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Abstract  — An integrated overview of CAD/CAE tools for nonlinear circuits design is presented, 

bridging the existing gaps between simulation algorithms, modeling strategies and laboratory 

characterization procedures. The paper reviews the most important RF circuit analysis techniques, the 

mathematical circuits’ and devices’ representation, and discusses important design validation aspects. 

I. INTRODUCTION 

Nonlinear circuit analysis is nowadays a field of strong scientific intervention that spans from signal and 

circuit modeling, to simulation, and design validation. 

Beginning with signal modeling, communication signals can be viewed as essentially narrowband 

information signals modulating radio frequency carriers [1]. Therefore, they ask for aperiodic stochastic 

descriptions involving two or more time scales. Signal representation is thus a problem of primary 

concern as the common approaches using CW, two-tones or even multi-tones are only different levels of 

simplification.    

In the circuit analysis arena, the nowadays standard nonlinear RF and microwave circuit simulator tool 

is the harmonic-balance technique, HB [2], treating the nonlinear elements in time-domain, while the 

linear sub-network is handled in the frequency-domain [3]. Suffering from the need to commute between 

domains, HB is conditioned by the discrete Fourier transform, DFT, limitations and is thus restricted to 
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periodic, or, at most, quasi-periodic, signals [4]. So, although it is quite popular for simulating circuits 

driven by stereotype forcing functions as single-tone or two-tones, it has been difficult to apply to real 

telecommunication signals. 

This created a renewed interest for time-domain transient methods and led to the emergence of multi-

rate techniques operating in a true mixed time-frequency domain [5-10]. Treating the aperiodic 

information envelope as a time-varying signal modulating the frequency-domain circuit’s behavior to the 

periodic RF carrier, these new approaches convert the original ODE into another multi-rate partial 

differential equation of time-varying Fourier coefficients. 

In what the model development phase is concerned, this refers to a wise choice between an accurate, but 

restricted in application range, local model formulation, and a more approximate, but also wider, global 

model expression [11].  And, in the extraction phase, it demands for an appropriate balance between the 

use of physical and behavioral (measurement) information [11]. 

Finally, at the end of the design process, the real system should be measured under some wisely 

designed stimulus and these laboratory observations used to validate similar simulation results. 

Although it is widely recognized that these various aspects play their own specific but interrelated role 

in the microwave and wireless circuit design process, their heterogeneity has led to separate treatments. 

Therefore, the main goal of this paper is to bridge the gaps between these different scientific fields giving 

an integrated overview of their role and importance in the complete RF circuit design process. For that, it 

begins by reviewing the available simulation technologies, focusing on their comparative advantages for 

each particular application. Then, it proposes a nonlinear circuit and device model formulation and 

extraction procedure, closing with the discussion of appropriate design validation methodologies.     

II. NONLINEAR RF CIRCUIT SIMULATION TECHNIQUES 

In order to get a common framework for the presentation of the various RF circuit simulation 

algorithms, consider the simple nonlinear network depicted in figure Fig. 1. 
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Fig. 1 – Nonlinear dynamic circuit example. 

Under nodal current analysis, this circuit can be represented by the following ordinary differential 

equation, ODE, in time: 
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To solve this ODE, several algorithms can be used like time-step integration, time-domain calculation of 

steady-state responses (Shooting – Newton), Frequency-Domain Methods (Harmonic-Balance or Volterra 

Series) and Multi-Rate Techniques. A brief presentation of these algorithms will now be presented. 

Time-Step Integration 

Time-step integration (also known as time-marching [12]) methods solve the circuit’s ODE for vO(t) 

transforming it into a difference equation. For that, continuous time is discretized in various instants tk 

separated by dynamic time-steps hk which converts (1) into a nonlinear difference equation. This equation 

is then solved in a time-sep by time-step basis, for all vO(tk), beginning with some predefined initial state 

vO(t0) until the desired final time vO(tK) is reached. 

Since time-step integration was conceived for transient response calculations, its direct application to 

the RF steady-state response becomes very inefficient, requiring that we wait until all transients have died 

[6]. It is also inadequate since it works in time-domain while most signal and circuit models are 

represented in frequency-domain. Finally, it is also inaccurate because the use of the DFT requires 

interpolation and re-sampling between the non-uniform dynamic time-steps, and also because of the need 

for the ideal complete vanishing of all transients [6]. 
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Nevertheless, time-step integration is still one of the mostly used methods of nonlinear circuit and 

system simulation. It is the core method of all SPICE-like circuit [12], or Simulink system [13] simulation 

programs. 

Time-Domain Calculation of Steady-State Periodic Responses (Shooting – Newton) 

In order to overcome some of the above disadvantages associated with time-step integration, shooting 

methods calculate directly the steady-state response in time-domain. They bypass the transient 

computation selecting a certain initial condition, vO(t0), such that, after the excitation period, T, the same 

initial state is obtained [6]: 
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The underlying idea consists in evaluating the sensitivity of the final state, vO(t0+T), to variations in the 

initial condition, vO(t0): 
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and then use this sensitivity to propose an educated guess for the correct initial condition vO(t0) [14]. That 

is, this method converts the nonlinear transient initial value problem of (1) into the new nonlinear 

periodic boundary value problem of (2), which is then solved for vO(t0) = vO(t0+T) using a Newton-

Raphson iteration scheme. Known as the Shooting-Newton [14], it constitutes a serious alternative for RF 

steady-state simulation since S[ivO(t0)] can be obtained along with time-step integration without the need 

for any additional post-processing, and because it has been verified that the boundary-value equation 

vO(t0+T)-vO(t0)=0 is usually mildly nonlinear, despite the circuit may be pushed well into strongly 

nonlinear regimes [6]. 
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Frequency Domain Methods 

The conventional RF approach to solve our original nonlinear ODE, takes profit of the special property 

of Fourier expansions in converting differential equations into much simpler algebraic formulations. In 

this way, the objective ceases to be a set of output instants, but a vector of coefficients of the Fourier 

expansion. So, both the excitation and the state-variables are represented as truncated Fourier series: 
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which, substituted in the circuit’s time-domain ODE, of (1) leads to a nonlinear system of (2K+1) 

equations, one for each harmonic component k. In matrix form, this system is known as the Harmonic-

Balance Equation: 
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There are two possible ways of solving this HB equation: the Volterra Series and the Harmonic-Newton.  

In the Volterra series it is assumed that (5) is only mildly nonlinear, so that its solution can be 

approximated by the analytical solution of a similar problem in which the nonlinearities are locally 

approximated by low order Taylor series expansions around some pre-defined quiescent point [11,15,16]. 

The solution can then be expressed in the frequency-domain by [11]: 
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which states that, expanded in a Volterra series, the system becomes completely identified by its n’th 

order Nonlinear Transfer Functions, NLTFs, Hn(ω1,…,ωn) [11, 15, 16, 17]. Being a true analytical model 

of a nonlinear dynamic system, the main advantage of Volterra series is its ability to provide qualitative 

information, and thus being amenable for circuit design. 
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It is known that most mildly RF nonlinear circuits can be described with enough accuracy by a 3rd order 

Volterra series. However, the conditions describing this “mildly nonlinear” behavior are not clear. 

Actually, Volterra series suffer from a limited range of convergence (they require smooth behavior of the 

nonlinear function and its derivatives in the whole domain of signal amplitude and memory span [16]), 

but also from the eventual necessity of an intractable number of NLTFs. In fact, practical observations 

have shown that the Volterra formulation has its usefulness normally restricted to excitation amplitudes 

much smaller that the quiescent point, for example, comfortably below the circuit’s 1dB compression 

point [11].   

Alternatively, the full nonlinear harmonic-balance equation of (5) can be numerically solved for Vo using 

a (2K+1) dimensional Newton-Raphson algorithm. This harmonic-Newton simulation engine is clearly 

the most used method for microwave circuit simulation. In its most common implementation - piecewise 

harmonic-Newton [3] - the network is divided into two sub-circuits as shown in Figure 2. One of these 

sub-circuits is nonlinear and memoryless, while the other is dynamic but necessarily linear. By adding the 

excitation, this allows the construction of a nodal form of the HB equation: 
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where ( ) )()( ωω oclocl VYI =V and ( ) [ ][ ]{ })(1 ωoCNLocnl VDFTiDFTI −=V . 
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Fig. 2 – Division of the circuit into a nonlinear and a linear sub-networks according to the piecewise HB 

implementation. 
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The conventional harmonic-Newton, or some of its newer implementations using quasi-Newton 

techniques [18], has been successfully applied to a large variety of microwave nonlinear circuits like 

amplifiers [19] mixers [20] and oscillators [21]. Relying on iterative methods for solving the associated 

Newton-Raphson linear system [22], they have recently relaxed the necessity of handling large Jacobian 

matrices, allowing their application to circuits (or systems) involving a huge number of unknowns [18].  

Nevertheless, the necessity of passing from the time to frequency-domain, and vice-versa, requires the 

use of the DFT, and so restricts HB application to stimuli and responses where this signal processing tool 

is both valid and efficient. Therefore, this traditional form of HB leaves outside true non-commensurate 

multi-tone (quasi-periodic or aperiodic) signals [11] and strong nonlinear regimes where the DFT 

demands for a very large number of coefficients [11]. 

Multi-Rate Techniques 

Multi-rate techniques appeared exactly to ease the difficulties in handling quasi-periodic signals [5, 23], 

and have gained a strong acceptance in the wireless circuit design area because of the typical two time-

rate nature of these modulated RF signals. 

When the excitation is an RF carrier cos(ω0t) modulated by a base-band envelope ve(t), which is 

uncorrelated with the carrier, the circuit behaves as if it had a stimulus dependent on two different time-

scales τ1 and τ2: 
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The original circuit’s ODE, in t shown in (1) becomes a Multi-Rate Partial Differential Equation, 

MPDE, in (τ1,τ2) [5, 9]: 
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which can now be solved in a bi-dimensional time-domain for vO(τ1,τ2), or bi-dimensional frequency-

domain for Vo(k1Ω0, k2ω0), whether transient or doubly-periodic responses are desired [5, 9]. 

If both the envelope and the carrier are periodic and the consequent doubly-periodic regime is sought, it 

is better to solve the MPDE in a bi-dimensional frequency-domain. In this case, the state variable would 

be described by: 
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which substituted in the MPDE leads to the following bi-dimensional HB equation, the basis for most of 

the multi-tone nonlinear simulation methods [4]: 
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In most practical cases, however, the information nature of the envelope makes it an aperiodic signal, 

and so it is better to solve the MPDE in the frequency-domain for the carrier, ω, but in the time-domain, 

τ1, for the envelope. In this case, the state variable description becomes a DFT (for the carrier) with τ1 

time varying (according to the envelope) coefficients: 
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which substituted in the MPDE leads to the following τ1 time-varying HB equation: 
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This time-varying HB equation can now be discretized in τ1 time-steps, hk, which allows the 

determination of the envelope transient solution for each of the Vok(τ1) harmonics. 
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This method, from which a particular approximate implementation is known as the Envelope Transient 

Harmonic-Balance [7, 8, 10], constitutes a serious step towards a true nonlinear envelope driven system 

simulator. 

III. NONLINEAR DEVICE AND CIRCUIT MODELING 

If it sounds intuitive that the model must constitute an accurate mathematical representation of the 

circuit’s voltage and current relationships, it is no longer so obvious what metrics should be used to 

qualify a particular model. For achieving that goal, it is convenient to recall the Volterra expansion 

expressed by (6). This is a series involving two essentially different, but interrelated, entities: nonlinearity 

and memory. 

The first one is expressed by the expansion order, n. Higher orders imply more complex behaviors, and 

so an increasing number of different responses. These add up at the output turning model identification a 

very difficult task. 

Another aspect to take into consideration when dealing with nonlinear modeling is local and global 

models. 

Local models are very accurate current/voltage, I/V, or charge/voltage, Q/V, representations valid only 

in the vicinity of a particular quiescent point [11]. Locally approximating the function and its higher order 

derivatives, these models achieve the best level of representation detail, guaranteeing predictive 

capabilities of higher order distortion effects. However, their Taylor series form [11] also indicate that 

they are prone to abrupt degradation when the input signal amplitude leaves the vanishing small-signal 

zone. 

Global models, on the other hand, do not try to get an optimum representation in the vicinity of the 

quiescent point, but seek for an overall reasonable approximation in the whole range of excitation 

amplitudes [11]. This way, they usually provide a better large-signal approximation, when compared to 

local models, at the expense of generally worst accuracy under small-signal regimes. 
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One possible way to fulfill this compromise, obtaining global models still with good small signal 

accuracy, is to use physical device information during model development. Examples of physical based 

models already exist for a long time for Schottky diodes [24] and bipolar devices [25], but physical-

behavioral combinations have also been proposed for GaAs MESFETs [26] and MOSFETs [27], for 

example. 

In summary, the basic memoryless nonlinear modeling idea should be to start with a behavioral 

formulation selected from the knowledge of the physical operation of the device (global modeling), and 

then extract its model parameters from higher order characteristics obtained for different bias points 

under small signal operation (envisaging local accuracy). For a general bi-dimensional I/V model in 

which the input and output terminal currents, i1 and i2, depend on the input and output terminal voltages, 

v1 and v2: 
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these coefficients can be extracted with the set-up of Fig. 3 [26]. 
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Fig. 3 – Double-input double-output local nonlinear model extraction set-up. 
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Turning now our attention to memory span, it presents, at least, two distinct aspects. Beginning with 

linear memory, i.e. memory effects associated with the first order Volterra kernel or transfer function, 

memory span is simultaneously a measure of impulse response length, or of required frequency 

resolution. It is, thus, a quantitative measure of the smoothness of H1(ω). 

When memory associated with higher order NLTFs is considered, the problem becomes much more 

involved. First of all, this form of memory can only be felt when the system is excited by two or more 

frequency components (actually a number of independent frequency components equal to the nonlinear 

order of the NLTF in study). Second, it may also be observed that the system can significantly change its 

dynamic behavior when the input amplitude is varied. For example, it may be almost memoryless under 

small signal regime (absence of linear memory), and then become dynamic under large signal, i.e. in 

presence of a strong demodulated base-band or any harmonic components. Therefore, since the complete 

identification of a n’th order NLTF requires an excitation composed by n different, and non interacting 

tones, (n degrees of freedom) [28], or (n-1) different tone separations, nonlinear memory can not be 

captured under CW excitation. Furthermore, since this form of memory is intrinsically mixed with 

nonlinearity, its extraction also demands for a wide range of excitation amplitudes. 

In circuit terms, this means we need to excite all the system’s dynamic states, from the fundamental 

zone to all of its harmonics and the base-band, even if we were only interested in the first zone output, as 

in band-pass telecommunications systems [1]. In wireless circuits driven by modulated signals, for 

instance, it has been observed that the base-band dynamics play a determinant role in accurately 

predicting nonlinear distortion effects [29-32]. 

Currently, there is an important debate on how to observe and extract nonlinear memory in general 

nonlinear dynamic systems. Early works of Lee and Schetzen [16] proposed time-domain measures of 

input-output cross-correlation when the nonlinear dynamic system is excited by Gaussian noise. Chua and 

his co-workers preferred frequency-domain observations using a carefully selected set of harmonically 

related sines and measuring the power and phase of the corresponding harmonic output components [33-
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35]. Nowadays, various researchers are trying a frequency-domain extraction with deterministic or 

random multisines [36-38], while some others are investing in a time-domain [39-40] or mixed time-

frequency [41] extraction using complex modulated signals. 

  Fortunately, it seems that the problem of nonlinear dynamic modeling of circuits and devices can be 

much simpler than this general case. If we take profit of the equivalent circuit model format and the 

quasi-static approximation required for all commercial HB or time-step integration solvers, we can 

separate memory from nonlinearity. Since these models always assume that the nonlinearities are 

memoryless and the dynamic elements are linear (note that even dynamic nonlinear capacitors and 

inductors are modeled as memoryless charges and fluxes followed by a linear differential operator to 

calculate terminal currents or voltages) the dynamic model extraction can always be divided into a linear 

de-embedding process followed by a memoryless nonlinear extraction. 

That is the concept depicted in figure Fig. 4, in which, following a behavioral modeling perspective, it is 

assumed that the input and output bias networks do not constitute any additional excitation ports, but 

were embedded into the circuit. 

So, considering the circuit of Fig. 4 modeled as an extrinsic nonlinear dynamic two-port defined by: 
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in which, typically, VL(ω) = 0, this same circuit can also be described by a two-port memoryless 

nonlinearity: 

 

[ ] [ ])(),()(),( 4343 34
tvtvftiti NL=         (18) 

  



13 

embedded in a four-port linear network described in the frequency-domain by its admittance matrix. 
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Fig. 4 – Separation of the circuit’s memoryless nonlinearities from the embedding linear network. 

 
Assuming that physical knowledge of the system in question can provide us with the embedding linear 

dynamic four-port topology, its 4x4 Yij(ω) parameters can then be obtained from any conventional 

equivalent circuit extraction technique [42]. Knowing the topology and the element values of that four-

port, leads us to the relation between the extrinsic access variables [i1(t), i2(t)] and [v1(t), v2(t)] and the 

intrinsic [i3(t), i4(t)] and [v3(t), v4(t)], which play the role of the intrinsic nonlinearity current responses 

and control voltages. So, being now de-embedded from memory, this bi-dimensional memoryless 

nonlinearity can again be extracted using the set-up presented in Fig. 3. 

For illustrating this modeling strategy with a practical example, we took the medium power amplifier 

circuit of figure Fig. 5, and proceeded to the extraction of a model of its embedding linear dynamic circuit 

and the GaAs MESFET most important nonlinearities. 

RF In RF Out

VG

VD

 

Fig. 5 – Illustrative example of a medium power amplifier circuit for nonlinear dynamic model extraction. 
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Since we had the actual circuit, the linear sub-network topology was directly obtained by inspection. 

Two different linear blocks corresponding to the input and output matching and bias networks were 

distinguished. After augmenting these sub-networks with the corresponding active device parasitics they 

were then lumped into two S-parameter matrices. As seen from the Volterra or the HB methods, these [S] 

matrices should have a frequency resolution corresponding to all the possible beat products of the input 

excitation tones. So, assuming the amplifier is to be analyzed for a RF modulated signal represented by 

the following multi-tone: 
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the output response would be described by: 
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in which the output mixing products are composed by clusters of (Qk+1) frequency components located at 

each of the ω0 harmonics (kω0) and the base-band (0ω0 or DC).   

Particular attention should be paid to the accurate modeling of the embedding impedances at the various 

harmonics (mainly the 2nd, in a PA) and the base-band, as they might have a primary importance on the 

first zone output characteristics (signal output power, power added efficiency and in-band nonlinear 

distortion) [11]. In this respect, it is convenient to stress that, most of the times, the band-pass 

characteristics of the input and output matching networks obviate any attempt to evaluate these 

impedances looking only at the available circuit ports, and the circuit must be broken into several parts. 

Furthermore, if we realize that, for example, a modern wireless signal can have bandwidths varying 

from some hundreds of kHz to a few MHz, while most microwave vector network analyzers have its 

minimum measurement frequency at some tens of MHz, added difficulties should be expected to 
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accurately characterize the base-band terminating impedances. Moreover, since the circuit’s base-band 

nonlinear characteristics can be determined by the matching networks quality factor, but also by the bias 

networks, it should cause no surprise that smooth microwave impedances, like the ones presented in 

figure Fig. 6 for the output matching network near DC, can cover up complex behaviors for the base-

band, as shown in Fig. 7. 

  

 

Fig. 6 – Output terminating impedance behavior in the microwave range. 
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Fig. 7 – Output terminating impedance behavior for the base-band, near DC (from 10KHz to 200MHz). 

 
After having the model for the linear embedding network, the GaAs MESFET gate-source charge, 

qgs(vGS) [or capacitance Cgs(vGS)], and channel current, iDS(vGS,vDS), memoryless nonlinearities were then 

represented using the model of [43-44]: 
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where u represents a measure of active channel height and is thus dependent on gate-source voltage, vGS, 

(but also accounts for the threshold variation with applied drain-source voltage, vDS) and α, β, CGSF and 

CGS0 are simply scaling empirical parameters. 

 Due to their physics based nature, these functions are valid in a wide range of control voltages, vGS and 

vDS (i.e., they constitute a global model), are continuous and present continuous derivatives, that 

approximate reasonably well the measurements at least up to the 3rd derivative (accurate local 

representation). They are thus consistent with measured (0 order) DC bias, (1st order) S-pararameters, 

and (2nd and 3rd order) harmonic and intermodulation distortion. 

iDS(vGS,vDS) nonlinear model parameters were extracted by comparing measured IDS, and all its first nine 

derivatives up to order 3 with respect to vGS and vDS, 
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with the ones predicted by the adopted functional description. The derivatives’ extraction procedure was 

based on intermodulation measurements using the set-up of Fig. 3, when the device is excited at its input 

and output by one tone at ω1, and another at ω2, in the VHF range, and the response measured at the 

output. 

As seen in figures Fig. 8 a) and b), iDS(vGS) derivatives predicted by the model are in very good 

agreement with correspondent measured data. 
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a)       b) 

Fig. 8 – Measured - a) and modeled - b) channel current, iDS(vGS) and its derivatives, Gm, Gm2 and Gm3. 

 
The same set-up can also be used for extracting Cgs(vGS) coefficients [45], but now higher frequencies 

must be applied, and only the input excitation and measurement are used. 

As seen in figure Fig. 9 a) and b), Cgs(vGS) and its derivatives predicted by the model are again in a 

reasonable good agreement with correspondent measured data. 
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a)       b) 

Fig. 9 – Measured - a) and modeled - b) gate-source capacitance, Cgs(vGS) and its derivatives, Cg2 and Cg3. 

 

IV. DESIGN VALIDATION 

Since, in this context, design validation is a group of actions taken to confront simulation results with 

real measurements, its basic step consists on the selection of an appropriate set of experiments capable of 

providing meaningful design tests. In circuits specially conceived for particular commercial or military 
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applications, these experiments try to mimic the circuit’s real operation, and the validation tests end up in 

the verification of a certain set of pre-determined specs. In general purpose circuits, these tests must have 

a broader applicability and be directed to a wider range of operating regimes. 

Although commercial simulators are now increasing their range of excitation templates to cover most of 

the wireless signal standards, band-pass approximations must be used in all the missing cases. These can 

be synthesized in either time or frequency-domains. 

In the former, more usual in the complex envelope system level simulators [13, 46, 47], several 

realizations of a pseudo-random bit sequence modulate an RF carrier according to the real system’s 

modulation scheme. Then, the circuit responses are averaged over these realizations. 

In frequency-domain, a discretized approximation of the real signal’s power spectral density function 

can be built from a set of deterministic multisine realizations, as the one given by (19) [11, 36]. Then, 

their results are again averaged.       

The circuit’s response to each of these multi-tone realizations is given by (20) and takes the aspect of a 

series of frequency component clusters, as shown in figure Fig. 10. 

 

 

Fig. 10 –Typical circuit’s response spectrum to a deterministic band-pass multisine. 

 
Despite being simple in concept, this procedure hides some issues worth to discuss. 

First, we should realize that the only essential difference between the time and frequency-domain 
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assuming periodic regimes. But, it should be also noted that, in practice, not only a pseudo-random 

sequence is actually periodic, as every time a signal is converted to frequency-domain, it is the Fourier 

spectrum of a periodic signal, whose period is the simulated time-window, that is really being calculated. 

The second aspect to be considered in this type of signal synthesis is the actual amplitude and phase 

distribution of the set of deterministic multi-tones. If the tone amplitudes, Vsq, can be simply kept constant 

from realization to realization, and selected according to the signal’s power spectral density function, the 

choice of phases, φq, is significantly more delicate. In fact, the example of Fig. 11, which depicts two 

realizations of an equal amplitude 10-tone multisine - one with constant phase distribution, and another 

with randomized phases - clearly shows that the amplitude distribution in time, or the peak power to 

average power ratio, is extremely different. This is of primordial importance to design validation, because 

not only the high peaks of Fig. 11 b) can drive the circuit into states whose corresponding nonlinear 

performance is totally altered, as it is known that various wireless standards may present very distinct 

peak power to average power ratios. That is illustrated in figure Fig. 12 a) and b) where frequency-

domain power spectral density functions and time-domain waveforms of a GSM [48] and a WCDMA 

2000 [49] signal are shown.  
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Fig. 11 – Time waveforms of two multisines composed of 10 evenly spaced and equal amplitude tones, but with 

different phase arrangements. a) – Randomized phases. b) – Constant phases. 
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a)        b) 

Fig. 12 – Illustration of frequency-domain power spectral density functions (above) and time-domain waveforms 

(below) of a GSM – a) and a WCDMA 2000 – b) signal. 

 
Turning now our attention to the design validation of general purpose circuits, the excitation signal can 

be chosen more freely, and so CW, two-tones and multi-tones tests are common. 

From these options, the CW excitation is the one leading to the simplest laboratory set-ups [11], which 

also corresponds to easiest to set in HB harmonic-Newton simulators. Typical CW tests include output 

power (or gain) and phase measurements for input power sweeps, the so-called AM-AM and AM-PM 

tests in band-pass telecommunication systems [1,11]. 

Despite their simplicity, CW stimuli are being replaced by two-tone or multi-tone signals because of 

their recognized amplitude limitations and the impossibility to evaluate higher order memory. Indeed, 

being single frequency signals with constant envelope, they can not excite any base-band frequency 

component nor any amplitude state beyond the [-A, A] interval (where A is the CW RF signal amplitude). 
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One possible alternative to overcome these deficiencies is to use a two-tone signal [11]. As shown in 

Fig. 13 a), its envelope is no longer a constant but a sinusoid, and it already involves a non-null base-band 

frequency. 
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a)       b) 

Fig. 13 – Two-tone stimulus for nonlinear memory testing. a) – RF signal and corresponding envelope waveforms. 

b) – Example of load impedance termination for a swept envelope frequency (two-tone separation).  

 
As is depicted in Fig. 13 b), changing two-tone separation allows the exploration of the circuit’s base-

band behavior, although at a single frequency point for each experiment. So, this excitation can validate 

the design against several nonlinear effects as in-band intermodulation distortion, revealing some 

important long-term memory aspects like frequency separation dependent distortion or even IMD 

asymmetric behaviors [29, 30, 31, 32, 50]. This is illustrated in figure Fig. 14 where the observation of 

IMD asymmetries in our amplifier under test is a direct function of the envelope frequency which could 

then be related to the base-band load impedance shown in Fig. 13 b). 
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a)      b) 

Fig. 14 – Nonlinear two-tone IMD asymmetries as a manifestation of the circuit’s envelope dynamics. a) – Typical 

observation of asymmetric IMD output spectrum when the envelope frequency was 120 MHz. b) – Variation of IMD 

asymmetry versus envelope frequency.  

 
Finally, a tow-tone amplitude sweep can also reveal deeps or valleys in the IMD versus input power 

characteristics, which have been extensively used in the design of highly efficient and linear wireless 

power amplifiers. Fig. 15 is exactly an illustration and such measured and simulated results obtained with 

our example medium power amplifier. 
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Fig. 15 – Results of measured and simulated two-tone IMD sideband amplitudes for an input power sweep. 

 
Despite the base-band terminations are already being sensed in a two-tone test, no mixing products 

between different base-band components are still possible. Furthermore, this type of stimulus confines the 

input amplitude distribution to the [-2A, 2A] range, where A is again the amplitude of each tone. 
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Extending this stimulus for simultaneous multiple frequency beats and broader amplitude distribution 

requires excitations composed of multi-tones and of wider amplitude distribution in time. This implies an 

increase on the number of tones of a multisine (finer frequency resolution) but of randomized phases to 

obviate the odd amplitude distribution shown if Fig. 11 b). In the limit, when the number of tones tends to 

infinity and the phases are uniformly distributed over [0, 2π], the excitation tends to band-limited white 

Gaussian noise [36, 51]. This empirical model validation conclusion was already predicted by the 

Volterra-Wiener theories which showed that a white (or band-limited) Gaussian noise can, indeed, test a 

causal, stable system of finite memory span for all its nonlinear states and memory effects [16, 40]. 

So, general purpose circuits are more often tested under noise excitations, from which the measurements 

of noise power ratio [11], or of co-channel and adjacent-channel distortion [11] shown in Fig. 16, are just 

two widely spread examples.  
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a)      b) 

Fig. 16 – a) Band-limited white Gaussian noise excitation used for the amplifier design validation. b) - 

Measurement and simulated results of co-channel and adjacent-channel distortion when the amplifier under test was 

subject to band-limited Gaussian noise. Simulated results were obtained with a multi-tone HB engine by averaging 

the model responses to a set of random multisine realizations. 

 
Unfortunately, noise excitations are difficult to handle in practice, and, due to their true stochastic 

nature, impossible to simulate. So, the approximating alternative has been to rely on its (supposed) 

ergodicity, estimating their expected statistical properties (as power spectral density functions) from the 
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average of results taken from multisines of constant amplitude and randomized phase – random multisines 

– or of both random amplitude and phase – periodic noise - [36]. Fortunately, a series of recent 

mathematical results have shown that the response of a nonlinear dynamic system to a random multisine 

or periodic noise converges, under some weak restrictions, to the response to true Gaussian noise when 

the number of averaged realizations tends to infinity [36]. This provided HB multi-tone simulators based 

on the multi-dimensional Fourier transform [4] on spectral balance [52] or even on artificial frequency 

mapping techniques [53-55] with the necessary theoretical support to handle these more involved 

stochastic excitations. It was actually an HB engine based on an artificial frequency mapping that was 

used to compare the measurement results obtained with band-limited Gaussian noise with the simulated 

ones presented in Fig. 16 [11]. 

V. CONCLUSIONS 

Although nonlinear network design is a problem of complex nature, it is rapidly advancing towards a 

mature state. 

Because both short-term and long-term memory effects are involved, simulating nonlinear networks 

subject to telecommunication signals may require a wide variety of simulation tools as recently proposed 

mixed-mode multi-rate techniques. But, it also requires specific electron device and terminating networks 

modeling. That should be valid, not only near the excitation frequency, as at least the base-band and the 

first few harmonics of the RF signal. 

As the response of a nonlinear network to a certain input can not be determined from the response to 

any other excitation, a conservative rule would say that it should be tested with signals as close as 

possible to the expected real ones. However, recent advances in system identification and nonlinear 

measurement science have shown that reasonable design analysis and validation can already be obtained 

from band-limited Gaussian noise or even averaged random multisine approximations. 
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