versions of their real signal counterpart figures (WGN and W-
CDMA). The exception is the presence of a two-tone large-
signal IMD sweet-spot where the non-negligible higher order 
contributions obviate the extrapolation of the 3rd order model 
conclusions [3]. Nevertheless, even in this special case, it is 
shown that a more or less pronounced distortion minimum is 
still visible and that it is indeed located near the input power 
for which the two-tone IMD null is observed. 
 

IV. CONCLUSIONS 

Using an approximate analytical approach, complemented 
by simulation and experimental results, is was possible to 
prove that the results previously obtained for small-signal [3] 
could be extended to large-signal, except in the particular case 
of large-signal IMD sweet-spots. This was also carefully 
studied, and it was shown that, despite of the smoothness of 
the IMD minima occurring under real excitations, two-tone 
tests still provide much valuable information. 
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