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João Nogueira1,2, Márcio Melo1,2, Jorge Carapinha2, Susana Sargento1
1 Instituto de Telecomunicações, University of Aveiro, Portugal

2 Portugal Telecom Inovação, Aveiro, Portugal
joaonogueira@ua.pt, marciomelo@av.it.pt, jorgec@ptinovacao.pt, susana@ua.pt

Abstract—The ever-increasing requirements for performance,
flexibility, and robustness are imposing a severe strain on the
Internet’s stagnated architecture. Network virtualization arises
as a potential solution for improving the current situation
by letting multiple networks with different requirements,
architectures and protocols to coexist and share the same
infrastructure in an independent way. These advantages are of
great interest for network operators.
This paper presents a virtualization platform that enables the
creation, discovery, monitoring and management of virtual
networks. It then concentrates on the proposal of a distributed
discovery algorithm that is able to discover both physical and
virtual network topologies. This algorithm uses the concepts of
level 2 multicast and spanning tree to decrease the overhead
related to the exchange of discovery messages between the nodes.
The simulation results show that, when compared to gossip
based discovery algorithms, the performance of our approach
is significantly increased, up to an improvement in exchanged
messages of three orders of magnitude, when considering
physical networks with 500 nodes. Experimental results have
shown that distributed approaches also introduce significant
improvements when compared with centralized approaches.

Index Terms—Virtualization, Virtual Networks, Embedding,
Mapping, Distributed Discovery

I. INTRODUCTION & MOTIVATION

Network virtualization is, nowadays, considered as an en-
abler technology that will allow future, radically different and
innovative network protocols and architectures. Substantial
efforts have been put into research through several Future
Internet initiatives from Europe, Japan and the USA. Even
though, initially, the main purpose of network virtualization
was to experiment and evaluate new protocols and network
architectures, there has been an increasing interest from the
network’s operators on this technology [1], [2].

The main advantages for operators rely on the ability
to improve the revenues through consolidation of resources,
and the added business advantages of being able to provide
their customers with custom-tailored networks. With network
virtualization in place, new business roles will arise [3] and
the decoupling of the physical infrastructure from the services
running on top of it will be fostered, hence increasing the
adaptability to the ever-changing business needs. It can also
be seen as a non-disruptive path to introduce disruptive tech-
nologies and business models.

Although very attractive from several standpoints, network
virtualization contains several challenges [4]. Virtualizing the

networks’ resources is one of them; research on efficient
virtual routers that can compete with the current hardware
routers is underway and promising results have been attained
[5], [6]; still, they cannot compete on the high-performance
routing arena.

Other fundamental issues are related to the management,
monitoring and embedding of virtual networks in the physical
infrastructure. For instance, to our best knowledge, no discov-
ery algorithms focusing on virtual network topologies have
been developed so far. Most of the focus has been on overlay
networks [7], [8], [9].

This paper presents an architecture developed to facilitate
the creation and management of virtual networks. It then
focuses on a distributed topology discovery algorithm that
performs the discovery of all nodes in a virtual and physical
topology. The proposed algorithm for full network discovery
relies on the neighbourhood and multicast concepts to optimize
the process of messages exchange between nodes, and on the
spanning tree algorithm to reduce the information exchange
of the distributed approach by electing a node to exchange
information. The obtained results, both through simulation and
real experimental scenarios, show that the proposed algorithm
is able to discover the virtual topology with low overhead
and discovery times, with significant improvements when
compared to both centralized approaches and with state of
the art distributed approches applied to virtual networks.

The paper is organized as follows. Section II discusses the
related work on discovery algorithms. Section III presents the
architecture of the virtualization platform and its functionali-
ties. Section IV presents the proposed discovery algorithm and
its main functionalities and characteristics. After analyzing the
performance of the discovery algorithm on section V, both
in simulation and real experiment environments, the paper
concludes on section VI.

II. RELATED WORK ON DISCOVERY ALGORITHMS

A fundamental requirement to support embedding algo-
rithms is to know exactly the existing physical and virtual
topologies and resources’ characteristics, and the status of
all network elements and links. This knowledge can be pro-
vided by a centralized or distributed approach. A central-
ized approach requires a central network element to gather
information about topologies updates in order to guarantee
the consistency of the topology databases and the detection



of failures. In a large network, this approach can be prone
to scalability problems. A distributed approach requires the
discovery of the network nodes to be performed by the
nodes themselves. A distributed discovery mechanism should
be robust, fast to converge and efficient in gathering and
disseminating network information with a reduced footprint
in the substrate network.

Regarding physical topology discovery, there are multiple
commercial applications that rely on Layer 3 information to
build the physical networks’ topology, showing the logical
connections between the resources. Although the discovery
of the physical network topology is essential, the discovery
of virtual networks’ topologies is also required and presents
several unaddressed challenges. Since virtual networks are a
relatively new concept, and no complete network virtualization
platform has been developed so far, there is a general lack
of scientific studies regarding virtual topology discovery, al-
though guidelines have been provided by some authors. Some
initiatives, like CABO [10] advocate the use of a separate
independent discovery plane, and an implementation using
distributed algorithms was suggested by [11].

Virtual networks are made of virtual resources laying upon
physical resources, therefore the information regarding their
topologies is spread-out throughout the physical network. If
we consider overlay networks, one will quickly realize the
immense similarities between them. Since overlay networks
have already been studied extensively, in part due to the
popularity of Peer-to-Peer (P2P) communities, their topology
discovery mechanisms are a good starting point for developing
a virtual network discovery algorithm.

Due to the distributed nature of P2P, the focus has been
on distributed discovery mechanisms. Gossip-based broad-
cast algorithms [7], also known as probabilistic broadcast
algorithms, are known for trading reliability guarantees for
scalability properties, since they impose a smaller overhead
on the network than uncontrolled flooding methods.

T-Man [7], [8] is one of such algorithms. It is gossip
based and targets large scale and highly dynamic systems.
Assuming random overlay networks with nodes connected
through a routed network, the algorithm tries to find each
node’s neighbours, based on ranking functions that take into
account the properties of each node, such as ID and geographic
location. By sharing neighbourhood knowledge each node will
build its relevant neighbour table, i.e. its target topology.

The algorithm in [9], in the context of P2P networks,
proposes a hybrid approach to peer discovery, using a central
cache for peers not in the local network, i.e. behind some
gateway with Network Address Translation (NAT), and multi-
cast for discovering peers within the same local network. This
dual approach combines the benefits of both the centralized
and distributed model.

Although none of the studied algorithms is specifically
targeted at virtual networks, most of the information sharing,
propagation and topology building concepts can be applied and
will thus lay the foundations for the virtual topology discovery
algorithm.

III. PLATFORM DESIGN

The goal of the developed virtualization platform is to
provide the operators with a network virtualization solution
that is easy to use, versatile, and efficient in virtual network
discovery. The resulting platform provides the necessary func-
tionalities to discover, monitor, deploy and manage virtual
networks running on top of a substrate network. It is designed
to run on Fedora Core 8 and Debian Lenny Linux distributions
with the Xen kernel.

A. Architecture

This virtualization platform is composed by three modules:
the Agent module, the Manager module and the Control Centre
module; their hierarchical decomposition can be analysed on
figure 1. The Control Centre module is the user’s front-end,
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Figure 1. Network Virtualization System Suite - Existing modules

i.e. the Graphical User Interface. It is used in order to perform
actions on the network and analyse the gathered data. It pro-
vides the user with the virtual network creation, management
and monitoring features. The Manager module’s functions are

Figure 2. Virtual Network Control Centre

many-fold: (1) it gathers information from the Agents and
sends commands to them; (2) it aggregates their information
to build the substrate and virtual network’s topologies and
to maintain an up-to-date database containing the resources’
static and dynamic information; and (3) it keeps the Control
Centre with up-to-date information about its requested virtual
networks (this information is used to change the state of a
resource, or map and deploy a virtual network request).



Finally, the Agent module is designed to run on every
substrate node. The Agents send their local resources’ infor-
mation to the Manager, provide discovery functions through
a distributed algorithm, and execute resource creation and
network configuration requests.

B. Functionalities

This section briefly describes the main functionalities of the
virtual network platform.

1) Physical and Virtual Resource and Topology Discovery:
By providing means of automatic discovery of both the net-
work resources and links, the network administrator can have a
global view of the running networks and respective topologies
at a glance, in a simplified manner. The nodes exchange
messages to discover each other, thus every node, virtual or
physical, knows exactly its neighbours. By combining the
knowledge acquired by every node, it is possible to build a
map of the full topology, both physical and virtual.

2) Substrate and Virtual Network Monitoring: Resource
monitoring is fundamental if one wants to have an accurate
view of the virtual and physical networks at a given point
in time. The monitoring functions periodically update the
resources’ information, therefore it is possible to identify
diverse situations, such as failures and high resource usage,
which may require immediate action. Monitoring for both
physical and virtual link information is also provided.

To provide proper updated information, every Agent peri-
odically checks its local resources’ configuration and status,
and reports back to the Manager if any change occurs. These
triggered, event-driven updates reduce the overhead traffic
on the network. Several parameters are monitored: Central
Processing Unit (CPU) load, Random Access Memory (RAM),
Hard Disk Drive (HDD) usage, interface and link status, inter-
face bridge attachment and configuration, number of running
virtual machines and their state. If a resource crashes or
becomes misconfigured, the network administrator will have
this information and will be able to take proper actions.

3) Virtual Network Mapping: The virtual network embed-
ding problem is a complex one, where the placement of
resources and links must be optimized. This dual optimization
can be computationally heavy; therefore, efficient mechanisms
must be developed in order to provide a ”good enough”
mapping that is not excessively time-consuming.

The virtual network deployment feature requires user in-
teraction. The user shall place the resources via drag-and-
drop functions and connect them with links. The user may
specify the nodes’ CPU capabilities, RAM amount, location,
number of interfaces, and also perform network addressing
configurations. The final step in creating a new virtual network
is to commit it to the Manager. The Manager will then evaluate
the specified virtual network and either accept it or refuse it.

4) Virtual Network Management: Just like the previously
described monitoring ability, the management feature is also
a fundamental one. To that end, some functionalities are
provided, such as changing the virtual resource state, i.e.:
rebooting, shutting down, suspending or powering the resource

up, the amount of assigned RAM memory, deleting the re-
source or even the full virtual network. The assigned RAM
memory may be changed in runtime.

IV. DISTRIBUTED TOPOLOGY DISCOVERY

In order to be able to properly map new virtual networks
and allow the user to monitor the physical and existing
virtual networks, mechanisms for discovering their topology
are required. The distributed topology discovery, on the one
hand, intends to reduce the required processing power on the
Manager, while on the other hand, it is a step forward towards
in-network management mechanisms.

The algorithm for full network discovery relies on the
neighbourhood concept, where each physical node knows
exactly who its neighbours are, and also, who are the virtual
neighbours of its local virtual nodes. The Agents register
themselves in a predefined multicast group and, afterwards,
exchange messages with each other. The multicast group used
is link-local, i.e. Time-To-Live (TTL) of 1, in order to avoid
sending the discovery messages to nodes that do not want
it and would otherwise need to process the packet before
discarding it. By aggregating each Agent’s knowledge, the full
topology map may be built.

In a given network segment, one of the Agents has a
special function, the Designated Root (DR) function. This
approach has its roots on the spanning tree algorithm. It
aims to reduce the information exchange of the distributed
approach by electing a node to exchange information. This
node is responsible for transmitting all the information about
its network segment to a new Agent arriving at the network.

A. Physical Topology Discovery

Upon start-up and periodically, each Agent sends a multi-
cast Hello message through its interfaces. The messages are
specific to the interface and indicate their origin interface.
This Hello message exchange allows each Agent to know its
directly connected physical neighbours.

B. Virtual Topology Discovery

The virtual network topology is not simple to achieve, since
a virtual link may span through several physical links, thus
message forwarding mechanisms had to be designed. The
Agents exchange information about two kinds of resources:
their local resources and the resources advertised by their
neighbours that utilize the local physical node as a network
hop.

In figure 3, an example of virtual resource advertisement,
in this case regarding the virtual resource A, can be seen. This
resource is running on the physical node a that realizes that the
virtual node A has two virtual interfaces bridged to different
Virtual Local Area Networks (VLANs) on one of its physical
interfaces. The physical node will thus advertise A through
its physical interface. The advertisement messages will be
received by the physical node b which will then register A,
with its interfaces, as a potential neighbour. b will then check
if any local virtual resource is connected to A, either through



its eth0 or eth1 interface. Since this is not the case, b will
then check if it is a hop to any possible link of A and will
identify two bridge entries: one that forwards A’s eth0 interface
and another one that forwards the A’s eth1 interface, through
different physical interfaces, in this case. After identifying
itself as a hop, b will advertise A and its interfaces to the proper
physical links. d will receive the resource advertisement, and
checks for a connection with a local virtual resource. This
verification succeeds, and d becomes aware that its virtual
resource B is connected to A’s eth1 interface through B’s
virtual interface eth0.

The described “verify-and-forward” mechanism is repeated
on the lower network branch until f becomes aware that its
virtual resource C is also connected to A.

Figure 3. Distributed Discovery - Resource Advertisement

C. Designated Root

The DR is elected based on the Agents’ ID, which is an
integer attributed from the Manager when an Agent starts-
up; the Agent with the lowest ID on a network segment is
elected the DR and is responsible for sending the networks’
information to newcomers. At start-up, every Agent ‘s DR
is itself; after receiving a message from an Agent with a
lower ID, the DR will be updated to reflect the new ID. Each
neighbour has an expiration timer that will trigger a new DR
election if the current DR fails to communicate within a given
time period, i.e. if no message is received from it.

D. Bootstraping

In order to begin the discovery mechanism, the Agent must
have a unique ID given by the Manager and the initial local
resource discovery must be completed.

After these initial conditions are met, the discovery algo-
rithm 1 starts and the periodic sending of Hello messages
begins. Upon receiving an Hello message, the current DR
will identify a new physical neighbour and, since it is the
DR, a full update regarding the network segments’ associated
virtual resources is sent to the arriving Agent. On the new
Agent’s side, after receiving any message of a previously
existing physical neighbour, an update containing its full
knowledge, i.e. only local resources, will be sent. The DR
will be afterwards updated based on the IDs of the discovered
physical neighbours. This is represented in the first half of the
algorithm.

Algorithm 1: Per-Interface Discovery Algorithm
input : IFCi

DR = My ID ;

repeat Msg Type = Multicast Receive(IFCi,Msg Buffer)
NG = GetNeighbour(Msg Buffer);
if NewNeighbour(NG) then

AddToNeighbourList(IFCi,NG) ;
if DR == My ID then

SendAllKnowledge(IFCi) ;
end
else

ExclusiveUpdateDR(IFCi,NG) ;
if DR == My ID then

SendAllKnowledge(IFCi) ;
end
UpdateDR(IFCi);

end
end
switch Msg Type do

case Resource Message
VNG = GetVirtualNeighbour(Msg Buffer);
if NewVirtualNeighbour(VNG) then

AddtoVirtualNeighbourList(IFCi,VNG);
end
if size (IFCList = LinkToOtherInterfaces(IFCi,VNG))>0 then

AddToVirtualNeighbourLists((IFCList,VNG) ;
SendResourceMessage((IFCList,VNG) ;

end
CheckForVirtualLinksWithLocalResources(VNG);

endsw
case Delete Message

VNG = GetVirtualNeighbour(Msg Buffer);
IFCList = LocateResourceEntriesOnAllInterfaces(VNG);
SendDeleteMessageThroughRelevantInterfaces(IFCList,VNG) ;
RemoveEntriesOnAllInterfaces(IFCList,VNG);

endsw
endsw
UpdateLastContactTime(NG);

until Terminate Signal;

E. Resource Update Mechanism

There are two main situations where an Agent advertises a
resource. The first one is when a new local resource is created;
the Agent where the resource resides will send updates through
the interfaces related to that particular resource. The second
possible situation happens when a resource is advertised as a
consequence of a received resource advertisement, i.e. there is
an advertisement forwarding.

The Agents receiving the new resource advertisement will
place an entry on the receiving interface’s knowledge database.
They will then locate potential output interfaces for that
resource, i.e. the Agents will verify if they are or not a hop for
any virtual link belonging to the advertised virtual resource. If
they are, they will forward the resource information through
the relevant interfaces; otherwise, they will just keep the
resource information stored, since it may be needed later. A
local verification will also be performed in order to asses if
any of the local virtual resources is connected through a virtual
link to the received resource. This is represented in the second
half of the algorithm by ’Resource Message’.

F. Resource Removal Mechanism

Another fundamental part of topology discovery is to be
able to delete virtual resources and maintain the consistency
in the existing databases. To that end, a mechanism for virtual
resource removal also exists. The forwarding mechanisms are



Number of physical nodes Increment Number of simulation runs
4 to 50 2 100

60 to 150 10 100
200 to 250 50 50
300 to 350 50 20
400 to 500 100 10

Table I
DISTRIBUTED DISCOVERY - 1ST SIMULATION PARAMETERS.

similar to the ones of new virtual resource advertisement. This
is represented in the second half of the algorithm by ’Delete
Message’.

V. PERFORMANCE RESULTS

A. Simulation Results

In order to assess the scalability of the proposed distributed
discovery algorithm, two different simulation tests were per-
formed in Matlab. The first one assesses the scalability of the
algorithm with the increase of physical nodes, in the presence
of a single virtual network spanning half of these nodes.
The second one assesses the scalability with the increase
of the number of virtual networks. The physical topology
was generated using the Waxman random topology generation
[12] method using the recommended parameters, α = 0.4
and β = 0.4, while the virtual networks were generated by
selecting randomly half of the physical nodes, and generating
virtual links using the same Waxman model. Full connectivity
was assured on every topology.

Since the virtual links did not match existing physical links
most of the times, the Dijkstra algorithm was run in order to
get a physical path for each virtual link, where the link costs
were the actual link sizes.

For comparison purposes, three discovery algorithms were
considered: the proposed one, and two others based on
uncontrolled and probabilistic flooding [7], with a flooding
probability of 50%.

For the first simulation scenario, a single random virtual
network was generated on top of a random physical network.
The number of physical nodes varied between 4 and 500 in
a non-uniform way. Due to the time required to complete the
simulation when in the presence of many nodes, the number
of simulations runs for each number of physical nodes varied
according to table I.

When running the proposed algorithm, the simulation
stopped when the discovery message reached the intended
destination, and was not propagated afterwards. When running
the flooding algorithms, the simulation has stopped when all
nodes had been visited.

For the second simulation scenario, random physical net-
works were generated with 100 nodes and an increasing
number of random virtual networks, from [1 to 21] were
generated on top of them. The simulations were repeated 10
times and the presented values correspond to the mean values
and the 95% confidence values (although very small and not
visible in the figures).
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Figure 4. Discovery Algorithm Scalability Tests – Number of Physical Nodes.

Considering the graphics relating the first simulation sce-
nario, it is clear that the proposed algorithm imposes a much
smaller overhead than flooding and probabilistic flooding
techniques. Regarding figure 4, exhibiting the number of
exchanged messages, in the case of 500 physical nodes, the
difference between the probabilistic flooding algorithm and the
proposed one is of about three orders of magnitude.

With respect to the required simulation cycles, the proposed
algorithm shows a behaviour similar to that of the flooding
algorithms for less than 10 physical nodes. However, for a
significant number of nodes, the number of required simulation
cycles starts to stabilize on our approach, while in the other
cases it continues growing.

The behaviour of the flooding algorithms in respect to
simulation cycles is to be expected. Since the network size
keeps on growing, so will the number of hops that forward
the discovery messages; thus, the number of cycles required
for the messages to reach every node is proportional to the
number of physical nodes.

In the proposed algorithm, the path crossed by the discovery
messages is a previously optimized one; therefore, the number
of simulation cycles required for convergence is much smaller.
The stagnation in the required number of cycles observed is
due to the number of physical hops utilized by the virtual
links, being kept approximately constant with the increase of
substrate nodes, since the virtual networks are always created
with half of the physical nodes.

Figure 5 shows the results obtained with the increase in
the number of virtual networks on top of a single substrate
network. It is possible to observe that its behaviour follows a
linear trend, i.e. that the number of exchanged messages and
required simulation cycles are much reduced when compared
to the other approaches.

B. Experimental Results

In this section, we determine the time required to perform
the discovery of the network nodes, in a real scenario of 0
to 40 running virtual networks. These results are obtained
with the real virtualization platform. For simplicity purposes,
all the existing VNets were equal and their topology was
an exact replica of the underlying physical network. Each



0 5 10 15 20 25
10

3

10
4

10
5

10
6

10
7

10
8

Number of Virtual Networks

N
um

be
r o

f E
xc

ha
ng

ed
 M

es
sa

ge
s

100 Physical Nodes

Proposed Algorithm
Uncontrolled Flooding
Probabilistic Flooding

0 5 10 15 20 25
0

500

1000

1500

2000

2500

Number of Virtual Networks

N
um

be
r o

f s
im

ul
at

io
n 

cy
cl

es

100 Physical Nodes

Proposed Algorithm
Uncontrolled Flooding
Probabilistic Flooding

Figure 5. Discovery Algorithm Scalability Tests – Number of Virtual
Networks.

virtual node was configured with 1 CPU, 64MB of RAM
and all virtual links were setup with a 1.0Mbps bandwidth.
The Manager was running on an external computer, connected
directly to the testbed (Intel Core 2 Duo P8600; 4GB of RAM;
100Mbps link). In an attempt to determine the amount of
time required for an updated network view, two virtual link
discovery approaches were tested:

• Centralised: The Manager has full knowledge of existing
Physical and Virtual Nodes, interfaces and bridges, and it
performs computations in order the determine the existing
Virtual and Physical topologies.

• Distributed: The Agents communicate with each other
in other in order to determine existing virtual links,
as explained in section IV in our distributed discovery
approach. The agents then report back to the Manager,
which then only has to perform the simple task of
appending nodes and links to the virtual network.
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Figure 6. Experimental Results - Distributed vs Centralized Discovery

Considering the obtained experimental results of figure
6, it is possible to observe the linear trend also seen on
the simulation results. For a reduced amount of virtual net-
works, the convergence time for both the centralized and
the distributed algorithms are similar, but, as the number
of virtual networks begins to grow, the distributed approach
provides better results. Taking into consideration the size and

complexity of the testbed, which is small, we can conclude
that distributed approaches need to be supported in future and
complex networks.

VI. CONCLUSIONS

Virtual network discovery algorithms, despite being funda-
mental for a future virtualized network, have not been a major
research target in the past few years.

The developed distributed discovery algorithm succeeded on
providing a simple, fast and low overhead virtual and physical
topology discovery algorithm, as proven both by the obtained
simulation results and the experimental tests conducted.

In addition to the distributed discovery algorithm, the devel-
oped software suite provides embedding, monitoring and man-
agement functionalities and aggregates them in a convenient
and easy to use graphical user interface. Therefore, future work
will be devoted to the proposal of new mechanisms for the
mapping of virtual networks on the physical infrastructure, and
on the support of monitoring and management functionalities.
Multi-provider environments will also be investigated.
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