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resumo 
 

 

Esta tese esta inserida no domínio dos sistemas não lineares sendo

direccionada para sistemas de micro ondas e radio frequência. Neste estudo

pretende-se compreender o impacto da distorção não linear em sistemas

wireless quando submetidos a sinais digitais modulados.  

Para fazer o estudo destes fenomenos é necessario efectuar uma correcta

carcterização do sinal de excitação, contudo devido á sua natureza aleatoria

este processo nem sempre é facil, o que originou simplificações, que no

entanto são por vezes aplicadas de modo errado. Neste estudo é aboradado

este problema sendo ilustradas as diferenças entre as aproximações e a

estatistica real do sinal e ainda exposto o processo para o calculo analitico da

estatistica real do sinal. 

Serão também estudados diversos fenomenos responsaveis pelo

aparecimento de distorção não linear, estes fenomenos serão representados

através de modelos, tais como, o modelo de Winner-Hammerstein e o modelo

multi-slice. 
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abstract 

 
This thesis is performed under the non-linear electronic systems context, as

radio frequency and microwave systems, this study is intended for the

understanding of the impact of the non linear distortion in wireless systems

when using complex digitally modulated signals. 

To evaluate it is necessary to make a correct characterization of the excitation

signal. However, due to its random nature, these processes are not always

easy, which leads to simplifications. Although this simplifications sometimes are

used wrongly. 

These will be discussed and the differences between the real signal statistics

and the approximations will be showed, moreover the analytical process to

obtain the real signal statistics will be presented. 

Several non linear phenomena responsible for the non linear distortion will be

studied. Each component will be represented by models as the Wiener-

Hammerstein and the multi-slice model. 
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Chapter 1 

1 Introduction 

 

1.1 Wireless Systems 

 

The use of wireless systems started with the analogue radio, using Frequency 

modulation, FM, and amplitude modulation, AM, techniques when the spectrum 

limitation was not a problem and the bit rates were reduced.  Later, digital modulation 

schemes, [1], were proposed, which brought security, high data bit rates, 

communication quality, spectral efficiency and a decrease in the bit error rate. 

However, around ten years ago, a massive evolution of wireless devices were 

introduced on a commercial level, and since then, our lifestyles have irreversibly 

changed.  This is so significant that we cannot imagine our life without mobile services, 

these being the most important example: GSM, the European standard and IS-95, the 

American standard.  

The reduced costs, the almost one hundred per cent connectivity, the full mobility 

and the high voice quality service allowed 2G systems to have a penetration tax above 

one hundred per cent which turned it, into one of the biggest commercial successes 

ever.  This created great expectations for all wireless companies and as a result, an 

intensive field of research was generated to offer new services with hopes of creating 

the same commercial success as the 2G systems.  The objective was to develop mobile 

devices able to offer more demanding services than voice, this effort was known as 3G.  

The most popular 3G systems are WCDMA and CDMA2000 [2, 3], these try to offer 

multimedia services while maintaining full mobility. To achieve this objective the main 

upgrade in relation to the 2G systems was the use of the CDMA technique in the 
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European case and also the rake receiver [4] which can reduce the fading effects 

originated by the increase of bandwidth.  Although was proved that 3G systems could 

not follow the expectations.  Nowadays, the telecommunications market is waiting for 

promising wireless systems able to reach data rates near of 50 Mbits/s with high 

mobility, and most of all a system that fulfil the expectations created by the 3G systems.  

In the last few years we have witnessed the enormous growth of wireless systems, 

simultaneous with that, the Bandwidth necessary was also increased by channel.  As a 

result of this phenomenon, the limited available spectrum was quickly occupied 

becoming a precious resource.  Currently some alternatives are in discussion to 

overcome this issue one of which is the cognitive radio technology [6].  

Therefore several changes in wireless architectures have been made, for example: a 

reduction of the guard band between adjacent channels, new complex modulation 

techniques were introduced mixing amplitude modulation with phase modulation. 

Simultaneously the amplifier operation point was moved to the saturation in order to get 

the better trade-off between power and. efficiency.  These changes increase the 

distortion level at the and consequently decrease the Signal to Noise Ratio, SNR, this 

reduction comes both from their own channel as well as the adjacent channels 

interference, therefore the tolerance margin for the system behaviour prediction will be 

reduced and more accurate analysis has to be done. 

These changes required more demanding designs of the wireless systems specifically 

in the Power Amplifier.  Effects until now, unknown or neglected, start to play an 

important role in the overall system performance, moreover all analysis made must be 

redesigned in order to accommodate these new effects.  Several approximations to 

characterize the RF signal (Gaussian assumption) as well as the models used to describe 

de PA behaviour (memoryless) are no longer accurate as the system engineers needs to 

correctly project wireless systems which have less tolerance margins, therefore new 

efforts must be made to make a precise prediction of systems behaviour and also 

powerful simulation tools must be available to carry on this task. 
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1.2 Dissertation Overview 

 

This Dissertation is divided in six parts, in the first chapter some general concepts are 

introduced associated to the system level analysis, which are used along this 

dissertation. In Chapter 3 we explain the statistic nature of the RF digitally modulated 

signals and methods used to represent it. In Chapter 4 we give a step further studying 

new nonlinear phenomena in Power Amplifiers, to quantify them we use the figure of 

merit EVM. To confirm the results previous obtained we perform simulations in 

Chapter 5. To complete the previous chapter, Chapter 6 presents some measures 

showing the real behavior of memory effects when real signals are used. At last, 

Chapter 7 presents conclusions and suggestions for future work. 

During the elaboration of this thesis the follow contributions were made: 

 

[1] Rui M. Estanqueiro Santos, N. B. Carvalho and Kevin Gard, “Degradation of 

CDMA Wireless Communications due to PA Nonlinearities Presenting Long 

Term Memory Effects” submitted to Microwave Transactions and Techniques 

[2] Rui M. Estanqueiro Santos, N. B. Carvalho and “EVM estimation in 

RF/Wireless Components” submitted to PIMRC. Athens, 2007. 

[3] Rui M. Estanqueiro Santos, N. B. Carvalho and Kevin Gard, “The Impact of 

Long Term Memory Effects in Wireless QPSK Modulated Signals”, in IEEE 

MTT-S International Microwave Symposium, Hawaii 2007 

[4] Rui M. Estanqueiro Santos, N. B. Carvalho and “System Figures of merit 

Evaluation in Non-linear Amplification of Digitally modulated Signals” in 

Confetele. Peniche, 2007. 

[5] Rui M. Estanqueiro Santos, N. B. Carvalho and João P. Martins, “Envelope 

Time Trajectories of Multi-sine Signals" in INMMIC Conference. Aveiro, 2006. 
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Chapter 2 

2 System Level Concepts 

 

In this section a brief explanation of the main concepts related with the system level 

analysis point of view are presented. The signal envelope concept, as well as the 

mathematical definition is defined. Some aspects associated with distortion 

characteristics are introduced. Since the system level analysis is mainly based on 

simulation, the simulation procedures are explained. Moreover, two essential figures of 

merit for the system level analysis and therefore for the system characterization are 

introduced. 

 

2.1 Signal Envelope Definition 

 

The wireless signals are commonly generated using a quadrature modulator as shown 

in Fig. 1.  The digital information is divided in two branches, in each one the digital 

information is filtered with a pulse shaping filter and up-converted orthogonally to the 

carrier frequency, being then summed to form the modulated carrier, in Fig. 2, we can 

see the signal evolution in the time domain at each point of the modulator. 

The mathematical definition of complex envelope of a amplitude and phase 

modulated carrier v(t) with fc the carrier frequency, is given by: 

 

( ) ( ) ( )( ) ( ) ( ) tjtj
c cc etcetctttAtv ⋅⋅−⋅⋅ ⋅⋅+⋅⋅=+⋅⋅= ωωθω *~

2
1~

2
1cos  Eq 2-1 
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With the complex envelope: 

 

( ) ( ) ( )tqjtitc ⋅+=~  Eq 2-2 

where i(t) and q(t) being the pulse shaped in-phase and quadrature components and ωc = 

2πfc and: 

 

( ) ( ) ( )tqtitA 22 +=  
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Fig. 1 - I/Q Modulator 

 

There are two types of complex envelopes, constant and non-constant envelopes. 

Systems without amplitude modulation have constant envelope (QPSK, GMSK) 

otherwise systems with amplitude modulation have non-constant envelopes (16-QAM).  

The envelope variations cause a decrease in the PA efficiency, due to the needed of a 
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backoff factor, to prevent the peaks in the signal to excite the nonlinearities.  These 

peaks can excite the nonlinear behaviour of the PA and consequently increase the 

distortion at the co-channel as well as at the adjacent channel which decrease the SNR, 

both in their own channel as in the adjacent channels communications respectively. 

This phenomena is often known as intermodulation distortion, IMD, which is observed 

for digitally modulated signals through the spectral regrowth or the adjacent channel 

distortion.  

However to increase the throughput is necessary to use modulations which present 

envelope variations, therefore a tradeoff between envelope variations and PA efficiency 

should be obtained. 

Nevertheless it is interesting to note that even QPSK signals present variations in 

its envelope due to the baseband filtering processes as shows in Fig. 2, these variations 

will be more severe in the direct link case where there are several users sharing the 

same channel and the envelope variations will increase as the number of users increase. 

In Fig. 2 the time domain waveforms are presented corresponding to the branches of the 

I/Q modulator presented on Fig. 1. 
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Fig. 2 - QPSK time waveforms 

 

2.2 Spectral Regrowth 

 

When a digitally modulated signal passes through a nonlinear wireless circuit, not 

only co-channel distortion is generated, but also adjacent channel distortion on both 

sides of the carrier, this is often called as spectral regrowth. 

Spectral regrowth becomes more important as amplitude modulated signals starts to 

be used with higher M for M-QAM modulations, these cause large envelope variations 

which will increase the spectral regrowth.  This becomes even more important as the 
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band guard between adjacent channels is reduced due to the limited spectrum. 

Another problem, that arises due to spectral regrowth is the cross-modulation in the 

receivers duplex.  The isolation between the transmitter and receiver ports is not infinite 

and in presence of a strong in-band jammer the receiver can be affected by the jammer 

spectrum due to the convolution process between the transmitted spectral regrowth and 

the jammer.  This phenomena was thoroughly studied on [8]. 

So its very important to understand the origin of the envelope variations and how it is 

related to the system’s parameters in order to make the implementation of linearization 

techniques. 

A usual form to quantify the interference caused by a channel on the adjacent 

channels is through the figure of merit, Adjacent Channel Power Ratio, ACPR. 

ACPR has several definitions and can be performed in the upper and lower adjacent 

spectrum, (2-3) presents the definition for the total ACPR.  

 

∫∫

∫

+

= 2

1
_

2

1
_

3

2

)()(

)(

f

f
adH

f

f
adL

f

f
co

dffSdffS

dffS

ACPR  

Eq 2-3 

  

With f2 and f3 the co-channel spectrum limits, f1 and f2 the the low adjacent channel 

spectrum limits spectrum and f3 and f4 the high adjacent channel spectrum limits.  Sco is 

the amplitude of the co-channel spectrum and SL_ad and SH_ad the amplitude of the low 

and high adjacent channels spectrum respectively. 

 

2.3 Error Vector Magnitude  

 

The possible relations between EVM and RF/Wireless components figures of merit is 

of primordial importance for improving the system specifications between the RF 

circuit design engineer and the RF/Wireless system design engineer.  

The understanding of these relationships allows the RF circuit design to be able to 
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make some compromises without sacrificing the system behavior of the overall 

scenario. This is why there are several papers that deal with this problem in the past, by 

allowing a precise study of the relation between typical figures of merit of RF devices 

as Intercept point of third order, IP3, phase noise, noise figure, etc and EVM.  

The most important relation established with EVM is with SNR, which is the 

principle figure of merit for any electronic system and is given by: 

 

SNR
EVM 1

=  Eq 2-4 

 

Expression (2-4) its as, or even more important having in mind (2-5) where we 

can relate SNR with the system distortion level, Suncorr: 

 

uncorr

corr
S
SSNR =  Eq 2-5 

 

Where Scorr and Suncorr are the correlated and uncorrelated parts of the spectrum 

respectively. 

EVM is a figure of merit that quantifies the quality of digital modulated signals, 

and is defined by the following formula: 

 

( ) ( )[ ]
[ ]∑

∑
∞+

−∞=

∞+

−∞=

+

−+−
=

n
qi

n
qqii

nTXnTX

nTxnTXnTxnTX
EVM

)()(

)()()()(

22

22

 

Eq 2-6 

 

Where (Xi,Xq) are the ideal in-phase and quadrature components respectively, 

(xi,xq) are the correspondent optimal output sampling position measured values, and T 

the bit period. EVM is a figure of merit which is signal independent, therefore its blind 

to baseband pulse shaping format, envelope variations or even pre-distortion 

mechanisms.  This is so because it only quantifies the optimal demodulated sampling 

moments. 

EVM can be increased due to amplitude and phase changes originated by linear 
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and nonlinear phenomena, although linear deviations can be viewed as power scales.  

EVM is the mean of the total power deviation, in cases where the system do not 

introduce band limitations all symbols will suffer the same effects independently of the 

bit sequence, thus every symbol has the same deviation, obviously propositional to its 

complex envelope power [21].  In this case the deviation to the ideal constellation is 

only due to distortion, and so EVM will be a good measure of the system distortion, 

through expressions (2-4) and consequently (2-5). 

In the above condition we only have to calculate each different constellation 

symbol for the entire observation interval once.  The symbols that have different 

complex power envelopes are considered different symbols. 

Looking briefly to (2-6) and remembering the definition of a complex power1  

envelope signal for one symbol: 

 
22~
qiin XXP +=  Eq 2-7 

Where the tilde is used to indicate the complex envelope format. 

Expression (2-6) can be seen as the square root of the normalized power 

deviation from each measured symbol to the equivalent ideal symbol.  The relation 

between the vector distance and the difference of two complex envelope power signals 

is given by: 

 

( ) ( ) errorqqii PxXxXvector ~22 =−+−=  Eq 2-8 

Where 

 

22

22

~

~

qiout

qiin

xxP

XXP

+=

+=

 

Eq 2-9 

 

 

                                                 
1 We consider that Xi uncorrelated with Xq 
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We can represent this on Fig. 3. 

 

Re

Im

inP~

outP~

errorP~

),( QI xx

),( QI XX

 

Fig. 3 - EVM Vector Representation 

 

So (2-6) can be rewritten as follows: 

 

in

error

in

inout

P

P

P

PP
EVM ~

~

~

~~

=
−

=  
Eq 2-10 

 

Expression (2-10) is valid only for systems which don’t introduce phase shift in the 

constellation, thus this approach is valid only for systems that preserve the phase of the 

input complex envelope signals, like memoryless devices which only consider 

amplitude variations for outP~  along the inP~  vector direction. Fig. 3 demonstrates a 

system which introduces phase changes, therefore (2-10) is no longer valid.  This 

problem will be dealt with in the section where the model WH model is considered.  
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2.4 Peak to Average Power Ratio 

 

In the wireless systems, the Peak to Average Power Ratio, PAPR, starts to be an 

intensive object of study since the introduction of the CDMA technology, where several 

users share the same time and spectrum which associated with non constant envelope 

modulations even using modulation formats as QPSK/OQPSK2 leads to larges envelope 

variations which will decrease the PA efficiency.  

PAPR is defined in (2-11). 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

avP
P

LogPAPR max
1010  Eq 2-11 

 

Where Pmax is the maximum power and Pav the average power of the signal 

envelope. Although PAPR is not a helpful tool to characterize the system performance 

by its own.  As an example in certain cases a signal with an higher PAPR can present 

less distortion than a signal with a lower PAPR, which seems contradictory, however 

this is due to the frequency of how peaks occur, and also depends on the observation 

interval, so it is very important to characterize the frequency of how the peaks occur, in 

other words, if a maximum peak occurs once in a long time we do not need to project a 

PA obey the IMD for that peak.  Instead we must establish a value of a peak probability 

density funcyion.  Therefore the introduction of another system figure of merit is clear, 

Instantaneous to Average Power Ratio, IAR. 

 

avP
tPIAR )(

=  Eq 2-12 

 

Which gives the ratio of the signal envelope above the mean value, and to obtain 

a certain probability of power peak, x, we use (2-13): 

 

                                                 
2 these signals lose the constant envelope property due to the baseband filtering process 
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{ }xIAR >Pr  Eq 2-13 

By usually standards, several efforts have been made to reduce the PAPR issue. 

In CDMA2000 and WCDMA the Hybrid Shift Keying, HPSK, was introduced 

consisting of a more efficient use of the chip codes, using a process called complex 

scrambling, the zero crossing and the 0o shifts are reduced.  For instance, with this 

technique the PAPR was improved by 1.5 dB in relation to IS-95, which uses a simple 

chip scramble, the scheme is represented in Fig. 4. 

 

 

Fig. 4 - WCDMA reverse link3 

 

With this method, only a pre defined chip sequences are used which reduce the 

set of available sequences. This occurs at the scrambling code level as Walsh codes, the 

PN sequence do not suffer any change and it is the same for both I/Q path’s. 

Another interesting observation was performed in [22] showing that do not exist a 

direct relation between peak average ratio, PAPR, and distortion. They also saw that a 

QPSK modulation have a higher PAPR than a OQPSK, although a QPSK signal 

                                                 
3  Picture tacken from [58] 
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exhibits a lower spectral regrowth. 

Beyond the intrinsic PAPR reducing techniques explained above, several other 

techniques has been proposed along the times, schemes as active constellation extension 

[23, 26], tone injection [27, 28], tone reservation [29, 32], amplitude clipping [33-38], 

companding techniques [39-43], and mixing techniques are used. 

 

2.5 Simulation Method 

 

CAD/CAE techniques are fundamental to allow the design engineers to simulate 

wireless systems and to predict the overall system response at the RF frequency. 

Nowadays, with the use of complex modulation schemes, as well as higher RF carriers, 

the sample period must be higher and the time steps must be smaller in order to get a 

valid sampling capable of mimicking the real signal.  However it will take a enormous 

amount of time to simulate as well as to generate an enormous set of values which are 

hard to handle reducing the utility of the simulation process. So it becomes essential to 

have an efficient simulation tool that optimize this type simulation. 

The circuit Envelope simulation [7] is a very efficient tool which combines time-

domain with frequency-domain techniques, where the input is a time-varying amplitude 

and phase modulation (i.e. complex envelope) RF carrier.  

To reduce the number of points, and consequently the time simulation, the signal 

around the carrier is transferred to DC and all analysis is done with the base band signal 

version (complex envelope).  To do this, the simulator will take samples of the RF 

signal with a minimum frequency 2BW where BW is the base band signal bandwidth in 

accordance with the sampling theorem.  This is done in all harmonics that result from 

the non-linear system under analysis. In Fig. 5 a visual representation of this complex 

envelope simulation method is presented. 
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Fig. 5 - Schematic envelope simulation principle4 

 

2.6 System level analysis 

 

As the CDMA signal is a time-varying envelope, it is very affected by the odd order 

PA nonlinearities, through the spectrum spreading around carrier generating 

intermodulation distortion both co-channel and adjacent channel. 

In order to obtain an analytical solution, a behavioural model has been developed, both 

at the circuit level as well as at the system level, in order to analyze the distortion at the 

output of a nonlinear amplifier driven by a digitally modulated signal.  An accurate 

analysis depends on the models precision as well as the knowledge of the CDMA signal 

statistics. 

At this level the analysis is based on models and approximations, as a result 

accurate models and approximations for the system level are primordial to a correct 

system design.  The predictions of the system’s behaviour and the adjustments made to 

its design are done according to that analysis, usually performed in the spectrum 

                                                 
4  Picture taken from [59]. 



Impact of Nonlinear Distortion in Wireless Systems 

17 

domain. 

To characterize the distortion generated by a digitally modulated signal passed 

through a nonlinear RF circuit, two main contributions were made: one by Gard [11] 

and another by Aparin [13]. Both obtained closed forms able to separate the response in 

several components, correlated and uncorrelated parts. 

First [11] estimate an analytical expression for the output power spectrum when 

the nonlinear circuit is modelled by a complex power series, however he assume the RF 

digitally modulated signal as being Gaussian.  This greatly simplifies the problem due 

to the well known Gaussian statistical properties, however this simplification is only 

verified in multi-carrier signals and in the direct link mode were a large number of 

Walsh-coded channels are transmitted simultaneously resulting in a normal distribution 

according the central limit theorem.  Nevertheless a signal transmitted by a mobile 

station, where only a single channel is transmitted, has a very distinct behaviour from 

the narrow band Gaussian noise, NBGB leading to distinct estimates. 

The author of [12] recognizes the distinct behaviour between a QPSK and a NBGN 

process, computing the higher order moments numerically. 

Afterwards, Aparin [13] obtained closed form expressions for QPSK and OQPSK 

modulations in a IS-94 and IS-95 reverse link systems respectively, using the real signal 

statistics. 

He also calculated the uncorrelated part of the spectrum for both the co-channel 

and adjacent channel which is responsible for the distortion phenomena. This result is 

obtained based on [14] and where a excellent mathematical work was done obtaining 

closed form expressions for the higher joint order moments of the base band pulse 

shaped signals, with the same format as the CMDA IS-95 signals. 

The rise of the RF bandwidth brought new phenomena which are usually known 

as long term memory effects.  Several scientific works have been done on this scenario, 

and the theme is nowadays commonly studied [15-17].  A deep study of this type of 

scheme can be found in [15] and [18]. Some authors have tried to represent these 

memory effects using some special behavioural models [19], which somehow represent 

the mechanism that was already described.  This model has already proven to be as 

accurate as the real effects of the long term memory behaviour as shown in [19] 

presenting quite good results when applied to a PA presenting memory effects, coming 
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from the bias networks [20]. Several works have been done, in this field although most 

of them were made using the two tone test [15] or multi-sine signals [20] but a study 

with real signals was not done yet. 
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Chapter 3 

3 Modulated Communications Signal 

Statistics 

 

The efforts above described, should be supported by a strong statistical framework 

for a correct prevision of the system behaviour when passing through a nonlinearity. 

Due to the random nature of RF signals, it is necessary to use a statistic model to handle 

and analyze the signals.  Unfortunately the statistical property’s of these signals are 

difficult to obtain in an analytical form. So, to overcome this issue, behavioural 

techniques are applied under certain restrictions. 

In this chapter the most used statistic process to represent Narrow Band RF signals, 

the Gaussian approximation will be used. Furthermore some methods to obtain the 

analytical solution for any order of an M-QAM CDMA signal moments will also be 

addressed. 

 

3.1 Signal Statistics 

 

Statistics are an essential tool to make analytical analysis of the systems’ behaviours 

due to the random nature of the digital information generated in the transmitter, 

consequently, all analysis are based on the signal’s statistics, so the knowledge of the 

real signal statistic is essential to predict a correct system behaviour. 

In order to simplify the system analysis, several simplifications have been made to 

model the signal statistics [9], however, these simplifications can be applied only under 

certain conditions. 
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One of the most used statistic simplifications represents the RF digitally modulated 

signal by a Gaussian process.  With the properties obtained by [10] some simplifications 

can be done for Gaussian processes, turning this calculation straightforward. 
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Fig. 6 - Probability Density Function, pdf, of a CDMA and NBGN 

 

The difference between a Gaussian process and the real CDMA statistic for a reverse-

link mode can be viewed in Fig. 6, through the probability density function, PDF. 

In the past this was used without question.  Aparin then predicted the correct statistics 

for a QPSK signal, however the calculation for a M-QAM remains undiscovered.  

The Gaussian assumption, is currently used when analysing systems such as a 

direct link 3G systems, OFDM WLAN and multiple code channel CDMA/WCDMA 

systems, mainly due to the large number theory. Fig. 7 presents the spectrum mask for 

one and sixteen users, Fig. 7.a and Fig. 7.b respectively.  A large difference is clearly 

seen in these figures on the uncorrelated distortion curve (green trace) for both the co-

channel and the adjacent channel (spectral regrowth). 
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a) 

 
b) 

Fig. 7 – Correlated and uncorrelated spectrum for a IS-95 a) 1 user b) 16 users5 

 

                                                 
5  Picture taken from [60] 
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This proves the necessity for obtaining the correct statistic of the RF signals, in 

order to make a correct analysis of the system behaviour. 

We must also have in mind that the number of users sharing the same PA is generally 

reduced in a CDMA system.  This fact, and of course the reverse link case where we 

just have one user, implies a distinct behaviour from the Gaussian process approach. 

 

3.2 Gaussian Process 

 

The most used statistic model is the Gaussian approach, based on the central limit 

theorem, which states that the sum of independent random variables tends towards a 

Gaussian distribution with increasing number of variables. This property allows the 

follow simplifications [10]: 
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Where ( )tz~  is the complex envelope of the quadrature RF digitally modulated signal, 

and ( )τzzR~  the output autocorrelation. Now using the Fourier Transform of the 

autocorrelation we obtain the power spectrum, expression (3-3). 
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~~  Eq 3-3 

 

The expressions above shows how easy is to obtain the output power spectrum based on 

the Gaussian assumption. This also allow a precise and simple analysis of the system 

behaviour since its possible quantify separately each term and therefore the total 
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spectrum will be obtained summing each individual term. 

 

3.3 Real Signal Statistics 

 

The Gaussian approximation is acceptable only in the case where several users share 

the same channel and the resulting signal approaches a normal distribution. However, in 

CDMA systems this situation is only verified in the direct-link and the assumption of 

Gaussian behaviour for the reverse-link leads to inaccurate estimates as we saw in 

previous chapters. So it is important to have an analytical solution with the correct 

statistic properties of the RF signal. The moments for a QPSK signal were already 

obtained by Aparin [13]. Here we will present the method to obtain the analytical 

solution for the M-QAM moments, for any M. 

The autocorrelation function of a process y(t) is given by: 

 

( ) ( ) ( ){ } ∫
∞
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+=+= dttttytytyERyy )()(* τττ  Eq 3-4 

 

where E[.] is the expectation operator. In this study the I/Q baseband pulse shaped 

signals are defined as follow: 

 

( )∑ ⋅−=
k

k Tktgaz  Eq 3-5 

where ak is a delta dirac function with period T and L = log2(M) different amplitudes 

with equal probability for a M-QAM system and g(t)is the baseband pulse shape filter. 

The joint moments for two generic processes x and y with the same properties as the one 

in (3-5), for any (m,n) order is given by: 

 

( ) ( ) ( ){ }tytxEnm nm
xy =,ϕ  Eq 3-6 

The bi-dimensional characteristic function of the processes x and y is defined as [9]: 
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( ) { }ysxs
xy eEssM 2121, +=  Eq 3-7 

where s1 and s2 are complex variables. Being x and y under the definition used in (3-5) 

we can rewrite (3-7): 
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As ak and an have L different amplitudes and g(t -KT) and h(t -nT) are the base band 

pulse shape filters, the mean value is different from 0 only when k = n and all 

amplitudes have the same probability, we can solve the expectation operator: 
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As each exponential have symmetrical values, in other words exist L/2 different 

absolute amplitudes, we can use the trigonometric simplification: 
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by rewrite (3-9) we can eliminate half of the summand terms: 

 

( ) ( ) ( )[ ]( )[ ]∏ ∑
∞+

∞−= = ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+−=

k

L

i
ixy kTthskTtgsa

M
ssM

2

1
2121 cos2,  
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A useful tool to obtain the joint moments is the derivate of the log characteristic 

function: 

 



Impact of Nonlinear Distortion in Wireless Systems 

25 

( )[ ] ( ) ( )[ ]( )[ ]∑ ∑
∞+

−∞= = ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+−=

k

L

i
ixy kTthskTtgsa

M
ssM

2

1
2121 cos2log,log  
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which give the (m,n) order joint cumulant, λxy(m,n): 
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This term will be calculated numerically for all requested (m,n) order. To relate the joint 

cumulants with the joint moments we use expression (3-14) from [14]. Like in the 

cumulants also the odd m+n moments are null, and φxy(0,0)=1. 
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We are able to obtain the moments for any order in M-QAM system. So if we have a 

PA described by a third order polynomial model, we can obtain the linear, correlated 

and uncorrelated distortion terms as follows, expressions (3-15), (3-16), and (3-17) 

respectively: 
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Eq 3-15 
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Where y1 is the output linear part and ydist the output distorted part. Finally to obtain the 

spectrum mask the Fourier transform is applied to each term. 
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Chapter 4 

4 EVM estimation 

 

The final objective of the system behaviour prediction is the knowledge of the 

distortion levels generated and therefore the restrictions that must be imposed to the RF 

Wireless circuits. The way to quantify the distortion is through figures of merit. 

EVM is a very useful figure of merit for systems that use RF digitally modulated 

signals, since EVM can be directly related with SNR and thus with the distortion 

introduced by the nonlinear devices. In this Chapter we will quantify directly or 

indirectly the EVM for the memoryless model, for the Winner-Hammerstein model and 

for the memory case the multi-slice model, each one representing a distinct effect 

responsible for the distortion on the PA. 

 

4.1 Relate EVM with IP3 

 

In this section we will quantify the influence of a memoryless nonlinear power 

amplifier in EVM, other authors [44] had already performed the same analysis but in the 

frequency domain, here we use a time domain approach which gives a better sensibility 

on how the different system parameters influence the system response.  To describe the 

memoryless PA behavior we use the mathematical model presented in (4-1) to 

simplicity we truncate the nonlinear response to the third order, this is enough to get a 

complete idea of the device influence on the EVM. 

 
3

3
2

21 )()()()( txatxatxaty ⋅+⋅+⋅=  Eq 4-1 

Where a1 is the linear gain, a2 and a3 the second and third order nonlinear coefficients, 
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x(t) is the input RF digitally modulated signal and y(t) RF output signal. 

The even order terms generate components at baseband and at even order harmonics of 

the carrier frequency, so a2 could be rejected since we only pretend in-band 

components. We will also quantify a1 as being part of the signal therefore. 

 

The memoryless output complex envelope signal is given by: 
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Where Xi(t)+jXq(t) are the complex envelope of x(t).  

To obtain EVM we sample (4-2), in the optimal instants, leading to the discrete form (4-

3): 
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This result shows when a digital modulated signal with a constant time domain complex 

envelope like a QPSK signal is  submitted to a memoryless device (which can be 

modeled by a polynomial response), only a linear deviation in the constellation diagram 

(a power scale) is introduced.  Therefore there is not EVM degradation, by another 

words all distortion introduced by the nonlinear device are correlated.  

Rewriting (4-3) we have: 
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Eq 4-4 

 

with: 
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Considering that a1 is part of the desired signal: 
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With, )()()(~ 22 kXkXkP qiin += , and k = 1,..,N  

Where N is the number of different constellation symbols, and so (4-6) is a sum for each 

different constellation symbol. As an example, in a QPSK signal we just have to 

perform one symbol since they all have the same complex envelope power. 

For a 16-QAM we have to calculate three symbols, where one of which has the double 

probability of occur due to the existence of two symbols in the constellation having the 

same complex envelope power.  

We can also establish a relationship with the helpful figure of merit IP3. From [45] we 

know that IP3 is given by: 
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Eq 4-7 

 

IP3 is a good figure of merit to introduce in the EVM calculations since it describes 

nonlinearity of a power amplifier as it is a quantify specified by the manufacturer. 

So the EVM can be related with IP3 as follow: 
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Eq 4-8 
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4.2 Impact on EVM of a LTI filter 

 

A Linear Time Invariant, LTI, filter for the in-band frequencies can be simplified by its 

low-pass equivalent, LPE, transfer function in the frequency domain as: 

 
[ ]θωθω Δ+−

⋅=
)(0)()( jeHwH  Eq 4-9 

Where |H(ω)| is the filter  attenuation, θ0(ω) the linear part of the phase which varies 

linearly with frequency and Δθ the phase offset which introduces a phase shift in the in-

band frequencies.  The attenuation and the phase shift will increase the EVM, 

introducing a compression and a rotation in the constellation diagram respectively, and 

these effects will be independent of the signal form. 
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Fig. 8 - Amplitude and phase response of the filter LPE 

 

In order to quantify the effect imposed by the RF filter in the EVM we apply the low-

pass equivalent transformation to the filter transfer function, which consists in the 

translation of the RF spectrum to base band using the follow procedure [46]:  
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1. Decompose the transfer function H(ω) using the partial fraction expansion. 

 

2. Discard the poles that are located on the negative-frequency half-plane. 

 

3. Shift the poles located on the positive-frequency half-plane to the zero axis by 

substituting 0ωjezz +→ . 

 

Looking to the phase plot in Fig.8 it can be seen that for DC the phase is different from 

zero by an amount Δθ, so taking the phase in DC we obtain the phase shift responsible 

for the constellation rotation.  For the attenuation we perform the in-band amplitude 

mean value of the filter low-pass equivalent. 

In practice, to improve the computation efficiency, we can excite the filter with a test 

signal and then apply the low-pass equivalent to the input and output signal in order to 

extract the phase shift and attenuation, as using (4-10) and (4-11) respectively. 
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Where Rxy(τ) is the cross correlation between signal x and y. For precise phase shift 

estimation we must compensate the attenuation introduced in the output signal. 

The test signal can be any signal, as a QPSK modulated waveform, or the usual and 

easy to use laboratory two-tone test signal. It is important to note that the precision 

which determines the filter parameters is essential to the correct prediction of the device 

behaviour. 
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4.3 Extract EVM for a Winner-Hammerstein Model 

 

The WH model is composed by the cascade: pass band filter, polynomial memoryless 

nonlinearity, and pass band filter, respectively, Fig. 9. This causes a phase rotation (due 

to filters phase shift) beyond the known amplitude expansion and compression 

phenomena.  

To quantify the degradation introduced in the EVM by the WH model, we use the 

expressions shown in (4-6), (4-10) and (4-11), with the parameters for the first filter, 

(Δθ1,att1), the amplifier, (a1,a3), and the second filter, (Δθ2,att2). 
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Fig. 9 - Wiener-Hammerstein model 

 

To explain the procedure, a QPSK (4-QAM) signal.  However this method can be 

directly extended to a more complex diagram constellations, as M-QAM with M greater 

than 4, performing only the sum of the several symbols with different complex envelope 

powers.  

The analysis starts by making x(t) pass through the first filter with parameters (Δθ1,att1), 

which leads to the following complex envelope components: 

 

)sin(~
1

22
11 θθ Δ−⋅+⋅= qiq XXattx  

)cos(~
1

22
11 θθ Δ−⋅+⋅= qii XXattx  

Eq 4-12 

 

The first part refers to a compression due to the filter attenuation and the second to the 

phase shift, where: 
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With the first RF filter effect quantified, x1, we are able to apply (4-6), and analyze the 

memoryless device. So we obtain: 
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Finally x2 will pass through the second filter and the output signal y(t) is obtained: 
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Now we are able to quantify the degradation introduced by the WH model in the EVM 

through (4-17), where: 

 
22~
qiin XXP +=  Eq 4-16 

It’s convenient to remember again that (4-17) can be extended for every digital 

modulation scheme, being only necessary to calculate all different constellation symbols 

resulting (4-17) under the square root a summation of the different constellation 

symbols. 
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Eq 4-17 

 

Where 

 

21 θθθφ Δ−Δ−=  Eq 4-18 

 

4.4 Impact of Memory Effects in EVM  

 

With present day demands in wireless systems, the PA must deal with high 

bandwidths and complex modulation techniques resulting in the introduction of new 

kinds of effects which leads the behavioural models used until now to lose its accuracy.  

A usual phenomena seen in today’s PA associated to the referred increase in signals 

bandwidth are the memory effects.  These effects can be divided in two types long term 

and short term, the first has an impact on the signal envelope and the latter of the two 

has an impact on the RF carrier.  In digitally modulated signals the information is 

carried by the envelope, so it is of primordial importance understand and predict this 

effect in order to reduce it impact in the overall system performance. 

The long term memory effects arise from low frequency behaviour of PA, trapping 

effects, device thermal response, but the most important contribution for the memory 

effects is the bias networks, which impose a very low frequency response to the 

output/input of a nonlinear circuit. This phenomenon is thus nothing more than a 

feedback mechanism that imposes nonlinear distortion inside the band of interest, by 

somehow up-convert the low frequency behaviour of the PA to the in-band RF 

frequency.  
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A system level model used to represent the long term memory effects was 

propose by [19], as we said above this model already proved it validity [20] presenting 

quite good results when applied to a PA presenting memory effects coming from the 

bias networks.  The model is presented in Fig 10, where x(t) is the RF digitally 

modulated signal. 
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Fig. 10 - Proposed Behavioural model with long term memory effects 

 

This model tells us that the output signal is given by6: 
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Eq 4-19 

 

Which when compared with a memoryless nonlinearity includes the second term that is 

responsible for the up-conversion of the low frequency behaviour of the PA. 

Based on the work presented in [20] it is already known that the fundamental of zone 

nonlinear distortion can be described by7: 

 

( ) ( ) ( )zyzxzyx FFKH ωωωωωωω −−−−=− ,,,, 223  Eq 4-20 

                                                 
6 In this case we consider that the impact of the RF filter can be ignored. 
7 Similar assumptions as was used in [11], where also considered here, that is the second harmonic filter, 

and the in-band filter are considered flat all over the interesting bandwidth. 
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where H3(.) is the third order nonlinear operator, responsible for the generation of the 

nonlinear distortion contribution on the in-band channel. 

This means that most of the spectrum shape that will appear at the co-channel and 

adjacent channel will be tailored by the base band shape filter. 

Thus it is expected that this behaviour will affect both the correlated and uncorrelated 

spectrum at the output. 

In [47] it was also proved that the correlated part is only affected by terms equal to: 

 

( ) ( ) ( )yxyyx FFKH ωωωωω −−−=− ,0,, 223  Eq 4-21 

where F2(0) is the equivalent second order function evaluated at 0Hz, or dc, thus 

memoryless, since it does not change with frequency, and only the term ( )yxF ωω −,2  is 

responsible for the memory behaviour. 

While for describing the uncorrelated part all the terms appear, and shape the in-band 

spectrum. 

Thus if we have a PA presenting memory excited by a complex modulated signal its 

output spectrum characteristics will be deeply impacted by the memory of the PA, and 

can even change deeply its memoryless behaviour. 

In order to analyse the uncorrelated and correlated distortion, and since the 

CDMA IS-95 excitation has a statistical stochastic behaviour, the analysis of its output 

should be obtained by a carefully study of its statistical characteristics. 

A similar approach used by Bendat [48] will be followed. Different values of cross-

correlation functions should be obtained both for the input, output and cross-values. The 

output autocorrelation will be obtained as: 
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Eq 4-22 
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where Ryy(τ) is the output autocorrelation and E[.] is the mean value. It should be 

noticed that: 
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Eq 4-23 

 

From (5-23) we can see that the first term is the linear response, the second and third 

terms are the correlated part of the output signal with the input, normally the more 

important term relating to the gain compression and expansion, and the forth term is the 

nonlinear distortion correlation, usually called in [11] and [13] spectral regrowth, but 

unfortunately also has some correlated components with the linear part of the output. 

This is in fact one of the major problems of nonlinear systems, that is how to identify 

the signal component at the output. 

One of the solutions often used is to consider as signal the output component which is 

correlated with the input, as is usual in conventional wireless rake receivers. 

Bussgang’s Theorem [13, 47, 49] give us the theoretical support for this, since by 

correlating the output and input signals, we can estimate the effective signal component 

of the output, and thus by subtraction we can also obtain the uncorrelated part, which is 

in fact the nonlinear distortion noise. 

So for the uncorrelated part exclusively we can also divide the output in: 
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Eq 4-24 
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Combining (4-22), (4-23) and (4-24) and using [48] we found that the correlated part of 

the output could be given by: 
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Eq 4-25 

 

With Gcorrelated what is called the underlying linear system gain, Gl the linear gain and 

Gdistc the correlated gain between the output distorted correlated signal and the input 

signal, which can be further given by: 
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Eq 4-26 

 

The uncorrelated part is thus: 

 

( ) [ ] ( )[ ]{ } ( )[ ][ ]{ }*2* )()( τττ +−+= txtxEGtytyER distcdistdistyuyu  Eq 4-27 

 

This is exactly what we are searching when measuring the in-band uncorrelated 

distortion, and thus the SNDR and ACPR figures of merit. 

In the simulated results we have access to each component, so the previous 

formula can be correctly obtained. Unfortunately in the real world, that is in the 

measurement counterpart we do not have access directly to the distorted signal, since it 

is added with the liner output signal, thus the overall underlying linear system gain 

should be used. 
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Eq 4-28 

 

In order to clearly understand all phenomena presented, that model was implemented 

using a path for each nonlinear product, as presented on Fig. 11. 
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This way each of the nonlinear distortion contribution can be studied individually. 

The nonlinear path with constant frequency behaviour (linear and cubic path in Fig. 11), 

will thus be called memoryless, since they do not change with envelope frequency, and 

they have been deeply studied by Aparin [13, 50], using a third order polynomial model. 

In that case the spectrum shape for the correlated and uncorrelated output signal were 

obtained.  

In Fig. 11 the second harmonic filter (not presented), and the in-band filter are 

considered flat all over the interesting bandwidth, similar assumptions as was used in 

[20].  So the memory effects are mainly coming from the base-band filtering process 

up-converted to the fundamental central frequency. 
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Fig. 11 - Sliced behavioural model presenting memory effects 

 

On the second order path, the signal is first squared (4-29) and filtered out by a base 

band filter (4-32). 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )twtQtItwtQtItQtIaty ccS 2cos2sin22)( 222222 −+++=  Eq 4-29 

In fact in [50] it is shown that the second order memoryless distortion can be given by: 
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{ })()()()0()()0()()0( 22222222 τττττ QIQIQQIIE +++  Eq 4-30 

Which as a spectrum of: 

 

( )uuK −1  Eq 4-31 

where K is a constant, and 
b

u
π
ω

2
= , and b is the bandwidth of the baseband pulse shape 

filtering. 

In our case this signal will now be further filtered by the base band filter.  In this case 

the second harmonic is also filtered out which can not always be true in real PA 

especially in the wide-band ones. 
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Eq 4-32

 

The base band cut off frequency is W and * represent the convolution operator.  

In certain instances, this will destroy the shape of the base band signal.  In fact we have 

used low pass filters, but they can also be high or band pass filters. yB2(t) will then be 

multiplied by the direct branch x(t) resulting y2(t) in a modulated carrier around wc, 

expression (4-33) present this results. 

This time multiplication can also be seen as a spectrum convolution, so the base band 

filtering process is somehow corrupting the behaviour of the base band shape, and thus 

will degrade the co-channel distortion. 
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Chapter 5 

5 Simulation  

 

To show the distortion caused by the phenomena’s discussed in the previous chapters 

some simulations will be performed. First it will be shown that the impact of a 

nonlinearity in a Gaussian and a QPSK signal is different. This will be shown by 

simulating a non linear system using ADS, Advanced Design System and Matlab.  

 

5.1 Excitation Signal 

 

In order to have a better understand of the truly impact of a real signal in the 

degradation of SNDR of wireless systems, we use for the simulations and measurements 

a transmitter based on a real IS-95 reverse-link signal, as presented on Fig. 12. The 

signal was generated in the ADS and exported to matlab were the different models were 

developed. 
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Fig. 12 - I/Q QPSK modulator 

 

The digital information will be in this scenario modelled through a summation of Dirac 

delta function δ(t) with amplitude ±1 and a rate 2B = 1/2T that is further split into I and 

Q channels with rate B and filtered out by a raised cosine function h(t),with a cut off 

frequency of B/2 as in [13]. 

For our simple analysis the filter transfer function h(t) can be reasonable represented 

by a Nyquist ideal pulse-shaping filter, as in (5-1). 
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Resulting in the follow I and Q components: 
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With ik and qk the Dirac delta functions representing the split binary information into I 

and Q branches respectively. 

The I/Q components are further orthogonally modulated by a sinusoidal carrier, the 

result is depicted in expression (5-3). 

 

( ) ( ) ( )θθ +++= twtQtwtItx cc sin)(cos)(  Eq 5-3 

where ωc is the angular frequency of the carrier, and θ a random phase. 

 

5.2 Statistic simulations 

 

In the past several authors have addressed the problem of nonlinear distortion in highly 

complex systems, as a CDMA IS-95 wireless mobile scenario [11], [13], in those 

previous works several important information have been given to the RF design 

engineers.  First it was found in [13] that the statistics of a that signal is not equivalent 

to the statistics of narrow band Gaussian noise, Fig.13, which was the usual type of 

excitation signal used for identifying and extracting behavioural models with nonlinear 

distortion capabilities. 
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Fig. 13 - Probability Density Function, pdf, of a CDMA and NBGN 

 

In Fig. 14 its clear the difference between a Gaussian process and an IS-95 CDMA 

signal when both signals pass through a memoryless nonlinearity.  The in-band 

distortion of an IS-95 CDMA signal in a memoryless system, is reduced when 

compared with the NBGN behaviour, Fig. 14. Moreover the bell shape of the out-of-

band distortion usually seen in NBGN is altered, and can even tend to a plateau.  This 

proves the necessity of use a correct statistic to obtain accurate estimates of the systems 

behaviour. 
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Fig. 14 - CDMA (a) and NBGN (b) passing through a memoryless nonlinear 

device 
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5.3 Memoryless spectrum shape  

 

The results here presented are the well known spectrum shapes of modulated wireless 

RF signal for weakly memoryless nonlinearities. The results were simulated in ADS 

using a third order nonlinearity described by a power series as: 
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n

n
n txaty
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Eq 5-4 

 

Where an represents the nth order nonlinearity gain, N is the maximum order of interest, 

and x(t) the IS-95 reverse-link input RF signal. 

For a circuit weakly nonlinearity, the third order term is dominant and higher order 

terms can be eliminated. Also, even order terms can be eliminated since they do not 

generate terms around the carrier. However under strong signal conditions this analysis 

start losing accuracy. 

An IS-95 reverse-link signal x(t) was used as the excitation. Fig. 15 presents the input 

spectrum X(w) around the carrier. 
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Fig. 15 - Input spectrum of an amplifier for an IS-95 reverse-link signal 
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Fig. 16 presents the total output spectrum, where the spectrum widening due to the 

nonlinear terms is visible. 
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Fig. 16 - Output spectrum of an amplifier for an IS-95 reverse-link signal 

 

Fig. 17 presents the characteristic uncorrelated spectrum shape responsible by the 

distortion for a third order nonlinearity. The co-channel distortion presents a very 

characteristic mask, although these format only appears for the reverse link, where we 

have only one user, as we increase the number of users in the same channel the 

uncorrelated spectrum tends to a Gaussian shape as we showed above. 
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Fig. 17 - Uncorrelated Output spectrum of an amplifier for an IS-95 reverse-link 

signal 

 

5.4 Winner-Hammerstein simulations 

 

In order to validate the performance of the approximations proposed above, we use 

SIMULINK [52] and design a 16-QAM transmitter based on the transmitter presented 

on Fig. 12.  The RF filters have two times the signal bandwidth, and the amplifier is 

described by a third order non linear polynomial model, presenting gain compression. 

To perform EVM we get the complex envelope (I/Q sequence) of the RF output and 

input signal at the PA, and applying in (4-17).  

The filters’ parameters are obtained using the procedure explained above, with two 

signals captured with probes, one at the input and the other at the output of the filters. 
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Fig. 18 - QPSK transmitter architecture 

 

Fig. 20 validates the proposed approximation by confirming an excellent approximation 

between the simulated EVM values and (4-17), we also include the PA AM/AM curve, 

to give an idea of the PA operating point, Fig. 19.  
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Fig. 19 - System metrics. o : AM/AM 
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Fig. 20 - 16-QAM, EVM approximation; o : simulated; and * : estimated 

 

5.5 Memory simulations 

 

To simulate the memory effects the scheme presented in Fig. 11 was implemented on 

ADS. The excitation signal used was the IS-95 reverse-link signal available on the ADS 

RF System library facility. 

On the second order path, the signal is first squared (4-29) and filtered out by a base 

band filter (4-32), the resultant spectrum of these operations can be seen in Fig. 21 and 

Fig. 22 respectively.  

The shape of the second order distortion can thus be seen in Fig. 21, where it shows a 

low power valley in the centre frequency, around dc. The dc component comes form 

square operation which imposes a mean value different from 0. 
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Fig. 21 - Baseband component of the input RF squared signal 

 

The memory effects are introduced by the baseband filter process which can be seen on 

Fig. 22 for different bandwidths, and in certain instances, this will destroy the shape of 

the base band signal. In fact we have used low pass filters, but they can also be high or 

band pass filters. 
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Fig. 22 - Base band component of the filtered input RF squared signal.8 

 

The memory effects will press a new spectrum mask both on the co-channel and the 

spectral regrowth.  

Fig. 23 presents the total correlated and uncorrelated spectrum shape for the memory 

slice.  

A strong and perfectly equal (correlated) fundamental RF waveform will appear at the 

output of the second order path, since this component is derived by the convolution with 

a dc dirac it does not change with base band frequency. This can be attributed to the fact 

that this second order path, arises from the convolution of the base band signal with a 

copy of the RF input waveform. 

Regarding the uncorrelated distortion, the different shapes can be attributed to two 

different causes, as was seen above, first the dramatic change of second order base band 

spectrum shape due to the base band filtering which not only changes the spectrum, but 

also the statistic behaviour of the pure second order base band time domain signal. 

 

                                                 
8 All simulations were performed for three different base band filters bandwidth, i.e. 1/4, 1/1 and 2/1 of 

the signal bandwidth. 
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The case where the filter has ¼ of the signal bandwidth the distortion is reduced since 

this result from a convolution between the RF input signal and an approximation of a 

delta Dirac function, due to the narrow base band filter. The larger filter have a form 

very similar to the memoryless case as we except, the absence of the co-channel bell 

shape form is due to the no ideal filter behaviour. 
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Fig. 23 - Total correlated and uncorrelated spectrum mask arising from the 

second order memory path 

 

The total output spectrum mask, including the correlated and uncorrelated part, is 

presented on Fig. 24 for the three different filters, and for the memoryless case. 
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Fig. 24 - Total uncorrelated memory spectrum mask: a)3ª Filter b) 2ª Filter c)1ª 

Filter d) memoryless 
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From Fig. 24, it is clearly seen that the distortion in the entire three situations 

raise compared with the memoryless case. 

Moreover it is also seen that both the very narrow band filter and the very wide band 

filter, have a similar response, since both of them are imposing a low value of 

uncorrelated distortion arising from the base band path.  Actually the narrow band filter 

is allowing mainly de dc dirac to pass.  The large band filter is similar to a memoryless 

case, where all the base band response is considered, similar as if we have 
32 )()()( txtxtx = . 

The mid-band filter is in fact the one that imposes a strong impact on the nonlinear 

output distortion, since as can be seen, not only the co-channel uncorrelated distortion 

has change its shape, but also the spectral regrowth as raised significantly compared 

with the other cases. These is due to the fact that we will make the convolution between 

the input signal with a very distorted baseband version. 

The memory part effect coming from the second harmonic down converted to the 

carrier frequency can be rejected when compared with the base-band effect up-

converted to the carrier frequency. On the other hand the correlated component is equal 

in the three cases, since all of them arises from the dc dirac convolution. 

In order to be able to prove this sentence, the second path, correspondingly to the base 

band filtered component was tested, when the ½ bandwidth low pass filter was used, in 

two conditions, one similar to the already presented, and another one where a very 

narrow band high pass filter is cascaded with the low pass filter, removing this way the 

dc dirac from the up conversion. 

Fig. 25 presents the results for the correlated and uncorrelated distortion of this branch 

exclusively, before and after the high pass band filter insertion.  As can be seen from the 

Fig. 25 the main contribution for the correlated distortion are coming from the dc dirac 

that appears at the base band signal due to the ciclo-periodic nature of the QPSK signal. 

Despite this still exists some residual correlated distortion as can be seen in Fig. 25. 

Regarding the uncorrelated distortion different shapes, it can be attributed to two 

different causes, as was seen above, first the dramatic change of second order base band 

spectrum shape due to the base band filtering which not only changes the spectrum, but 

also the statistic behaviour of the pure second order base band time domain signal. 

Secondly the elimination of the second harmonic of that same path has also a strong 
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effect on the overall up-conversion. 
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Fig. 25 - Base band path distortion, after the base band filtering a) with low pass 

filter, b) with high pass followed by low pass filtering. 
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Chapter 6 

6 Measurements 

 

In this chapter some measurements were done to observe the real behavior of the PA. 

First the procedure used to measure the output RF signal is explained and also the 

method to split the correlated part of the uncorrelated part. The measurements were 

done to show the effect of the long term memory effects in CDMA signals. 

 

6.1  Co-channel Distortion Measurement Bench 

 

In order to measure the uncorrelated co-channel distortion, the procedure proposed by 

Bendat could be followed, and the uncorrelated distortion obtained by using: 

 

( ) [ ] ( )[ ]{ } ( )[ ][ ]{ }*2* )()( τττ +−+= txtxEGtytyER correlatedyuyu  Eq 6-1 

which is an extreme complex analysis if made in the time domain, so the usual way to 

do it is by first calculate the spectrum of the output and input signal, and the underlying 

linear system gain in the frequency domain. Thus the output uncorrelated spectrum will 

be: 

 

( ) ( ) ( ) ( )ωωωω xxcorrelatedyyyuyu SGSS 2−=  Eq 6-2 

This way the output uncorrelated spectra is directly obtained. 

The data, input and output signals, are gathered by a Vector Signal Analyser, VSA [53], 

and then processed in a computer based numerical machine. 
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Nevertheless this formulation depends on a cancellation between the output signal 

spectra and the output equivalent linear contribution spectra, however suffering for 

every numerical error arising from the cancellation procedure. 

Actually the calculation of the cross-correlation terms is very intensive, and suffers 

from a high degree of measurement noise, since several slices of the time domain 

modulated signal should be acquired before the calculations are done.  

Moreover the number of random windows to use is extremely high for a correct 

identification of the nonlinear co-channel distortion, this is the reason why most of the 

authors that have dealt with this problem have selected an alternative measurement 

scheme. 

That alternative solution implements the cancellation of the correlated part in the 

instrumentation itself, rather than in a numerical computer. 

One of those instrumentation proposals is based on the application of a feed-forward 

cancellation loop as presented in [54] and [55], Fig. 26. 

The output of this loop is nothing more that the overall output signal (including the 

distortion), after the reduction of a linear copy of the input signal.  The second path of 

the loop is nothing more than an approximation of the underlying linear gain of the 

amplifier. 

In a memoryless case this path could correctly approximate the linear gain of the 

system, which is normally approached, by an attenuator followed by a phase shifter (at 

least for narrow band systems) as was presented in [13, 54-55].  Unfortunately in the 

case of PA presenting a large impact of memory effects, that is not correct, since the 

underlying linear system is quite different from a linear well behaved gain [49], and so 

by applying this feed-forward scheme the output will have a certain amount of 

correlated distortion that could not be modelled by the delay plus attenuator approach. 
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Fig. 26 - Feed forward cancellation technique 

 

Nevertheless after the cancellation we managed to have a strong reduction of the linear 

signal that most of the times is several dB’s above the uncorrelated distortion, so the 

relationship between correlated and uncorrelated distortion in this case is much smaller, 

and thus the application of the previous formula is improved in respect to numerical 

noise. 

Consider expression (6-2), if we apply it to the output signal of the cancellation loop as 

in Fig. 26 the numerical noise will be reduced.  Consider the output spectrum power of 

the signal arising from the cancellation loop: 

 

( ) ( ) ( ) ( )ωωωω xxcorrmemorylessyyyyloop SGSS
2

−=  Eq 6-3 

where Gmemorylesscorr(w) is a linear underlying linear system that includes the pure linear 

gain and the correlated gain arising from the memoryless nonlinear distortion part.  

Looking at expression (4-25) the correlated gain will then be divided into a pure linear 

part, a correlated linear gain coming out from the memoryless distortion and a 

component of the correlated memory distortion, as in expression (6-4). 
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222
memorycorrcorrmemorylessdistclcorrelated GGGGG +=+=  Eq 6-4 

which will be all added since they are all correlated. 

So in this case, part of the underlying linear gain, was already subtracted from the 

output and thus the uncorrelated distortion will then be: 

 

( ) ( ) ( ) ( )ωωωω xxmemorycorryyloopyuyu SGSS
2

−=  Eq 6-5 

Since the main part of the underlying linear system comes from the pure linear gain, the 

amount of correlated signal at the output is now much more reduced, and thus the 

numerical error will be further diminished, as already stated for the computational case, 

where uncorrelated distortion is normally calculated directly over the distortion 

components. 

The value of ( ) 2
ωmemorycorrG  can then be directly calculated from: 

 

[ ] ( )[ ]{ }
[ ] ( )[ ]{ }*

*

)(

)(

τ

τ

+

+
=

txtxE

txtyE
G loop

memorycorr  
Eq 6-6 

 

and in the frequency domain as: 

 

( )
( )ω

ω

xx

yloopx
memorycorr S

S
G =  

Eq 6-7 

 

where Syloopx(w) is the cross correlation of the output of the loop and the input signal. 

This will thus be the measurement procedure followed in the experimental validation of 

the work. 
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6.2 Exprimental Results 

 

In order to see the experimental impact of the memory effects in a QPSK like 

modulated signal, we have generated an IS-95 CDMA reverse link as the excitation 

signal and apply it to a PA presenting memory. The set-up is presented in Fig. 26 

In order to obtain the memory behaviour and maximize their effects a PA was biased 

near its large signal sweet spot [56]. 

The first results are presented in Fig. 27, where the PA behaviour for an input power 

sweep, both the co-channel and adjacent channel distortions can be seen as well as the 

SNR. 

 

20

22

24

26

28

30

32

34

36

38

40

9 10 11 12 13 14 15 16 17
Output Power (dBm)

A
C

PR
 &

 S
N

R
 (d

B
)

ACPR-
ACPR+
SNR inband

 

Fig. 27 - IS-95 excitation passed through a PA nonlinearity presenting memory 

 

From the figure it is possible to see a high value of asymmetry, and thus of memory 

effects in the ACPR values, and by a comparison with the Gaussian behaviour, we see 

that that it states the viability of the large signal IMD sweet spot use for this respect. An 

interesting observation that can also be obtained in this graph is that the SNDR also 

presents a large signal sweet spot, despite it follows the worst behaviour of the ACPR 

values as expected. Therefore the uncorrelated co-channel distortion is impacted very 
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similarly as the ACPR. 

These result states that the large signal SNDR sweet spot is also visible on IS-95 

Systems, even in PA’s presenting memory effects. 
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Fig. 28 - Output spectrum of the IS-95 excitation passed through a PA 

nonlinearity presenting memory 

 

From Fig. 28 complements Fig. 27 where the co-channel distortion is completely 

different at small signal where no impact of memory effects is visible both at the co-

channel and adjacent channel, and at large signal, where a clear impact of memory 

effects is visible at the adjacent channel asymmetry. 

Fig. 29 and 30, presents the seek results, for the case of the PA presenting memory and 

for a memoryless PA. 
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Fig. 29 - IS-95 excitation passed through a PA nonlinearity presenting memory 
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Fig. 30 - IS-95 excitation passed through a memoryless PA nonlinearity 

 

As was expected the memory effect case presents a clear rise both in the co-channel 

and adjacent channel distortion, degrading in that respect the SNDR. 
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Chapter 7 

7 Conclusions 

 

In this dissertation the statistic nature of the RF signals as well as the degradation of the 

systems performance when the PA presents several nonlinear phenomena was 

discussed. 

It was proved that a large difference between a Gaussian process and the real statistic 

signal exists either at the co-channel as also at the adjacent channels. These results have 

an increased importance since previous works were obtained using the Gaussian 

assumption to model signals. 

We also showed that the study of long term memory effects presents very important 

differences for both types of signals. 

These dissertation also studied the effects of several phenomena presented in PA´s, first 

the analysis of the memoryless model was made described by a third order polynomial 

model, after, a more realistic model was analysed introducing constellation rotations, 

the Winner-Hammerstein model, reducing the Eb/No relationship. Finally the long term 

memory effects associated to the bandwidth increase on the nowadays wireless systems 

was deeply studied. 

We observed that the memory effects have a strong impact in the wireless systems. It 

can compromise the system performance as we saw trough the rise of the distortion 

levels.  We also show that the asymmetries due to the long term memory effects appear 

in strong signal conditions, this effect appears both in the co-channel as in the adjacent 

channel components. We also confirm the existence of sweet spot for a PA when 

present long term memory effects and in real signal excitations. 
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7.1 Future Work 

 

To complete the study presented in this dissertation and completely characterize the 

wireless systems at System level point of view, involving digital modulated signals 

passing through nonlinear devices, is necessary to obtain the statistic of M-QAM signal 

for any indice M, which will allow an accurate analysis of the following subjects. 

First a deep study in order to quantify and understand the PAPR for a CDMA system 

must be done since all analyzes made uses the Gaussian assumption, as we saw, this 

assumption leads to a very distinct results in relation to the real statistics. 

Secondly the study done by Aparin for the memoryless model using the real moments 

for a CDMA system should be extended to the memory model  
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