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Introduction
Noise. It is the classical limitation of electronics.

In measurements, noise and distortion limit the dynamic 

range of test results.

In this four-part paper, the characteristics of noise and its 

direct measurement are discussed in Part I. Part II contains 

a discussion of the measurement of noise-like signals 

exemplified by digital CDMA and TDMA signals. Part III 

discusses using averaging techniques to reduce noise. Part 

IV is about compensating for the noise in instrumentation 

while measuring CW (sinusoidal) and noise-like signals.

Simple noise—Baseband, Real, Gaussian
Noise occurs due to the random motion of electrons. The 

number of electrons involved is large, and their motions are 

independent. Therefore, the variation in the rate of current 

flow takes on a bell-shaped curve known as the Gaussian 

Probability Density Function (PDF) in accordance with the 

central limit theorem from statistics. The Gaussian PDF is 

shown in Figure 1.

The Gaussian PDF explains some of the characteristics of 

a noise signal seen on a baseband instrument such as an 

oscilloscope. The baseband signal is a real signal; it has no 

imaginary components.

Bandpassed noise—I and Q
In RF design work and when using spectrum analyzers, we 

usually deal with signals within a passband, such as a com-

munications channel or the resolution bandwidth (RBW, 

the bandwidth of the final IF) of a spectrum analyzer. Noise 

in this bandwidth still has a Gaussian PDF, but few RF 

instruments display PDF-related metrics.

Instead, we deal with a signal’s magnitude and phase 

(polar coordinates) or I/Q components. The latter are the 

in-phase (I) and quadrature (Q) parts of a signal, or the real 

and imaginary components of a rectangular-coordinate 

representation of a signal. Basic (scalar) spectrum analyzers 

measure only the magnitude of a signal. We are interested 

in the characteristics of the magnitude of a noise signal.

Part I: Noise Measurements
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Figure 1. The Gaussian PDF is maximum at zero current and falls off away from zero, 

as shown (rotated 90 degrees) on the left. A typical noise waveform is shown on the right.



We can consider the noise within a passband as being 

made of independent I and Q components, each with 

Gaussian PDFs. Figure 2 shows samples of I and Q com-

ponents of noise represented in the I/Q plane. The sig-

nal in the passband is actually given by the sum of the I 

magnitude, vI , multiplied by a cosine wave (at the center 

frequency of the passband) and the Q magnitude, vQ , mul-

tiplied by a sine wave. But we can discuss just the I and Q 

components without the complications of the sine/cosine 

waves.

Spectrum analyzers respond to the magnitude of the signal 

within their RBW passband. The magnitude, or envelope, of 

a signal represented by an I/Q pair is given by:

venv = √ (v
I
2+v

Q
2)

Graphically, the envelope is the length of the vector from 

the origin to the I/Q pair. It is instructive to draw circles 

of evenly spaced constant-amplitude envelopes on the 

samples of I/Q pairs as shown in Figure 3.

Figure 2. Bandpassed noise has a Gaussian PDF independently in both its I and Q components. 
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If one were to count the number of samples within each 

annular ring in Figure 3, we would see that the area near 

zero volts does not have the highest count of samples. 

Even though the density of samples is highest there, this 

area is smaller than any of the other rings.

The count within each ring constitutes a histogram of the 

distribution of the envelope. If the width of the rings were 

reduced and expressed as the count per unit of ring width, 

the limit becomes a continuous function instead of a histo-

gram. This continuous function is the PDF of the envelope 

of bandpassed noise. It is a Rayleigh distribution in the 

envelope voltage, v, that depends on the sigma of the sig-

nal; for v greater than or equal to 0

PDF (v) = (v–σ 2) exp (– 1—
2 ( v–σ )

2)  

The Rayleigh distribution is shown in Figure 4.

Figure 3. Samples of I/Q pairs shown with evenly spaced constant-amplitude envelope circles
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Figure 4. The PDF of the voltage of the envelope of a noise signal is a Rayleigh distribution. 

The PDF is zero at zero volts, even though the PDFs of the individual I and Q components are 

maximum at zero volts. It is maximum for v=sigma.
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Measuring the power of noise with an envelope 
detector
The power of the noise is the parameter we usually want 

to measure with a spectrum analyzer. The power is the 

heating value of the signal. Mathematically, it is the time-

average of v2(t)/R, where R is the impedance and v(t) is the 

voltage at time t.

At first glance, we might like to find the average enve-

lope voltage and square it, then divide by R. But finding 

the square of the average is not the same as finding the 

average of the square. In fact, there is a consistent under-

measurement of noise from squaring the average instead of 

averaging the square; this under-measurement is 1.05 dB

The average envelope voltage is given by integrating the 

product of the envelope voltage and the probability that 

the envelope takes on that voltage. This probability is the 

Rayleigh PDF, so:

v– = ∫
∞

0
vPDF (v)dv = σ √ π–

2

The average power of the signal is given by an    analogous 

expression with v2/R in place of the "v" part:

p– = ∫
∞

0
( v–

R

2)PDF (v)dv = 2σ–
R

2

We can compare the true power, from the average power 

integral, with the voltage-envelope-detected estimate of 

v2/R and find the ratio to be 1.05 dB, independent of s and 

R.

10 log (v
– 2

p–
/R ) 10 log ( π–

4 ) = –1.05 dB= 

Thus, if we were to measure noise with a spectrum analyzer 

using voltage-envelope detection (the linear scale) and 

averaging, an additional 1.05 dB would need to be added to 

the result to compensate for averaging voltage instead of 

voltage-squared.
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Logarithmic processing
Spectrum Analyzers are most commonly used in their 

logarithmic (log) display mode, in which the vertical axis is 

calibrated in decibels. Let us look again at our PDF for the 

voltage envelope of a noise signal, but let’s mark the x-axis 

with points equally spaced on a decibel scale, in this case 

with 1 dB spacing. See Figure 5. The area under the curve 

between markings is the probability that the log 

of the envelope voltage will be within that 1 dB interval. 

Figure 6 represents the continuous PDF of a logged signal 

which we predict from the areas in Figure 5.

Figure 5. The PDF of the voltage envelope of noise is graphed. 1 dB spaced marks on the x-axis 

shows how the probability density would be different on a log scale. Where the decibel markings 

are dense, the probability that the noise will fall between adjacent marks is reduced.
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Figure 6. The PDF of logged noise is about 30 dB wide and tilted toward the high end.
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Measuring the power of noise with a 

log-envelope scale
When a spectrum analyzer is in a log (dB) displaymode, 

averaging of the results can occur in numerous ways. 

Multiple traces can be averaged, the envelope can be aver-

aged by the action of the video filter, or the noise marker 

(more on this below) averages results across the x-axis.  

Some recently introduced analyzers also have a detector 

that averages the signal amplitude for the duration of a 

measurement cell.

When we express the average power of the noise in deci-

bels, we compute a logarithm of that average power. When 

we average the output of the log scale of a spectrum 

analyzer, we compute the average of the log. The log of 

the average is not equal to the average of the log. If we go 

through the same kinds of computations that we did com-

paring average voltage envelopes with average power 

envelopes, we find that log processing causes an under-

response to noise of 2.51 dB, rather than 1.05 dB.1

The log amplification acts as a compressor for large noise 

peaks; a peak of ten times the average level is only 10 dB 

higher. Instantaneous near-zero envelopes, on the other 

hand, contain no power but are expanded toward negative 

infinity decibels. The combination of these two aspects of 

the logarithmic curve causes noise power to measure lower 

than the true noise power.

Equivalent noise bandwidth
Before discussing the measurement of noise with a spec-

trum analyzer noise marker, it is necessary to understand 

the RBW filter of a spectrum analyzer.

The ideal RBW has a flat passband and infinite attenuation 

outside that passband. But it must also have good time 

domain performance so that it behaves well when signals 

sweep through the passband. Most spectrum analyzers use 

four-pole synchronously tuned filters for their RBW filters. 

We can plot the power gain (the square of the voltage gain) 

of the RBW filter versus frequency as shown in Figure 7. 

The response of the filter to noise of flat power spectral 

density will be the same as the response of a rectangular 

filter with the same maximum gain and the same areaunder 

their curves. The width of such a rectangular filter is the 

equivalent noise bandwidth of the RBW filter. The noise 

density at the input to the RBW filter is given by the output 

power divided by the equivalent noise bandwidth.

1.  Most authors on this subject artifi cially state that this factor is due to 

1.05 dB from envelope detection and another 1.45 dB from logarithmic 

amplifi cation, reasoning that the signal is fi rst voltage-envelope 

detected, then logarithmically amplifi ed. But if we were to measure the 

voltage-squared envelope (in other words, the power envelope, which 

would cause zero error instead of 1.05 dB) and then log it, we would 

still fi nd a 2.51 dB under-response. Therefore, there is no real point in 

separating the 2.51 dB into two pieces.

8



The ratio of the equivalent noise bandwidth to the –3 dB 

bandwidth (An  RBW is usually identified by its –3 dB BW) 

is given by the following table:  

Filter type Application NBW/–3 dB BW

4-pole sync Most SAs analog 1.128  (0.52 dB)

5-pole sync Some SAs analog 1.111  (0.46 dB)

Typical FFT FFT-based SAs 1.056 (0.24 dB)

The noise marker
As discussed above, the measured level at the out put of a 

spectrum analyzer must be manipulated in order to repre-

sent the input spectral noise density we wish to measure. 

This manipulation involves three factors, which may be 

added in decibel units:

1. Under-response due to voltage envelope detection (add  

 1.05 dB) or log-scale response (add 2.51 dB).

2. Over-response due to the ratio of the equivalent noise  

 bandwidth to the –3 dB bandwidth (subtract 0.52 dB).

3.  Normalization to a 1 Hz bandwidth (subtract 10 times  

 the log of the RBW, where the RBW is given in units 

 of Hz).

Most spectrum analyzers include a noise marker that 

accounts for the above factors. To reduce the variance of 

the result, the Agilent 8590 and 8560 families of spectrum 

analyzers compute the average of 32 trace points cen-

tered around the marker location. The Agilent ESA family, 

which allows you to select the number of points in a trace, 

compute the average over one half of a division centered 

at the marker location. For an accurate measurement, you 

must be sure not to place the marker too close to a discrete 

spectral component. 

The final result of these computations is a measure of the 

noise density, the noise in a theoretical ideal 1 Hz band-

width. The units are typically dBm/Hz.

Figure 7. The power gain versus frequency of an RBW filter can be modeled by a rectangular filter 

with the same area and peak level, and a width of the “equivalent noise bandwidth.”
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Spectrum analyzers and envelope detectors

A simplified block diagram of a spectrum analyzer is shown 

in Figure A.

The envelope detector/logarithmic amplifier block is shown 

configured as they are used in the Agilent 8560 E-Series 

spectrum analyzers. Although the order of these two cir-

cuits can be reversed, the important concept to recognize 

is that an IF signal goes into this block and a baseband 

signal (referred to as the “video” signal because it was 

used to deflect the electron beam in the original analog 

spectrum analyzers) comes out.

Notice that there is a second set of detectors in the block 

diagram: the peak/pit/sample hardware of what is normally 

called the detector mode of a spectrum analyzer. These 

display detectors are not relevant to this discussion, and 

should not be confused with the envelope detector.

The salient features of the envelope detector 

are two:

1. The output voltage is proportional to the input   

 voltage envelope.

2. The bandwidth for following envelope variations   

 is large compared to the widest RBW.

Figure A. Simplified spectrum analyzer block diagram

Figure B. Detectors: a) half-wave, b) full-wave 

implemented as a “product detector,” c) peak. 

Practical implementations usually have their gain 

terms implemented elsewhere, and implement 

buffering after the filters that remove the residual 

IF carrier and harmonics. The peak detector must 

be cleared; leakage through a resistor or a switch 

with appropriate timing are possible clearing 

mechanisms.
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Figure B shows envelope detectors and their associated 

waveforms in (a) and (b). Notice that the gain required to 

make the average output voltage equal to the r.m.s. voltage 

of a sinusoidal input is different for the different topologies.

Some authors on this topic have stated that “an envelope 

detector is a peak detector.” After all, an idealized detector 

that responds to the peak of each cycle of IF energy inde-

pendently makes an easy conceptual model of ideal behav-

ior. But real peak detectors do not reset on each IF cycle. 

Figure B, part c, shows a typical peak detector with its gain 

calibration factor. It is called a peak detector because its 

response is proportional to the peak voltage of the signal. 

If the signal is CW, a peak detector and an envelope detec-

tor act identically. But if the signal has variations in its 

envelope, the envelope detector with the shown LPF (low 

pass filter) will follow those variations with the linear, time-

domain characteristics of the filter; the peak detector will 

follow nonlinearly, subject to its maximum negative-going  

limit, as demonstrated in Figure C. The nonlinearity will 

make for unpredictable behavior for signals with noise-like 

statistical variations. 

A peak detector may act like an envelope detector in the 

limit as its resistive load dominates and the capacitive load 

is minimized. But practically, the nonideal voltage drop 

across the diodes and the heavy required resistive load 

make this topology unsuitable for envelope detection. All 

spectrum analyzers use envelope detectors, some are just 

misnamed.

Figure C. An envelope detector will follow the envelope of the shown 

signal, albeit with the delay and filtering action of the LPF used to 

remove the carrier harmonics. A peak detector is subject to negative 

slew limits, as demonstrated by the dashed line it will follow across 

a response pit. This drawing is done for the case in which the 

logarithmic amplification precedes the envelope detection, opposite 

to Figure A; in this case, the pits of the envelope are especially sharp.
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Cautions when measuring noise with 
spectrum and signal analyzers
There are three ways in which noise measurements can 

look perfectly reasonable on the screen of a spectrum ana-

lyzer, yet be significantly in error.

Caution 1, input mixer level. A noise-like signal of very high 

amplitude can overdrive the front end of a spectrum ana-

lyzer while the displayed signal is within the normal display 

range. This problem is possible whenever the bandwidth of 

the noise-like signal is much wider than the RBW. The 

power within the RBW will be lower than the total power 

by about ten times the log of the ratio of the signal band-

width to the RBW. For example, an IS-95 CDMA signal with 

a 1.23 MHz bandwidth is 31 dB larger than the power in a 1 

kHz RBW. 

If the indicated power with the 1 kHz RBW is –20 dBm at 

the input mixer (i.e., after the input attenuator), then the 

mixer is seeing about +11 dBm. Most spectrum analyzers 

are specified for –10 dBm CW signals at their input mixer; 

the level below which mixer compression is specified to be 

under 1 dB for CW signals is usually 5 dB or more above 

this –10 dBm. The mixer behavior with Gaussian noise is 

not guaranteed, especially because its peak-to-average 

ratio is much higher than that of CW signals. 

Keeping the mixer power below –10 dBm is a good practice 

that is unlikely to allow significant mixer nonlinearity. Thus, 

caution #1 is:  Keep the total power at the input mixer at or 

below –10 dBm.

Figure D. In its center, this graph shows three curves: the ideal log amp behavior, that of a log amp that clips 

at its maximum and minimum extremes, and the average response to noise subject to that clipping. The lower 

right plot shows, on expanded scales, the error in average noise response due to clipping at the positive 

extreme. The average level should be kept 7 dB below the clipping level for an error below 0.1 dB. The upper 

left plot shows, with an expanded vertical scale, the corresponding error for clipping against the bottom of the 

scale. The average level must be kept 14 dB above the clipping level for an error below 0.1 dB.
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Caution 2, overdriving the log amp. Often, the level dis-

played has been heavily averaged using trace averaging or 

a video bandwidth (VBW) much smaller than the RBW. In 

such a case, instantaneous noise peaks are well above the 

displayed average level. If the level is high enough that the 

log amp has significant errors for these peak levels, the 

average result will be in error. Figure D shows the error due 

to overdriving the log amp in the lower right corner, based 

on a model that has the log amp clipping at the top 

of its range. Typically, log amps are still close to ideal for a 

few dB above their specified top, making the error model 

conservative. But it is possible for a log amp to switch 

from log mode to linear (voltage) behavior at high levels, 

in which case larger (and of opposite sign) errors to those 

computed by the model are possible. Therefore, caution #2 

is: Keep the displayed average log level at least 7 dB below 

the maximum calibrated level of the log amp.

Caution 3, underdriving the log amp. The opposite of the 

overdriven log amp problem is the underdriven log amp 

problem. With a clipping model for the log amp, the results 

in the upper left corner of Figure D were obtained. Caution 

#3 is: Keep the displayed average log level at 

least 14 dB above the minimum calibrated level 

of the log amp.
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In Part I, we discussed the characteristics of noise and its 

measurement. In this part, we will discuss three different 

measurements of digitally modulated signals, after showing 

why they are very much like noise.

The noise-like nature of digital signals
Digitally modulated signals can be created by clocking a 

Digital-to-Analog Converter (DAC) with the symbols (a 

group of bits simultaneously transmitted), passing the DAC 

output through apre-modulation filter (to reduce the trans-

mitted bandwidth), and then modulating the carrier with 

the filtered signal. See Figure 8. The resulting signal is obvi-

ously not noise-like if the digital signal is a simple pattern. 

It also does not have a noise-like distribution if the band-

width of observation is wide enough for the discrete nature 

of the DAC outputs to significantly affect the distribution of 

amplitudes.

But, under many circumstances, especially test conditions, 

the digital signal bits are random. And, as exemplified by 

the channel power measurements discussed below, the 

observation bandwidth is narrow. If the digital update 

period (the reciprocal of the symbol rate) is less than one-

fifth the duration of the majority of the impulse response of 

the resolution bandwidth filter, the signal within the RBW 

is approximately Gaussian according to the central limit 

theorem.

A typical example is IS-95 CDMA. Performing spectrum 

analysis, such as the adjacent-channel power ratio (ACPR) 

test, is usually done using the 30 kHz RBW to observe the 

signal. This bandwidth is only one-fortieth of the symbol 

clock rate (1.23 Msymbols/s), so the signal in the RBW is 

the sum of the impulse responses to about forty pseudo-

random digital bits. A Gaussian PDF is an excellent approxi-

mation to the PDF of this signal.

Channel-power measurements 
Most modern spectrum analyzers allow the measurement 

of the power within a frequency range, called the channel 

bandwidth. The displayed result comes from the computa-

tion:

Pch = ( Bs–
Bn

) ( 1
–
N )  

n2

i=n 1
∑ 10 (pi/10 )

Pch is the power in the channel, Bs is the specified 

bandwidth (also known as the channel bandwidth), Bn 

is the equivalent noise bandwidth of the RBW used, N 

is the number of data points in the summation, pi is the 

sample of the power in measurement cell i in dB units (if 

pi  is in dBm, Pch is in milliwatts). n1 and n2 are the end-

points for the index i within the channel bandwidth, thus                   

N=(n2 – n1) + 1.

Part II:  Measurements of Noise-like Signals

Figure 8. A simplified model for the generation of digital communications signals.
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The computation works well for CW signals, such as from 

sinusoidal modulation. The computation is a power-sum-

ming computation. Because the computation changes the 

input data points to a power scale before summing, there 

is no need to compensate for the difference between the 

log of the average and the average of the log as explained 

in Part I, even if the signal has a noise-like PDF (probability 

density function). But, if the signal starts with noise-like 

statistics and is averaged in decibel form (typically with a 

VBW filter on the log scale) before the power summation, 

some 2.51 dB under-response, as explained in Part I, 

will be incurred. If we are certain that the signal is of noise-

like statistics, and we fully average the signal before per-

forming the summation, we can add 2.51 dB to the result 

and have an accurate measurement. Furthermore, the aver-

aging reduces the variance of the result.

But if we don’t know the statistics of the signal, the best 

measurement technique is to do no averaging before power 

summation. Using a VBW ≥ 3RBW is required for insignifi-

cant averaging, and is thus recommended. But the band-

width of the video signal is not as obvious as it appears. 

In order to not peak-bias the measurement, the  detector 

must be used. Spectrum analyzers have lower effective 

video bandwidths in sample detection than they do in peak 

detection mode, because of the limitations of the sample-

and-hold circuit that precedes the A/D converter. Examples 

include the Agilent 8560E-Series spectrum analyzer family 

with 450 kHz effective sample-mode video bandwidth, and 

a substantially wider bandwidth (over 2 MHz) in the Agilent 

ESA-E Series spectrum analyzer family.

Figure 9 shows the experimentally determined relationship 

between the VBW:RBW ratio and the under-response of 

the partially averaged logarithmically processed noise sig-

nal.

However, the Agilent PSA is an exception to the relation-

ship illustrated by Figure 9. The Agilent PSA allows us to 

directly average the signal on a power scale. Therefore, if 

we are not certain that our signal is of noise-like statistics, 

we are no longer prohibited from averaging before power 

summation. The measurement may be taken by either using 

VBW filtering on a power scale, or using the average detec-

tor on a power scale.

0

0

0.3             1              3             10            30           ∞

≈

≈
≈

–1.0

–2.0

–2.5
power summation

error

0.045 dB

1,000,000 point simulation 

experiment

RBW/VBW ratio

0.35 dB

Figure 9. For VBW ≥ 3 RBW, the averaging effect of the VBW filter does not significantly affect 

power-detection accuracy.
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Adjacent-Channel Power (ACP)
There are many standards for the measurement of ACP 

with a spectrum analyzer. The issues involved in most 

ACP measurements are covered in detail in an article in 

Microwaves & RF, May, 1992, "Make Adjacent-Channel 

Power Measurements." A survey of other standards is 

available in "Adjacent Channel Power Measurements in the 

Digital Wireless Era" in Microwave Journal, July, 1994.

For digitally modulated signals, ACP and channel-power 

measurements are similar, except ACP is easier. ACP is 

usually the ratio of the power in the main channel to the 

power in an adjacent channel. If the modulation is digital, 

the main channel will have noise-like statistics. Whether 

the signals in the adjacent channel are due to broadband 

noise, phase noise, or intermodulation of noise-like signals 

in the main channel, the adjacent channel will have noise-

like statistics. A spurious signal in the adjacent channel 

is most likely modulated to appear noise-like, too, but a 

CW-like tone is a possibility.

If the main and adjacent channels are both noise-like, 

then their ratio will be accurately measured regardless of 

whether their true power or log-averaged power (or any 

partially averaged result between these extremes) is mea-

sured. Thus, unless discrete CW tones are found in the 

signals, ACP is not subject to the cautions regarding VBW 

and other averaging noted in the section on channel power 

above.

But some ACP standards call for the measurement of abso-

lute power, rather than a power ratio. In such cases, the 

cautions about VBW and other averaging do apply.

Carrier power
Burst carriers, such as those used in TDMA mobile sta-

tions, are measured differently than continuous carriers. 

The power of the transmitter during the time it is on is 

called the "carrier power."

Carrier power is measured with the spectrum analyzer 

in zero span. In this mode, the LO of the analyzer does 

not sweep, thus the span swept is zero. The display then 

shows amplitude normally on the y axis, and time on the x 

axis. If we set the RBW large compared to the bandwidth 

of the burst signal, then all of the display points include all 

of the power in the channel. The carrier power is computed 

simply by averaging the power of all the display points that 

represent the times when the burst is on. Depending on the 

modulation type, this is often considered to be any point 

within 20 dB of the highest registered amplitude. (A trig-

ger and gated spectrum analysis may be used if the carrier 

power is to be measured over a specified portion of a burst-

RF signal.)

Using a wide RBW for the carrier-power measurement 

means that the signal will not have noise-like statistics. It 

will not have CW-like statistics, either, so it is still wise to 

set the VBW as wide as possible. But let’s consider some 

examples to see if the sample-mode bandwidths 

of spectrum analyzers are a problem.

For PDC, NADC and TETRA, the symbol rates are under 

25 kb/s, so a VBW set to maximum will work well. It will 

also work well for PHS and GSM, with symbol rates of 380 

and 270 kb/s. For IS-95 CDMA, with a modulation rate of 

1.23 MHz, we could anticipate a problem with the 450 kHz  

effective video bandwidth discussed in the section on chan-

nel power above. Experimentally, an instrument with 450 

kHz BW experienced a 0.6 dB error with an OQPSK (mobile) 

burst signal.

16
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Peak-detected noise and TDMA ACP 

measurements
TDMA (time-division multiple access, or burst-RF) sys-

tems are usually measured with peak detectors, in order 

that the burst "off" events are not shown on the screen 

of the spectrum analyzer, potentially distracting the user. 

Examples include ACP measurements for PDC (Personal 

Digital Cellular) by two different methods, PHS (Personal 

Handiphone System) and NADC (North American Dual-

mode Cellular). Noise is also often peak detected in the 

measurement of rotating media, such as hard disk drives 

and VCRs.

The peak of noise will exceed its power average by an 

amount that increases (on average) with the length of time 

over which the peak is observed. A combination of analysis, 

approximation and experimentation leads to this equation for 

vpk, the ratio of the average power of peak measurements 

to the average power of sampled measurements:

vpk = [10 dB] log 10 (2 τBWi+e)][loge

Tau (t) is the observation period, usually given by either the 

length of an RF burst, or by the spectrum analyzer sweep 

time divided by the number of cells in a sweep. BWi  is the 

impulse bandwidth of the RBW filter.  

For the four-pole synchronously tuned filters used in most 

spectrum analyzers, BWi is nominally 1.62 times the –3 dB 

bandwidth. For ideal linear-phase Gaussian filters, which 

is an excellent model for digitally implemented swept ana-

lyzers, BWi is 1.499 times the –3 dB bandwidth. In either 

case, VBW filtering can substantially reduce the impulse 

bandwidth.

Note that vpk is a "power average" result; the average of 

the log of the ratio will be different.

The graph in Figure E shows a comparison of this equation 

with some experimental results. The fit of the experimental 

results would be even better if 10.7 dB were used in place 

of 10 dB in the equation above, even though analysis does 

not support such a change.

0.01       0.1                1                      10          100                  1000     104
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Figure E. The peak-detected response to noise increases with the observation time.



18

The results of measuring noise-like signals are, not surpris-

ingly, noisy. Reducing this noisiness is accomplished by 

three types of averaging:

• increasing the averaging within each measurement   

 cell of a spectrum analyzer by reducing the VBW, or   

 using an average detector with a longer sweeptime.

• increasing the averaging within a computed result like  

 channel power by increasing the number of 

 measurement cells contributing to the result.

• averaging a number of computed results.

Variance and averaging

The variance of a result is defined as the square of

its standard deviation; therefore it is symbolically s2. The 

variance is inversely proportional to the number of indepen-

dent results averaged, thus when N results are combined, 

the variance of the final result is s2/N.

The variance of a channel-power result computed from  

independent measurement cells is likewise s2/N where s is 

the variance of a single measurement cell. But this s2 is a 

very interesting parameter.

Part III:  Averaging and the Noisiness of Noise Measurements

If we were to measure the standard deviation of logged 

envelope noise, we would find that s is 5.57 dB. Thus, the 

s of a channel-power measurement that averaged log data 

over, for example, 100 measurement cells would be 0.56 

dB (5.6/√(100)). But averaging log data not only causes 

the aforementioned 2.51 dB under-response, it also has a 

higher than desired variance. Those not-rare-enough nega-

tive spikes of envelope, such as –30 dB, add significantly to 

the variance of the log average even though they represent 

very little power. The variance of a power measurement 

made by averaging power is lower than that made by aver-

aging the log of power by a factor of 1.64.

Thus, the s of a channel-power measurement is lower than 

that of a log-averaged measurement by a factor of the 

square root of this 1.64:

σ noise = 4.35 dB/√N   [power averaging]

σ noise = 5.57 dB/√N   [log processing]
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Averaging a number of computed results
If we average individual channel-power measurements to get 

a lower-variance final estimate, we do not have to convert 

dB-format answers to absolute power to get the advantages 

of avoiding log averaging. The individual measurements, 

being the results of many measurement cells summed 

together, no longer have a distribution like the "logged 

Rayleigh" but rather look Gaussian. Also, their distribution 

is sufficiently narrow that the log (dB) scale is linear 

enough to be a good approximation of the power scale. 

Thus, we can dB-average our intermediate results.

Swept versus FFT analysis
In the above discussion, we have assumed that the vari-

ance reduced by a factor of N was of independent results. 

This independence is typically the case in swept-spectrum 

analyzers, due to the time required to sweep from one mea-

surement cell to the next under typical conditions of span, 

RBW and sweep time. FFT analyzers will usually have many 

fewer independent points in a measurement across a chan-

nel bandwidth, reducing, but not eliminating, their theoreti-

cal speed advantage for true noise 

signals.

For digital communications signals, FFT analyzers have 

an even greater speed advantage than their throughput 

predicts. Consider a constant-envelope modulation, such 

as used in GSM cellular phones. The constant-envelope 

modulation means that the measured power will be con-

stant when that power is measured over a bandwidth wide 

enough to include all the power. FFT analysis made in a 

wide span will allow channel power measurements with 

very low variance.

But swept analysis will typically be performed with an 

RBW much narrower than the symbol rate. In this case, 

the spectrum looks noise-like, and channel power measure-

ments will have a higher variance that is not influenced by 

the constant amplitude nature of the modulation.

Zero span
A zero-span measurement of carrier power is made with 

a wide RBW, so the independence of data points is deter-

mined by the symbol rate of the digital modulation. Data 

points spaced by a time greater than the symbol rate will 

be almost ompletely independent.

Zero span is sometimes used for other noise and noise-like 

measurements where the noise bandwidth is much greater 

than the RBW, such as in the measurement of power spec-

tral density. For example, some companies specify IS-95 

CDMA ACPR measurements that are spot-frequency power 

spectral density specifications; zero span can be used to 

speed this kind of measurement.

Averaging with an average detector                  
With an averaging detector the amplitude of the signal 

envelope is averaged during the time and frequency interval 

of a measurement cell. An improvement over using sample 

detection for summation, the average detector changes the 

summation over a range of cells into integration over the 

time interval representing a range of frequencies. The inte-

gration thereby captures all power information, not just that 

sampled by the sample detector. 

The primary application of average detection may be seen 

in the channel power and ACP measurements, discussed in 

Part II.

Measuring the power of noise with a power 
envelope scale 
The averaging detector is valuable in making integrated 

power measurements. The averaging scale, when autocou-

pled, is determined by such parameters as the marker func-

tion, detection mode and display scale. We have discussed 

circumstances that may require the use of the log-envelope 

and voltage envelope scales, now we may consider the 

power scale.

When making a power measurement, we must remember 

that traditional swept spectrum analyzers average the log of 

the envelope when the display is in log mode. As previously 

mentioned, the log of the average is not equal to the aver-

age of the log. Therefore, when making power measure-

ments, it is important to average the power of the signal, 

or equivalently, to report the root of the mean of the square 

(r.m.s.) number of the signal. With the Agilent PSA ana-

lyzer, an "Avg/VBW Type" key allows for manual selection, 

as well as automatic selection, of the averaging scale (log 

scale, voltage scale, or power scale). The averaging scale 

and display scale may be completely independent of each 

other.
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The standard deviation of measurement noise 
Figure 10 summarizes the standard deviation of the mea-

surement of noise. The figure represents the standard 

deviation of the measurement of a noise-like signal using 

a spectrum analyzer in zero span, averaging the results 

across the entire screen width, using the log scale. tINT is 

the integration time (sweep time). The curve is also useful 

for swept spectrum measurements, such as channel-power 

measurements. There are three regions to the curve. 

The left region applies whenever the integration time is 

short compared to the rate of change of the noise envelope. 

As discussed above, without VBW filtering, the s is 5.6 dB. 

When video filtering is applied, the standard deviation is 

improved by a factor. That factor is the square root of the 

ratio of the two noise bandwidths: that of the video band-

width, to that of the detected envelope of the noise. The 

detected envelope of the noise has half the noise band-

width of the undetected noise. For the four-pole synchro-

nously tuned filters typical of most spectrum analyzers, the 

detected envelope has a noise bandwidth of (1/2) x 1.128 

times the RBW. The noise bandwidth of a single-pole VBW 

filter is π/2 times its bandwidth. Gathering terms together 

yields the equation:

σ = (9.3 dB ) √VBW/RBW

1.0            10         100      1k                 10k

center curve:
5.2 dB

tINT 
. RBW

5.6 dB

1.0 dB

0.1 dB

≈

≈

 [left asymptote]

Ncells   

N=400

N=600

VBW = ∞

VBW = 0.03 . RBW

left asymptote: for VBW >1/3 RBW: 5.6 dB

                         for VBW ≤ 1/3 RBW: 9.3 dB VBW

RBW

tINT 
. RBW

N=600,VBW=0.03 . RBW

Average detector, any N

σ

right asymptote:

Figure 10. Noise measurement standard deviation for log-response (see text for power-response) spectrum analysis 

depends on the product of the sweep time and RBW, the ratio of the VBW to RBW, and the number of display cells.
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The middle region applies whenever the envelope of the 

noise can move significantly during the integration time, 

but not so rapidly that individual sample points become 

uncorrelated. In this case, the integration behaves as a 

noise filter with frequency response of sin (π tINT ) and an 

equivalent noise bandwidth of 1/(2 tINT ). The total noise 

should then be 5.6 dB times the square root of the ratio of 

the noise bandwidth of the integration process to the noise 

bandwidth of the detected envelope, giving

5.2 dB /√tINT RBW

In the right region, the sweep time of the spectrum ana-

lyzer is so long that individual measurement cells, mea-

sured with the sample detector, are independent of each 

other.  Information about the signal between these samples 

is lost, increasing the sigma of the result. In this case, the 

standard deviation is reduced from that of the left-side 

case (the sigma of an individual sample) by the square 

root of the number of measurement cells in a sweep. But 

in an analyzer using a detector that averages continuously 

across a measurement cell, no information is lost, so the 

center curve extends across the right side of the graph 

indefinitely.

The noise measurement sigma graph should be multiplied 

by a factor of about 0.8 if the noise power is filtered and 

averaged, instead of the log power being so processed. 

(Sigma goes as the square root of the variance, which 

improves by the cited 1.64 factor.) Because channel-power 

and ACP measurements are power-scale summations, this 

factor applies. However, when dealing with VBW-filtered 

measurements, this factor may or may not be valid. Most 

spectrum analyzers average VBW-filtered measurements 

on a log scale in which case the multiplication factor would 

not apply. In comparison, the Agilent PSA allows VBW-

filtering on a power scale, making the multiplication factor 

applicable for such measurements.

Examples 
Let’s use the curve in Figure 10 for three examples. 

In the measurement of IS-95 CDMA ACPR, we can power-

average a 400-point zero-span trace for a frame (20.2 ms) 

in the specified 30 kHz bandwidth. Power averaging can be 

accomplished in all analyzers by selecting VBW >>RBW.  For 

these conditions, we find tINT RBW = 606, and we approach 

the right-side asymptote of or 0.28 dB. But we are power 

averaging, so we multiply by 0.8 to get sigma = 0.22 dB.

In a second example, we are measuring noise in an adja-

cent channel in which the noise spectrum is flat. Let’s use 

a 600-point analyzer with a span of 100 kHz and a channel 

BW of 25 kHz, giving 150 points in our channel. Let’s use 

an RBW of 300 Hz and a VBW = 10 Hz; this narrow VBW 

will prevent power detection and lead to about a 2.3 dB 

under-response (see Figure 9) for which we must manually 

correct. The sweep time will be 84 s. With the channel 

taking up one-fourth of the span, the sweep time within 

the channel is 21 s, so that is the integration time for our 

x-axis. Even though the graph is meant for zerospan analy-

sis, if the noise level is flat in our channel, the analysis is 

the same for swept as zerospan. tINT RBW= 6300; if the 

center of Figure 10 applied, sigma would be 0.066 dB. 

Checking the right asymptote, Ncells is 150, so the asymp-

tote computes to be 0.083 dB. This is our predicted standard 

deviation. If the noise in the adjacent channel is not flat, the 

averaging will effectively extend over many fewer samples 

and less time, giving a higher standard deviation.

In a third example, let’s measure W-CDMA channel power 

in a 3.84 MHz width. We’ll set the span to be the same 

3.84 MHz width. Let’s use RBW=100 kHz, and set the 

sweep time long (600 ms) with a 600-point analyzer, using 

the average detector on a power scale. Assume that the 

spectrum is approximately flat. We are making a measure-

ment that is equivalent to a 600 ms integration time with 

an unlimited number of analyzer points, because the aver-

age detector integrates continuously within the buckets. So 

we need only use the formula from the center of the graph; 

the cell-count-limited asymptote on the right does not 

apply.  tINT is 600 ms, so the center formula gives sigma = 

0.021 dB.  But we are power-scale averaging, not log aver-

aging, so the sigma is 20% lower, 0.017 dB.

Alternatively, we could think of example 3 as 600 individual 

one-measurement-cell readings that are then summed 

together. Each measurement cell would have an integration 

time of 1 ms. The center formula would give sigma = 0.52 

dB on a log scale, or 0.412 dB for power averaging. The 

standard deviation of the sum of the power in the 600 cells 

would be lower than that of one cell by the square root of 

600, giving the same 0.017 dB result for the entire channel 

power measurement.
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The standard deviation of CW measurements
CW signals have a variance due to added noise within the 

resolution bandwidth. That noise can be decomposed into 

two components: one component is in phase with the CW 

signal, and one component is in quadrature.

Let’s make the assumption that the signal to noise ratio is 

large. Then the quadrature noise does not change the mea-

sured result for the CW signal. But the in-phase component 

adds to or subtracts from the signal voltage vector.

The interfering noise vector is Gaussian in both its in-phase 

and quadrature components. The power of the noise vec-

tor is the sum of the variances of the two components. 

Therefore, the variance of the in-phase component is 

half of the power of the noise signal. Let’s use a numeric 

example.

Let the noise power be 20 dB below the signal power. Then 

the variance of the noise is 1% of the signal power. The 

in-phase variance is 0.5% of the signal power. Expressed in 

voltage, the in-phase noise is 0.0707 times the CW signal. 

With this Gaussian noise of 0.0707 times as large a signal 

riding on the apparent CW voltage vector length, its sigma 

becomes 20*log(1 + 0.0707) in decibels, or 0.59 dB.

We can expand the log in a Taylor series and 

generalize this formula as:

   

In this equation, the units of the signal-to-noise ratio, S/N, 

and of the result, are decibels. VBW filtering, trace averag-

ing, noise marker averaging or the average detector can all 

reduce the sigma.

In this equation, the units of the signal-to-noise ratio, S/N, 

and the result, σCW, are decibels.

The sigma can be reduced by filtering, such as VBW filter-

ing, or averaging. The bandwidth of the envelope modula-

tion noise represented by sigma is approximately one-half 

of the noise bandwidth of the RBW filter. The noise 

bandwidth of a VBW filter is π/2 times its bandwidth. 

Therefore, if the VBW is under about one-third of the RBW, 

the sigma is improved by the square root of the noise band-

widths:

 

For time averaging, such as that which occurs with the 

average detector, the noise bandwidth of the averaging 

process is 1/(2xtINT), where tINT is the integration time. 

Therefore, if the integration time is longer than about 1/

RBW, sigma is:
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Part IV: Compensation for Instrumentation Noise

In Parts I, II and III, we discussed the measurement of 

noise and noise-like signals respectively. In this part, we’ll 

discuss measuring CW and noise-like signals in the pres-

ence of instrumentation noise. We’ll see why averaging 

the output of a logarithmic amplifier is optimum for CW 

measurements, and we’ll review compensation formulas for 

removing known noise levels from noise-plus-signal 

measurements.

CW signals and log versus power detection
When measuring a single CW tone in the presence of 

noise, and using power detection, the level measured is 

equal to the sum of the power of the CW tone and the 

power of the noise within the RBW filter. Thus, we could 

improve the accuracy of a measurement by measuring 

the CW tone first (let’s call this the "S+N" or signal-plus-

noise), then disconnect the signal to make the "N" measure-

ment. The difference between the two, with both measure-

ments in power units (for example, milliwatts, not dBm) 

would be the signal power.

But measuring with a log scale and video filtering or 

video averaging results in unexpectedly good results. As 

described in Part I, the noise will be measured lower than 

a CW signal with equal power within the RBW by 2.5 

dB. But to the first order, the noise doesn’t even affect 

the S+N measurement! See "Log Scale Ideal for CW 

Measurements" later in this section.

Figure 11 demonstrates the improvement in CW measure-

ment accuracy when using log averaging versus power 

averaging.

To compensate S+N measurements on a log scale 

for higher-order effects and very high noise levels, use this 

equation where all terms are in dB units:

powercw = powers+n –10.42x10–0.333(deltaSN)

powerS+N is the observed power of the signal with noise, 

deltaSN is the decibel difference between the S+N and 

N-only measurements. With this compensation, noise-

induced errors are under 0.25 dB even for signals as small 

as 9 dB below the interfering noise. Of course, in such a 

situation, the repeatability becomes a more important 

concern than the average error. But excellent results can 

be obtained with adequate averaging. And the process of 

averaging and compensating, when done on a log scale, 

converges on the result much faster than when done in a 

power-detecting environment.



Power-detection measurements and noise 
subtraction
If the signal to be measured has the same statistical 

distribution as the instrumentation noise— in other words, 

if the signal is noise-like—then the sum of the signal and 

instrumentation noise will be a simple power sum:

power S+N = power
S  

+ power
N              

[mW]

Note that the units of all variables must be power units 

such as milliwatts and not log units like dBm, nor voltage 

units like mV. Note also that this equation applies even if 

powerS and powerN are measured with log averaging.

The power equation also applies when the signal and the 

noise have different statistics (CW and Gaussian respec-

tively) but power detection is used. The power equation 

would never apply if the signal and the noise were cor-

related, either in-phase adding or subtracting. But that will 

never be the case with noise.

Therefore, simply enough, we can subtract the mea-

sured noise power from any power-detected result to get 

improved accuracy. Results of interest are the channel-pow-

er, ACP, and carrier-power measurements described in Part 

II. The equation would be:

power S = power
S+N  

– power
N              

[mW]

Care should be exercised that the measurement setups for  

and are as similar as possible.

a.)    b.)    c.)

2.54 dB
0.63 dB

2.51 dB

Figure 11.  Log averaging improves the measurement of CW signals when their amplitude is near 

that of the noise. (a) shows a noise-free signal. (b) shows an averaged trace with power-scale 

averaging and noise power 1 dB below signal power; the noise-induced error is 2.5 dB. (c) shows 

the effect with log-scale averaging—the noise falls 2.5 dB and the noise-induced error falls to 

only 0.6 dB.
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Log scale ideal for CW measurements
If one were to design a scale (such as power, voltage, log 

power, or an arbitrary polynomial) to have response to 

signal-plus-noise that is independent of small amounts of 

noise, one could end up designing the log scale.

Consider a signal having unity amplitude and arbitrary 

phase, as in Figure F. Consider noise with an amplitude 

much less than unity, r.m.s., with random phase. Let us 

break the noise into components that are in-phase and 

quadrature to the signal. Both of these components will 

have Gaussian PDFs, but for this simplified explanation, we 

can consider them to have values of ±x, where x << 1.

The average response to the signal plus the quadrature 

noise component is the response to a signal of magnitude 

√1+x2

The average response to the signal plus in-phase noise 

will be lower than the response to a signal without noise 

if the chosen scale is compressive. For example, let x be 

±0.1 and the scale be logarithmic. The response for x = 

+0.1 is log (1.1); for x = –0.1, log (0.9). The mean of these 

two is 0.0022, also expressible as log (0.9950). The mean 

response to the quadrature components is log(√2(1+(0.1)2)), 

or log (1.0050). Thus, the log scale has an average deviation 

for in-phase noise that is equal and opposite to the devia-

tion for quadrature noise. To first order, the log scale is 

noise-immune. Thus, an analyzer that averages (for exam-

ple, by video filtering) the response of a log amp to the sum 

of a CW signal and a noise signal has no first-order depen-

dence on the noise signal.

Q

–jx

+x

–x

+jx

I

Figure F. Noise components can be projected into in-phase and 

quadrature parts with respect to a signal of unity amplitude and 

arbitrary phase.
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Figure G shows the average error due to noise addition for 

signals measured on the log scale and, for comparison, for 

signals measured on a power scale.

Figure G. CW signals measured on a logarithmic scale show very little effect due to the addition of 

noise signals.
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ACP: See Adjacent Channel Power.

ACPR: Adjacent Channel Power Ratio. See Adjacent-

Channel Power; ACPR is always a ratio, whereas ACP may 

be an absolute power.

Adjacent Channel Power: The power from a modulated 

communications channel that leaks into an adjacent chan-

nel. This leakage is usually specified as a ratio to the power 

in the main channel, but is sometimes an absolute power.

Averaging: A mathematical process to reduce the variation 

in a measurement by summing the data points from mul-

tiple measurements and dividing by the number of points 

summed.

Burst: A signal that has been turned on and off. Typically, 

the on time is long enough for many communications bits 

to be transmitted, and the on/off cycle time is short enough 

that the associated delay is not distracting to telephone 

users.

Carrier Power: The average power in a burst carrier during 

the time it is on.

CDMA: Code Division Multiple Access or a communica-

tions standard (such as cdmaOne®) that uses CDMA. 

In CDMA modulation, data bits are xored with a code 

sequence, increasing their bandwidth. But multiple users 

can share a carrier when they use different codes, and a 

receiver can separate them using those codes.

Channel Bandwidth: The bandwidth over which power is 

measured. This is usually the bandwidth in which almost all 

of the power of a signal is contained.

Channel Power: The power contained within a channel 

bandwidth.

Clipping: Limiting a signal such that it never exceeds some 

threshold.

CW: Carrier Wave or Continuous Wave. A sinusoidal signal 

without modulation.

DAC: Digital to Analog Converter.

Digital: Signals that can take on only a prescribed list of 

values, such as 0 and 1.

Display detector: That circuit in a spectrum analyzer that 

converts a continuous-time signal into sampled data points 

for displaying. The bandwidth of the continuous-time signal 

often exceeds the sample rate of the display, so display 

detectors implement rules, such as peak detection, for 

sampling.

Envelope Detector: The circuit that derives an instanta-

neous estimate of the magnitude (in volts) of the IF (inter-

mediate frequency) signal. The magnitude is often called 

the envelope.

Equivalent Noise Bandwidth: The width of an ideal filter 

with the same average gain to a white noise signal as the 

described filter. The ideal filter has the same gain as the 

maximum gain of the described filter across the equivalent 

noise bandwidth, and zero gain outside that bandwidth.

Gaussian and Gaussian PDF: A bell-shaped PDF which is 

typical of complex random processes. It is characterized by 

its mean (center) and sigma (width).

I and Q: In-phase and Quadrature parts of a complex signal. 

I and Q, like x and y, are rectangular coordinates; alterna-

tively, a complex signal can be described by its magnitude 

and phase, also known as polar coordinates.

Linear scale: The vertical display of a spectrum analyzer in 

which the y axis is linearly proportional to the voltage enve-

lope of the signal. 

Glossary of Terms
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NADC: North American Dual mode (or Digital) Cellular. 

A communications system standard, designed for North 

American use, characterized by TDMA digital modulation.

Near-noise Correction: The action of subtracting the mea-

sured amount of instrumentation noise power from the 

total system noise power to calculate that part from the 

device under test.

Noise Bandwidth: See Equivalent Noise Bandwidth.

Noise Density: The amount of noise within a defined band-

width, usually normalized to 1 Hz.

Noise Marker: A feature of spectrum analyzers that allows 

the user to read out the results in one region of a trace 

based on the assumption that the signal is noise-like. The 

marker reads out the noise density that would cause the 

indicated level.

OQPSK: Offset Quadrature-Phase Shift Keying. A digital 

modulation technique in which symbols (two bits) are 

represented by one of four phases. In OQPSK, the I and Q 

transitions are offset by half a symbol period.

PDC: Personal Digital Cellular (originally called Japanese 

Digital Cellular). A cellular radio standard much like NADC, 

originally designed for use in Japan.

PDF: See Probability Density Function.

Peak Detect: Measure the highest response within an 

observation period.

PHS: Personal Handy-Phone. A communications standard 

for cordless phones.

Power Detection: A measurement technique in which the 

response is proportional to the power in the  signal, or pro-

portional to the square of the voltage.

Power Spectral Density: The power within each unit of 

frequency, usually normalized to 1 Hz.

Probability Density Function: A mathematical function that 

describes the probability that a variable can take on any 

particular x-axis value. The PDF is a continuous version of 

a histogram.

Q: See I and Q.

Rayleigh: A well-known PDF which is zero at x=0 and 

approaches zero as x approaches infinity.

RBW filter: The resolution bandwidth filter of a spectrum 

analyzer. This is the filter whose selectivity determines 

the analyzer’s ability to resolve (indicate separately) closely 

spaced signals.

Reference Bandwidth: See Specified Bandwidth.

RF: Radio Frequency. Frequencies that are used for radio 

communications.

Sigma: The symbol and name for standard deviation.

Sinc: A mathematical function. Sinc(x) = (sin(x))/x.

Specified Bandwidth: The channel bandwidth 

specified in a standard measurement technique.

Standard Deviation: A measure of the width of the distri-

bution of a random variable.

Symbol: A combination of bits (often two) that are trans-

mitted simultaneously.

Symbol Rate: The rate at which symbols are 

transmitted.

Synchronously Tuned Filter: The filter alignment most com-

monly used in analog spectrum analyzers. A sync-tuned 

filter has all its poles in the same place. It has an excellent 

tradeoff between selectivity and time-domain performance 

(delay and step-response settling).

TDMA: Time Division Multiple Access. A method of shar-

ing a communications carrier by assigning separate time 

slots to individual users. A channel  is defined by a carrier 

frequency and time slot.

TETRA: Trans-European Trunked Radio. A communications 

system standard.

Variance: A measure of the width of a distribution, equal to 

the square of the standard deviation.

VBW Filter: The Video Bandwidth filter, a low-pass filter 

that smoothes the output of the detected IF signal, or the 

log of that detected signal.

Zero Span: A mode of a spectrum analyzer in which the 

local oscillator does not sweep. Thus, the display represents 

amplitude versus time, instead of amplitude versus frequen-

cy. This is sometimes called fixed-tuned mode.
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Remove all doubt

Our repair and calibration services 

will get your equipment back to 

you, performing like new, when 

promised. You will get full value out 

of your Agilent equipment through-

out its lifetime. Your equipment 

will be serviced by Agilent-trained 

technicians using the latest factory 

calibration procedures, automated 

repair diagnostics and genuine parts. 

You will always have the utmost 

confidence in your measurements. 

For information regarding self main-

tenance of this product, please 

contact your Agilent office.

Agilent offers a wide range of additional 

expert test and measurement services 

for your equipment, including initial 

start-up assistance, onsite education 

and training, as well as design, system 

integration, and project management. 

For more information on repair and 

calibration services, go to:

www.agilent.com/find/removealldoubt

www.agilent.com/find/emailupdates

Get the latest information on the 

products and applications you select.  

For more information on Agilent 
Technologies’ products, applications 
or services, please contact your local 
Agilent office. The complete list is 

available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894-4414 
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia  1 800 629 485
China 800 810 0189
Hong Kong  800 938 693
India  1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia  1 800 888 848
Singapore  1 800 375 8100
Taiwan 0800 047 866
Thailand  1 800 226 008 

Europe & Middle East
Austria 01 36027 71571
Belgium  32 (0) 2 404 93 40 
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 07031 464 6333 
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland  0800 80 53 53
United Kingdom 44 (0) 118 9276201
Other European Countries: 
www.agilent.com/find/contactus
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