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Abstract.- This paper presents an extension
of the time-varying Volterra-series technique for
evaluating intermodulation distortion (IMD) in FET
mixers when excited by multitone signals. The
mentioned nonlinear analysis tool is properly
combined with an accurate device characterization
in order to reproduce and control the FET distortion
performance when it is employed for frequency
conversion in small-signal regime. Good spectral
regrowth and noise power ratio (NPR) predictions
on a resistive mixer and on a class A amplifier
confirm the validity of the proposed approach not
only for time-varying but also for time-invariant
applications.

I. INTRODUCTION

The increased use of digital modulated and
multicarrier signals in radiocommunication systems has
imposed important changes in the way of characterizing
the nonlinear distortion phenomena that may appear. In
this sense, the classical two-tones intermodulation
distortion test has evolved into more appropriate
experiments: the adjacent channel power ratio (ACPR)
and the noise power ratio (NPR) measurements.

Important efforts have been recently made in
the field of nonlinear analysis tools for handling such
complex signals. In amplifiers, techniques such as low-
frequency transformation [1], transient envelope
analysis [2], Volterra-series [3], or spectral balance [4]
have evolved like robust solutions. However, very few
results have been reported for other applications [5], and
the mixer space is still quite empty.

In a mixer application, the RF excitation
amplitude is usually much lower than the local oscillator
(LO) injection. This condition has determined the
feasibility of employing time-varying Volterra-series
analysis (also known as large-signal/small-signal
technique) for accurate IMD calculations [6] when one
or two-tones are applied in the RF port [7], [8].

In this paper, we then propose a technique to
extend this powerful nonlinear analysis method to the
handling of more complex excitation signals, as most
modern radio equipment demand.  As an accurate IMD
prediction also requires a proper device model, a

recently developed equation based on the derivative
characterization is employed [9].

II. MULTITONE TIME-VARYING
VOLTERRA-SERIES ANALYSIS

Applying time-varying Volterra-series
technique implies a two-steps solution: first analyzing
the mixer behavior under the LO pumping signal (using
harmonic balance, for instance), and second introducing
the RF excitation as a small deviation from the LO time-
varying previously calculated results [10].

In Fig. 1, we show the general topology of a
single FET mixer for applying the second step of the
previously mentioned technique. Vg could represent the
RF signal in an active gate or drain mixer, a role played
by Vd if the mixer were resistive. The linear elements
have been represented through their conversion
matrices. IgsNL

i, IgdNL
i, and IdsNL

i are the ith order
nonlinear current sources associated to the respective
main nonlinearities (Cgs, Cgd and Ids).
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Fig.1 FET equivalent circuit for time-varying Volterra-series
analysis.

 The main challenge, when applying the
nonlinear current technique with multitone signals,
relays in the calculation of the nonlinear current sources
(the rest of the steps are based on linear circuit
calculations). To illustrate this situation, we will
consider a simple case, the second order nonlinear
current source for the predominant nonlinearity,
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Ids(Vgs,Vds), whose Taylor-series expansion is
represented as
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The second order nonlinear current source
could be calculated in time domain by
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Or in frequency domain by,
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A typical spectral distribution of a first order
control voltage (Vgs1 or Vds1) is displayed in Fig.2. It is
quite evident that a spectrum of this kind with the real
frequency variable would be quite sparse and difficult to
handle in a convolution product. However, the
frequency domain nature of Volterra-series analysis lets
us compress such sparse spectrum without affecting the
convolution result. In spite of the minimum separation
necessary between clusters or bands, to avoid aliasing
when the convolutions are evaluated, the computational
efforts can be greatly reduced.
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Fig.2 Spectrum of a first order control voltage. With a bold
line we have represented the components of a typical first
order voltage vector as employed in [10]. K represents the

number of RF tones.

A critical point in each compressed spectrum
convolution, Vgs1(ω)*Vgs1(ω), Vgs1(ω)*Vds1(ω) and
Vds1(ω)*Vds1(ω), is the correct identification of the real
frequency positions for the components of the
convoluted voltages. This identification lets us define
the second band voltage vectors, Vgs2Band, Vgsds2Band

and Vds2Band, which can be employed to calculate the
convolutions with the derivative spectra, Gm2(ω),
Gmd(ω) and Gd2(ω), by the classical conversion matrix
multiplication.
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III. DEVICE CHARACTERIZATION AND
MODELLING

It has been shown that accurate mixer IMD
calculations are only possible if the model is able of
reproducing the nonlinearities’ derivatives along the
entire local oscillator excursion [11].

Recently, a global Ids(Vgs,Vds) model [9],
valid for the linear and saturated regions, has been
extracted from the measured FET derivatives. The
model is based on the Shockley description, but
introducing effective control voltages (Vgseff and Vgd eff)
with soft and controlled transitions to their values in
pinch-off and forward conduction (see Fig. 3).
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Fig.3 Effective control voltage definition

As a way of illustration, in Fig. 4 we show the
measured and modeled output conductance for a typical
MESFET device from GEC-Marconi, in its linear
region. Results for the other Ids(Vgs,Vds) derivatives
may be found in [9].

In the case of the measured Gds, two lines
highlighting the Gds change of curvature (see [9]) are
displayed. These lines could approximately be defined
by VGS ≈ Vp and VGD ≈ Vp, an important detail in the
model conception.

The Gds reproduction over the whole range is
very good. In a resistive mixer [12], whose linearity
properties are highly appreciated, a good Gds (and its
derivatives) reproduction in this range is determinant,
especially for VDS = 0V. Thus, an accurate IMD
prediction could be expected if we could combine such
a model with the proposed extended analysis technique.



a)

b)
Fig. 4 (a) Measured  and (b) modeled Gds. The lines denote

the set of bias points where Vgs and Vgd ≈ Vp.

IV. MULTITONE IMD EXPERIMENTS

The nonlinear current technique for multitone
excitation was included in an in-house simulator to
evaluate spectral regrowth and NPR in single FET
mixer structures. A resistive mixer employing the
characterized 6x50µm F20 MESFET was designed,
measured and simulated. The LO and RF frequencies
were selected below 2 GHz in order to avoid important
IMD contribution from the reactive nonlinearities.

A. Spectral Regrowth

In Fig. 5, we show the simulated and measured
values of the spectral regrowth appearing at the
intermediate frequency (IF) for a LO signal of 1.6 GHz
and 0 dBm, and a 1.7 GHz QPSK RF signal. The input
spectrum was discretized in 61 components whose
phase relation was available. Such a large number of
tones can be handled without problem thanks to the
non-iterative nature of the Volterra-series approach. As
can be appreciated, there is a very good agreement
between both results.
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Fig. 5 Spectral regrowth prediction.  Simulated (—) and
measured (o o o) IF output amplitude spectrum.

B. Noise Power Ratio

In Fig. 6, we represent the IF output spectrum
for a NPR experiment at similar frequencies. For the
simulation, a discrete amplitude spectrum was generated
from the NPR excitation, and different calculation
results for a series of random phase distributions were
evaluated and averaged. The predictions are quite
similar to the measurements, validating our approach.
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Fig. 6 NPR prediction. Simulated (—) and measured (o o o )
IF output amplitude spectrum.

V. FROM MULTITONE TIME-VARYING TO
MULTITONE TIME-INVARIANT ANALYSIS

The small-signal analysis of an amplifier under
multitone excitation can be considered as a particular
case of the same analysis for a mixer. It means, once we
have developed an analysis tool for calculating IMD on
mixer applications, where “the bias point” is LO time-
varying, we are in position of doing the same for those
applications where the bias point is fixed.

In order to validate our nonlinear analysis
software and the previously referred model for this
particular case, simulations and measurements were



made on a class A amplifier built with the same
transistor.

A. Spectral Regrowth

In Fig. 7, the simulated and measured output
spectrum is presented. The input was also a 1.7 GHz
QPSK, but the device was operated in the saturation
region. It is also appreciated that the spectral regrowth
prediction is very good, supporting our approach.
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Fig. 7 Spectral regrowth prediction.  Simulated (—) and
measured (o o o) output amplitude spectrum.

VI. CONCLUSIONS

It has been shown that small-signal nonlinear
distortion phenomena, such as spectral regrowth and
NPR, can be efficiently predicted in FET mixers
employing time-varying Volterra-series analysis along
with a conveniently extracted model. The direct and
non-iterative nature of the method determines a high
degree of accuracy and the absence of convergence
problems. The method is valid for narrowband
modulated or wideband multicarrier RF signals, while
the small-signal regime is guaranteed.
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