
Network Virtualization System Suite:
Experimental Network Virtualization Platform

João Nogueira1,2, Márcio Melo1,2, Jorge Carapinha2, Susana Sargento1

1 Instituto de Telecomunicações, University of Aveiro, Portugal
2 Portugal Telecom Inovação, Aveiro, Portugal

joaonogueira@ua.pt,marciomelo@av.it.pt,jorgec@ptinovacao.pt,susana@ua.pt

Abstract. Network virtualization arises as a potential solution for ad-
dressing the current IP limitations through a non-disruptive route, by let-
ting multiple networks, running different protocols, to coexist and share
the same infrastructure in an independent way. The purpose of this pa-
per is to make this coexistence of networks a reality through the real
support of multiple virtual networks. Therefore, this paper presents the
Network Virtualization System Suite (NVSS): an experimental platform
that integrates the functions of virtual network mapping and creation,
discovery, monitoring, and management in a user-friendly platform. This
platform contains novel mechanisms for network discovery and mapping:
a distributed discovery algorithm of both physical and virtual nodes,
and a heuristic algorithm for virtual resources mapping in the physical
infrastructure, supporting the different characteristics of both links and
nodes.
This virtualization platform is evaluated in different scenarios. The ob-
tained results show the scalability and feasibility of the proposed mech-
anisms and functionalities (discovery, mapping and creation) in a single
platform for network virtualization control and management.

Key words: Virtualization, Virtual Network, Network Virtualization,
Discovery, Mapping, Embedding, Heterogeneous, Platform, 4WARD

1 Introduction

In the past decade, virtualization has increased in popularity and is currently
a fundamental technological advantage on many IT businesses. Several compa-
nies spent a significant amount of resources into developing novel software and
hardware solutions, supporting different levels of server virtualization, and have
produced several successful and widely used commercial solutions.

Network virtualization, on the other hand, is still in an early stage. Although
some virtualization technologies, such as Virtual Local Area Networks (VLANs)
and Multi Protocol Label Switching (MPLS), have been developed and used
on telecommunication networks, the full potential that can be achieved from
a complete virtualized network environment is yet to be accomplished. A fully
virtualized solution would be extremely flexible, by allowing multiple networks
to run simultaneously, while supporting different technologies, protocols, topolo-
gies, and Quality of Service (QoS) requirements.

2 Network Virtualization System Suite

The advantages provided from a fully virtualized network can be significant
[1], and therefore Future-Internet initiatives such as AKARI [2], GENI [3], and
4WARD [4], are assessing it as a viable and non-disruptive route to implement
novel protocols and architectures.

Network virtualization has also drawn the attention of the Internet Service
Providers (ISPs) [5] that look into virtualization as a technology that will de-
crease their infrastructure’s Total Cost of Ownership (TCO). Additionally, net-
work virtualization also presents business advantages, because custom-tailored
client networks can be created and reconfigured quickly and on demand.

Although virtualization comes with many advantages, virtualizing a network
presents many obstacles [6], not only technical but also business related. With
respect to the technical difficulties, router virtualization is one of them: some
solutions, such as the Virtual Router Project [7] and XORP [8], have been de-
veloped but, although the performance levels are promising, they are still not
up-to-par with the current hardware offerings. Embedding virtual networks into
substrate networks is another demanding and non-trivial undertaking that has
been the target of several researches [9, 10, 11]. Furthermore, providing virtual
network resource and topology discovery functionalities [12], and guaranteeing
security and isolation between networks, have proven to be challenging tasks.

In the last few years, efforts have been made by the research community
to build a network virtualization framework that could provide the community
with a means of experimenting and validating solutions related to the previ-
ously referred issues. GENI is one such example: it provides researchers with
a network framework that is highly programmable, and thus, can be used to
test network virtualization concepts and algorithms. Despite being a mature and
complex project, with multiple workgroups (including PlanetLab [13]), GENI by
itself lacks some desirable functionalities, such as automatic creation of virtual
networks, and topology discovery. It only provides the backbones upon which
these mechanisms may be developed. The Virtual Network (VNet) Management
Demonstrator [14] was built with the aim to provide a demonstrator capable
of showing the creation of the VNets conceptualized in the 4WARD project.
Although this demonstrator does indeed provide the functionality of virtual net-
work creation, the network and creation processes are statically configured and
based on specific configuration files and scripts. Despite its disadvantages, it also
provides some potentially good features, such as the multi-threaded nature of
the Agents. Therefore, this tool will be used as the basis for the developments
and the platform presented in this paper.

In this paper, we present a complete experimental framework that allows
the creation, monitoring, and management of virtual networks with arbitrary
topologies, as well as virtual resources with any number of virtual interfaces.
Moreover, it contains functionalities, such as: (1) centralized and distributed
Virtual Network (VNet) discovery algorithms, (2) a heuristic mapping algorithm
of embedded virtual networks, that optimizes both links and nodes mapping, (3)
automated VNet creation, (4) dynamic resource monitoring, and a (5) Graphical
User Interface (GUI) that integrates all these features and significantly improves

Network Virtualization System Suite 3

the user experience. We also present the supported scenarios of the virtualization
platform and the results achieved with the experimentation of the proposed
mechanisms in the real testbed. The presented results show the scalability and
performance properties of the developed platform and respective mechanisms.

This paper will start with the discussion of the architecture of the NVSS on
Section 2, followed by the implementation details on Section 3. Afterwards, an
overview of the supported scenarios will be provided, on Section 4. Section 5
will be devoted to experimental testing, after which the paper will conclude on
Section 6.

2 Network Virtualization Architecture

2.1 Business Model

In a fully virtualized network, an abstraction layer, besides enabling the concur-
rent existence of multiple networks on a single substrate network, also enables
the decoupling of the services from the infrastructure. Due to this extra degree
of freedom, i.e. being able to run services in an infrastructure-independent way,
the decoupling of the traditional ISP role into two or more roles seems logical.

In order to take advantage of this decoupling, the 4WARD project defined a
business model composed of 4 main roles: the Infrastructure Provider (InP), who
is in charge of providing and managing the infrastructure; the Virtual Network
Provider (VNP), that is responsible for assembling virtual resources, from one or
more InPs, in order to build the virtual topology; the Virtual Network Operator
(VNO), who installs and operates the VNets provided by the VNP; and, finally,
the Service Provider (SP), who is solely responsible for using the VNet and
providing services to its users.

The business model’s roles and relationships are illustrated on Figure 1.

Service Provider

Virtual Network
Provider

Virtual Network
Operator

Infrastructure
Provider

Infrastructure
Provider

Fig. 1. SP, VNP, VNO and InP business model.

2.2 Architecture

The NVSS is composed of 3 software modules: the Agent module, the Man-
ager module and the Control Centre module; their hierarchical decomposition
is demonstrated in Figure 2. The Agent module is designed to run on every
substrate node, in order to act upon it and periodically gather data from it.
The Agents, besides interacting with each other, receive and send requests to

4 Network Virtualization System Suite

the Manager, which is a centralized entity in charge of aggregating all Agents’
knowledge and sending them commands. Additionally, the Manager also com-
municates with the Control Centre, which is the user’s front-end, and provides
him with graphical and simple to use virtual network creation, management,
and monitoring functionalities.

Fig. 2. Global architecture overview.

2.3 Functionalities

Distributed Physical and Virtual Network Discovery Physical and vir-
tual network discovery provides a fast and easy way of having a global view of
the virtual networks running on top of a given physical infrastructure, and it is
also fundamental for the process of embedding new virtual networks, since the
embedding process requires an accurate and up-to-date view of the substrate
and currently running virtual networks.

The experimental virtualization platform works both with centralized and
distributed discovery mechanisms. In the centralized version, the Manager re-
quests information from the agents to build the topology. In the distributed
version, the Agents perform the discovery by themselves without the Manager’s
interaction. The distributed discovery mechanism is able to reduce the required
computing power on the central management node.

The proposed algorithm is based on concepts from both Spanning Tree
Protocol (STP) and Border Gateway Protocol (BGP). At startup, the Agents
register themselves in a pre-configured link-local multicast group, and begin ex-
changing messages with each other afterwards. The distributed algorithm for
full network discovery relies on the neighbourhood concept, where each physical
node knows exactly who its neighbours are, and also who are the virtual neigh-
bours of its local virtual nodes. By aggregating each Agent’s knowledge, the full
topology map may be built. The concept is demonstrated in Figure 3.

Additional information about the discovery algorithm, experimental and sim-
ulation results, may be found in [12].

Virtual Network Creation The Control Centre module gives the possibility
for the user to draw a new virtual network, by selecting and placing resources on
the platform GUI and by connecting them with links. The user may specify the
resources CPU capabilities, RAM amount, location, number of interfaces and
also perform network addressing configurations. The final step in creating a new

Network Virtualization System Suite 5

Node 1 knows
its neighbours

Node 7 knows
its neighbours

Topology assembled from Node 1’s and Node 7’s
neighbourhood knowledge

Fig. 3. Distributed Topology Discovery: Assembling neighbourhood knowledge.

virtual network is to commit it to the Manager, which will then map it in the
physical infrastructure.

The embedding problem is a complex one (NP-hard) and a trade-off had
to be chosen between computation time and embedding optimization. In order
to lower the computational requirements that a dual-optimization algorithm
requires (nodes and links), a heuristic mapping algorithm was developed, which
aims to embed virtual networks taking into consideration both the substrate
links and nodes loads.

The mapping algorithm, which is thoroughly discussed in [9], starts by de-
termining a set of possible physical candidates for each virtual node to embed,
based on CPU, RAM, hard drive and location constraints. After attaining a set
for each virtual node, node stresses are calculated for each physical candidate,
based on the concepts of [10]. These node stresses provide an indicator of the
resources load: they take into consideration not only the resources capabilities,
but also their active virtual machines and free resources, such as available RAM
amount and available CPU load. A stress factor is also calculated for the physical
links that takes into account both the total link bandwidth and the link load.
By combining both stress factors, for each virtual node, a physical candidate
node is chosen so that it offers the best compromise between node stress and
link stress for its potential physical neighbours. As soon as every virtual node
gets a unique physical node mapping, a Constrained Shortest Path First (CSPF)
algorithm is run between mapped physical nodes in order to assess the best con-
strained paths to establish the virtual links. If the mapping succeeds, i.e. if every
virtual node has been assigned to a unique physical node and every virtual link’s
physical path has been successfully determined, the Manager will then inform
the Control Centre, and proceed with the effective creation of the requested
virtual network, by sending link and node creation commands to the relevant
Agents. Otherwise, the user will be informed that the mapping has failed and
will include the reason for this failure.

Substrate and Virtual Network Monitoring A dynamic resource monitor-
ing feature is required to have an accurate view of the virtual and physical net-
works, and quickly react to failures or configuration problems. The implemented

6 Network Virtualization System Suite

monitoring functions periodically update the resources’ information; therefore,
it is possible to identify diverse situations, such as failures and high resource
usage, which may require immediate action.

Every Agent periodically checks its local resources’ configuration and status,
and reports back to the Manager if any change occurs. Several parameters are
monitored: CPU load, RAM, HDD usage, interface and link status, interface
bridge attachment and configuration, number of running virtual machines and
their state.

Virtual Network Management The management feature is also very im-
portant; to that end, some functionalities are provided, like the change of the
resource’s state, i.e.: reboot, shutdown, suspend or power up, the change of the
assigned RAM memory in runtime; and the deletion of either a single resource
or a complete virtual network, which greatly simplifies the administrator work.

3 Experimental Platform Implementation

3.1 Control Centre Module

As previously stated, this is the module in charge of the user interaction, the
GUI. This module was written in Java and is composed by two main threads:
the Model and the View thread (Figure 4).

The Model thread is mainly used for listening to the Manager’s messages
and, aside from the exception of requesting the Manager an ID at start-up, it
is a passive thread. Its main function is to process the Managers’ messages and
update the related databases. The communication process is based on blocking
TCP/IP sockets.

As for the View thread, it is responsible for the actual graphical environ-
ment, and resorts to Java’s SWT graphical API. It is in charge of handling user
interactions, of displaying the networks’ topologies and resource information,
and of sending requests to the Manager. All of the platform’s functionalities are
presented to the user through the View thread.

Virtual Network Control Centre

Model
Thread

View
Thread

Virtual Network
Manager

User

Fig. 4. Control Centre Module Decomposition.

3.2 Manager Module

The Manager is a central module, written in C, whose job is to assemble the entire
network’s information, provide unique IDs to each Agent and Control Centre,
and to act on the networks. The connection between Agents and Control Centres
is established through TCP/IP sockets.

Network Virtualization System Suite 7

In order to communicate with the Agents, a single Command Send Thread
exists for sending messages, while multiple Agent RX Threads exist for receiv-
ing Agent messages. As for the connected Control Centres, a Control Centre
RX Thread and a Control Centre TX Thread is created for each one, so that
bidirectional communication may take place.

Besides the connection handling threads, there is an additional thread, the
Status Update Thread, used to process the received resources’ and pending links’
information, update the Manager’s databases and trigger Control Centre up-
dates: if a resource or link update is detected in a virtual network previously
requested by one or more Control Centres, an update will be sent via the re-
spective Control Centre’s TX thread.

Figure 5 summarizes the existing threads on the Manager’s module.

Virtual Network Manager

Connected
Agent N

Connected
Control Centre 1

Connected
Control Centre M

Connected
Agent 1

Control
Centre 1

Agent 1

Agent
Accept
Thread

Control
Centre Accept

Thread

Status
Update
Thread

Command
Send

Thread

Agent
RX

Thread 1
Control

Centre TX
Thread 1

Control
Centre RX
Thread 1

Agent N

Agent
RX

Thread N

Control
Centre M

Control
Centre TX
Thread M

Control
Centre RX
Thread M

Fig. 5. Manager Module Decomposition.

3.3 Agent Module

The Agent is a module written in C that was designed to work within the dom0
of a XEN [15] virtualization environment. Due to the multitude of tasks that it
performs, there are several threads running within the module (Figure 6). They
can be grouped into three main categories, according to their purpose.

The first group is related with the Manager communications. The Manager
Connection Thread makes sure that a connection to the Manager exists, and
is in charge of reconnecting in case of a connection failure. This thread is also
responsible for signaling the remaining threads if the Manager connection is lost
or established.

The Keep Alive ID Request Thread, besides acquiring a valid ID from the
Manager at startup, periodically sends Hello beacons to the Manager to in-
crease the connection robustness and allow the Manager to identify problematic

8 Network Virtualization System Suite

Virtual Network Agent

Interface NInterface 1

Virtual Network
Manager

Keep Alive
ID Request

Thread

Template
Manag.
Thread

Status
Update
Thread

Status
Send

Thread

Command
Receive
Thread

Manager
Connection

Thread

Link Disc.
Manag.
Thread

Active Link
Disc.

Thread 1

Passive
Link Disc.
Thread 1

Active Link
Disc.

Thread N

Passive
Link Disc.
Thread N

Interface 1
Neighbour

Agent 1

Interface N
Neighbour

Agent 1

Interface 1
Neighbour

Agent J

Interface N
Neighbour

Agent K

Neighbour
Hello

Thread

Link
Messaging

Thread

Fig. 6. Agent Module Decomposition.

connection situations. The Status Send Thread is the module’s general purpose
message gateway, since every message is sent to the Manager through it, except
for the ID request and Hello beacons. The last thread in the Manager commu-
nications group is the Command Receive Thread, which is in charge of receiving
the Manager’s messages and process them accordingly.

The second functional group, which takes care of the physical node’s state,
is composed of two threads. The first one is the Status Update Thread, that
periodically monitors the node for changes in configurations, load and state;
while the second one, the Template Management Thread is responsible for the
maintenance of a virtual machine pool, that may contain several templates, used
for speeding up the node creation process. Both threads rely heavily on the libvirt
API [16], for gathering information and performing hypervisor calls.

The last group is associated with the distributed discovery process. One Ac-
tive and one Passive Link Discovery Thread exists for each active physical inter-
face that handles the multicast communications on that interface. The Neighbour
Hello Thread periodically sends multicast Hello beacons through the active in-
terfaces’ communication threads, while the Link Discovery Management Thread
is responsible for managing the Active and Passive threads, i.e. launching or
terminating them if a new interface becomes active, inactive or changes its con-
figuration. The last thread in this group is the Link Messaging Thread, which is
a message gateway between the Status Update Thread and the Active Discovery
threads that is used to signal new and deleted local virtual resources.

Network Virtualization System Suite 9

4 Supported Scenarios

4.1 Discovering a Virtual Network

Through the algorithm described in 2.3, the Manager is aware of the complete
physical and virtual topologies. Using the Control Center, it is possible to request
information about a running virtual network through the Get VNet menu, where
a list of available networks will be shown. By selecting a physical or virtual
network, a new tab on the GUI will appear, showing information about the
requested network. As can be seen on Figure 7, information about the network’s
resources, such as nodes, links, and their interconnections is shown.

Fig. 7. Virtual Network Discovery.

4.2 Monitoring a Virtual Network

The discovery procedure is dynamic in nature, and therefore, the information
displayed on the drawing canvas, belonging to a given virtual network, is also
dynamic. The on-screen information will be updated in a close to real-time fash-
ion. When watching a virtual network on the Control Centre, it is possible to
see dynamic state, configuration, and load information. If, for example, a link
goes down or suffers any change, it is possible to see it on the Control Centre. If
a node becomes overloaded, the graphical icon representing the CPU load will
change its color, thus warning the network administrator of a high load situation.
Figure 8 exhibits some example monitoring information.

4.3 Creating a Virtual Network

The creation of a new virtual network is performed through the Control Centre.
This can be done by loading a VNet specification Extensible Markup Language
(XML) [4], on the Load XML menu, or by the New VNet option on the main
menu. Through the New VNet option, after specifying a VNet name, a new tab
will appear in the drawing canvas. In this canvas, it is possible to insert new vir-
tual nodes, using drag-and-drop mechanisms, and interconnect them with links.

10 Network Virtualization System Suite

Fig. 8. Virtual Network Monitoring.

After placing the required resources, it is possible to configure their specifica-
tions, such as the number of required CPUs, RAM amount, number of interfaces,
hard drive space and location requirements.

The virtual interfaces may be configured with IPv4 or IPv6 data, so that ini-
tial connectivity exists between the virtual nodes. As for the links, it is possible
to specify their required bandwidth, latency, jitter, loss and associated virtual in-
terfaces. Despite all these options, the QoS information is not currently enforced.
Some examples of configuration windows are shown in Figure 9.

Fig. 9. Virtual Network Configuration Windows.

As soon as the nodes, interfaces and links are properly configured, the de-
signed virtual network may be saved to an XML file, for future use, or be com-
mitted to the Manager, which will then deal with the embedding process. In
the case of a successful mapping, the virtual nodes and links will be created
and configured. As soon as the process terminates, the recently created virtual
network will be displayed on the Control Centre, where the administrator will
be able to verify the configurations and make sure that everything was created
as desired.

4.4 Managing a Virtual Network

One part of the network’s administrator tasks is to manage the existing virtual
networks. This platform provides a basic set of management features, through the

Network Virtualization System Suite 11

use of the GUI. The access to the management features, available only to virtual
resources, is performed through a menu when right clicking on the resource icon.

A resource state may be changed using the following commands: Start ; Shut-
down; Suspend ; Resume; and Destroy. Besides changing the resource’s state, it is
also possible to change the RAM amount assigned to a virtual node in real-time.

5 Experimental Results

5.1 Testbed Description & General Assumptions

The experimental testbed is composed of 6 physical nodes, whose CPU and RAM
characteristics are described in table 1. The nodes are interconnected with a total
of 8 ethernet links, ranging from 100Mbps to 1Gbps.

Node Susan Lynette Gabrielle Bree Eddie Mary

CPU PentiumD
950

PentiumD
950

Core 2 Duo
E6400

Xeon E3110 Xeon X3220 Xeon X3330

RAM 6GB 6GB 4GB 6GB 6GB 6GB

Table 1. Testbed specification.

In the following tests, the Manager was running on a separate physical ma-
chine directly connected to the testbed (Intel Core 2 Duo P8600; 4GB of RAM;
100Mbps link). The created virtual networks were always a replica of the under-
lying physical network, and served the purpose of being a reference throughout
the tests. The virtual nodes were configured with 1 CPU, 64MB of RAM, 1GB
of HDD, and 1Mbps links. During the tests, all virtual nodes were idle and so
were the physical nodes and links.

The maximum amount of created virtual networks was 40, which corresponds
to 40 virtual nodes in each physical node. The results presented on the following
sections always assume a 95% confidence interval.

5.2 Data Gathering

Data gathering is a very important feature, in order to have an updated view
of the existing networks’ status and characteristics. Its performance may be a
critical factor: if the data gathering procedures takes too long, the reaction to
failures or other events may be delayed.

Cold boot is described as the time it takes for each physical node to fully
discover and update the information about itself and its virtual nodes, and send
a full update to the Manager. This test intends to demonstrate the dependency
between this start up time, the number of running virtual machines and the
capability of the physical nodes. In order to assess the cold boot time, the time
difference between the Agent start-up and the end of the first status update was
measured. This procedure was repeated 10 times for every considered amount of
virtual networks.

Figure 10 exhibits the time required to boot with the increase in the num-
ber of existing virtual machines. It is clear that the substrate nodes have very
different capabilities, and that the boot time is heavily dependent on the CPU

12 Network Virtualization System Suite

-5 0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
ol

d
B

oo
t T

im
e

(m
s)

Virtual Networks

Cold Boot Time vs Number of Existing Virtual Networks

 Gabrielle

 Mary

 Susan

 Bree
 Eddie

 Lynette

Fig. 10. Agent Cold boot results.

processing power. The physical nodes using the old Intel NetBurst architecture,
i.e. Susan and Lynette, performed worse than the ones relying on the more recent
Intel Core 2 architecture.

5.3 Network Discovery

In this subsection, two different tests were performed. The first one was the
Cold Network Discovery test that measured the time elapsed since every Agent
had booted up, with no neighbourhood knowledge, until the full physical and
virtual network’s topologies had been built by the Manager. This test took into
consideration the time required for the Agents to gather neighbourhood data
and for the Manager to attain a converged view of every topology.

The second test, the Hot Network Discovery scenario, measured the time that
it took for the Manager to gather the network information from every Agent and
build all network topologies, in the situation where the Agents already had the
neighbourhood knowledge. This test aimed to assess the computing workload
required by the topology building algorithm using the data attained through the
distributed discovery, by comparing it to a centralized version of the discovery
algorithm that did not rely on the neighbourhood data from the Agents, but
instead relied on the configuration data of each physical and virtual node.

In the first test, for every virtual network created, the cold discovery time was
measured 10 times. Each time, the Manager and Agents were firstly shutdown.
Afterwards, every Agent was brought up. When every Agent had finished its cold
boot, the Manager was started and began waiting until a pre-determined amount
of nodes and links were received, depending on the number of the currently
running virtual networks. As for the second test, the Manager was programmed
to terminate its execution upon receiving and processing the expected amount of
nodes and links, which was variable according to the number of virtual networks
running at a given instant. It had two operation modes: the first one used a
centralized topology discovery algorithm, while the second one used the link
information sent by the Agents to the Manager to build the topologies. A script
was created that executed the Manager 100 times in a successive way, both for
the centralized and the distributed algorithms, with a 1 second delay between
Manager termination and restart.

Network Virtualization System Suite 13

0 10 20 30 40
0

20

40

60

80

100

120

140

160

D
is

co
ve

ry
 T

im
e

(m
s)

Virtual Networks

Cold Start: Manager Physical & Virtual Network
 Topology Discovery Time vs Virtual Networks

(a) Cold Network Discovery

0 10 20 30 40
0

20

40

60

80

100

120

140

160

Virtual Networks

D
is

co
ve

ry
 T

im
e

(m
s)

 Manager Physical & Virtual Network
 Topology Discovery Time vs Virtual Networks

Centralized
Distributed

(b) Hot Network Discovery

Fig. 11. Virtual Network Cold and Hot Discovery

By observing Figure 11(a), it is possible to notice that the time required
for discovery follows a linear trend. Taking into account the results obtained
from the simulation results of the discovery algorithm [12], this trend was to
be expected. Comparing the hot discovery results, displayed in Figure 11(b),
with the discovery times of the previous subsection, it is possible to state that
the discovery process is faster. This is to be expected since these measurements
simply incorporate the time required for the Agents to send their neighbour
information to the Manager, and the time it takes for the Manager to process
or aggregate this information.

By comparing the results of the centralized and distributed approach, one
can state that, as the number of virtual networks begins to grow, the distributed
approach provides lower discovery times than the centralized one. For 40 virtual
networks, the time difference is 20ms, or about 17%. This is a very important
conclusion, as it shows that distributed approaches need to be supported in
future, and more complex, networks.

The scalability of the distributed discovery algorithm is demonstrated both
through these experimental results and the simulation results presented in[12].

5.4 Virtual Network Mapping

In this test, the performance of the proposed mapping algorithm was evaluated.
In spite of the small-scale testbed, some insight should be gained about the
scaling of the algorithm with the increase in the number of existing virtual
networks. In order to assess the mapping times, 40 virtual networks, like the
ones specified in 5.1 were created, one at the time. The time required for the
Manager to process the received unmapped XML and return a mapped one was
measured. The tests were repeated 3 times.

The time required to perform the mapping is shown to increase with the num-
ber of existing virtual networks (Figure 12). Since the mapping procedure only
depends on the virtual network to be embedded and on the physical network,

14 Network Virtualization System Suite

0 5 10 15 20 25 30 35 40
6

8

10

12

14

16

18

20

22

24

26

V
irt

ua
l N

et
w

or
k

M
ap

pi
ng

 T
im

e(
m

s)

Number of Existing Virtual Networks

Analysis of a 6 Node VNet Required Mapping Time vs Existing VNets

Fig. 12. Virtual Network Mapping results.

it would be expected that the mapping times remained constant. However, this
was not the case. In order to understand the increase in the required mapping
time, one must take into consideration that, when performing the mapping, the
Manager needs to update the physical links’ load, and therefore needs to access
each existing virtual network’s information. Thus, for each additional virtual
network, the Manager will need more time to calculate the physical links’ stress.
This increment in needed time is revealed in the obtained results, which show a
linear scaling with the number of existing virtual networks.

Regarding the absolute mapping times, they remained in the order of low
tens of millisecond, which is very good and can be considered real-time. The
considerable deviations on the measured mapping times are probably due to the
Manager’s need to lock the different resources’ mutexes, while performing the
mapping.

5.5 Virtual Network Creation

In order to evaluate the time required to create a virtual network on the available
testbed and its scaling with the amount of previously existing virtual networks,
several creation tests were performed.

The amount of previously existing virtual networks was varied between 0,
i.e. without virtual networks, and 39. For each considered point, a virtual net-
work was created and deleted 10 times, and the time required for creation was
recorded. The created virtual networks were the same as the ones previously
specified in 5.1. The considered creation time encompasses the time required for
the Manager to split the mapped XML and send the different command mes-
sages to the Agents, as well as the time required for the Agents to report back
with updated information about the created resources and links. The Manager
was in charge of measuring these creation times.

The obtained results, shown in Figure 13, follow a linear trend with the
increase in the amount of existing virtual networks. It is worth noting that the
total creation time, encompassing both node creation and subsequent topology
discovery, only depends on the slowest physical node, from the ones chosen to
have a virtual node embedded. Considering the physical node’s performance

Network Virtualization System Suite 15

0 5 10 15 20 25 30 35 40
10

20

30

40

50

60

V
irt

ua
l N

et
w

or
k

C
re

at
io

n
an

d
 D

yn
am

ic
 D

is
co

ve
ry

 T
im

e
(s

)

Number of Existing Virtual Networks

Analysis of a 6 Node VNet Creation and Dynamic Discovery Time vs Existing VNets

Fig. 13. Virtual Network Creation results.

estimates attained in subsection 5.2, one can see that the slowest node, Susan,
is about three times slower than the fastest node, Mary.

The demonstrated increase in discovery times is due to the increase in time
required to gather resource information. It is worth noting that, when the virtual
node is created, the used virtual machine template will be regenerated, imposing
a severe strain on the physical node’s slow HDD, thus further slowing down the
data gathering and subsequent discovery process.

Significant deviations were observed when measuring the creation time. Since
these measurements depend on every physical node (their respective discovery
threads, mutex locks, time required for gathering resource information and also
the performance of the hypercalls), large variations were verified.

6 Conclusions

This paper presented the NVSS, which was designed to test the support of
network virtualization. The developed platform provides functionalities such as
discovery, mapping, monitoring and management of virtual networks and aggre-
gates them in a easy to use user interface.

The results of the conducted tests show the performance of the platform
on multiple situations. The scaling of the Agents’ boot time was analysed, and
different scenarios were considered on the assessment of the network discovery
functionality performance. As for the embedding functionality, both the time
required for mapping a new virtual network and creating the virtual network
were studied. Considering the attained Agent boot results, they were heavily
dependent on the physical’s node performance and on the number of active
virtual machines. With regard to network discovery times, in both scenarios,
hot and cold discovery, they scaled linearly with the increase in the number of
virtual networks. For the hot discovery scenario, where the distributed discovery
algorithm was compared with a centralized version, the performance gains of
the distributed approach were significant, especially for more than 20 virtual
networks. The virtual network mapping and creation results showed a linear
behavior. The heuristic algorithm was able to map new virtual networks with a
computational time of some tens of milliseconds. In the virtual network creation

16 Network Virtualization System Suite

process, the results show that this procedure is still able to provide fast virtual
network creation times even with 40 virtual networks embedded.

As future work, we plan to address the reconfiguration and migration features
as a result of fault-tolerance mechanisms, and the inclusion of virtualization of
both the network and cloud resources.

7 Acknowledgments

The authors are thankful to the members of the 4WARD project, particularly
those involved in Work Package 3, for the collaboration and fruitful discussions.

References

1. Carapinha, J. and Jimenez, J., Network virtualization: a view from the bottom, in
Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and
architectures. Barcelona, Spain: ACM, 2009, pp. 7380.

2. Architecture Conceptual Design for New Generation Network. http://akari-
project.nict.go.jp/.

3. GENI: GENI - Global Environment for Network Innovations. http://www.geni.net/.
4. 4WARD Consortium: Virtualisation approach: Evaluation and integration - update.

Technical report, ICT-4WARD project, Deliverable D3.2.1, June 2010.
5. Melo, M., Carapinha, J. and Sargento, S., Network Virtualisation from an Operator

Perspective, Proc Conf. sobre Redes de Computadores - CRC, October, 2009.
6. Chowdhury, N. M. K. and Boutaba, R., Network virtualization: State of the art and

research challenges, IEEE Communications Magazine, no. 7, July, 2009.
7. Norbert, E., Greenhalgh, A., Handley, M., Hoerdt, M., Huici, F., Mathy, L., and

Papadimitriou, P.: The virtual router project. http://nrg.cs.ucl.ac.uk/vrouter/.
8. XORP: XORP - eXtensible Open Router Platform. http://www.xorp.org/.
9. Nogueira, J., Melo, M., Carapinha, J. and Sargento, S., Virtual Network Mapping

into Heterogeneous Substrate Networks, submitted to IEEE Symposium on Com-
puters and Communications (ISCC) 2011, June 2011.

10. Zhu, Y. and M. Ammar: Algorithms for assigning substrate network resources to
virtual network components. In INFOCOM 2006. 25th IEEE International Confer-
ence on Computer Communications. Proceedings, pages 112, 2006.

11. Lischka, J. and Holger, K.: A virtual network mapping algorithm based on sub-
graph isomorphism detection. In VISA ’09: Proceedings of the 1st ACM workshop
on Virtualized infrastructure systems and architectures, pages 8188, New York, NY,
USA, 2009. ACM, ISBN 978-1-60558-595-6.

12. Nogueira, J., Melo, M., Carapinha, J. and Sargento, S., A Distributed Approach
for Virtual Network Discovery, IEEE Globecom 2010 Workshop on Network of the
Future, December 2010.

13. PlanetLab: PlanetLab - An Open Platform for Developing, Deploying, and Access-
ing Planetary-Scale Services. http://www.planet-lab.org/.

14. A. Udugama, L. Zhao, Y. Zaki, C. Goerg, A. Timm-Giel, End-to-end Performance
Evaluation of Virtual Networks using a Prototype Implementation, Second Inter-
national ICST Conference on Mobile Networks and Management (MONAMI), San-
tander (Spain), September 2010.

15. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I. and Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst.
Rev., 37:164177, October 2003, ISSN 0163-5980.

16. libvirt - Virtualization API - http://libvirt.org/

	Network Virtualization System Suite
	Experimental Network Virtualization Platform
	Introduction
	Network Virtualization Architecture
	Business Model
	Architecture
	Functionalities
	Distributed Physical and Virtual Network Discovery
	Virtual Network Creation
	Substrate and Virtual Network Monitoring
	Virtual Network Management

	Experimental Platform Implementation
	Control Centre Module
	Manager Module
	Agent Module

	Supported Scenarios
	Discovering a Virtual Network
	Monitoring a Virtual Network
	Creating a Virtual Network
	Managing a Virtual Network

	Experimental Results
	Testbed Description & General Assumptions
	Data Gathering
	Network Discovery
	Virtual Network Mapping
	Virtual Network Creation

	Conclusions
	Acknowledgments
	References

