

J-OWAMP

Java Implementation of OWAMP

User’s Manual
for versions 1.2 and 2.1

Authors: Hélder Veiga, Teresa Pinho, José L. Oliveira, Rui Valadas, Paulo
Salvador, António Nogueira

Affiliation: University of Aveiro / Institute of Telecommunications Aveiro

hveiga@av.it.pt; {jlo, rv}@det.ua.pt; {salvador, nogueira}@av.it.pt

Last updated: 12-12-2005

J-OWAMP – Java Implementation of OWAMP

Contents

1 Introduction and requirements .. 3
2 System architecture... 5
3 Running J-OWAMP.. 7
4 Configuring J-OWAMP modules ... 11

4.1 OWAMP Server, OWAMP Session-Sender and OWAMP Session-Receiver. 11
4.2 OWAMP Control-Client ... 12

4.2.1 Configure test sessions, show results to user and/or save them to a file .. 12
4.2.2 Configure test sessions and save test configurations and results to a
MySQL database... 26

4.3 OWAMP Fetch-Client .. 30
4.3.1 Fetch the results of a session and show them to user and/or save them to a
file 30
4.3.2 Fetch the results of a session and save them to a MySQL database 31

5 CalculateCI ... 34

Page 2 of 35

J-OWAMP – Java Implementation of OWAMP

1 Introduction and requirements
In order to create an innovator platform for active measurements, that can also represent a
basis for the development and test of new algorithms and models, we built a system
designated by J-OWAMP (that stands for Java implementation of OWAMP) that
corresponds to the analogous of the One-Way Active Measurement Protocol (OWAMP)
model. The previous versions of J-OWAMP (version 1.2) implement the May 2004 draft
proposal of OWAMP (http://www.internet2.edu/~shalunov/ippm/draft-ietf-ippm-owdp-
08.txt). The current version of J-OWAMP (version 2.1) implements the December 2004
draft proposal of OWAMP (http://www.internet2.edu/~shalunov/ippm/draft-ietf-ippm-
owdp-14.txt).

The J-OWAMP system can be used both in Windows and Linux platforms, requiring
only the installation of the J2SE Java Runtime Environment (JRE), available for both
Windows and Linux. The installation of this module is mandatory, in order to allow the
execution of Java applications. The J2SE Java Runtime Environment (JRE) 5.0 is needed
for having IPv6 support on Microsoft Windows. With the J2SDK/JRE 1.4 release, there
is IPv6 support on Linux.

Note: For IPv6 support, addresses with scope link-local (start with FE8) or site-local
(start with FEC) shouldn’t be used.

You must also save a MySQL Connector/J file (http://dev.mysql.com/downloads/) in the
"<jre_diretory>\lib\ext" directory to allow the interaction between J-OWAMP and a
MySQL database. MySQL Connector/J is used for connecting to MySQL from Java.

OWAMP requires a synchronized clock in order to provide meaningful measurements.
But, more importantly, the clock needs to be stable. If the system clock is stepped during
an OWAMP session, the results can be misleading. OWAMP requires the use of GPS or
NTP to synchronize the system clock.

The time synchronization, accuracy and resolution are some of the most important
requirements of OWAMP. Better accuracy and resolution can be obtained by using
performance counters in conjunction with the system time, in order to calculate accurate
and smaller time increments. To do so, a time reference should be defined. In any instant
the current time can be determined as follows: currentTime = timeReference +
(currentCounterValue - referenceCounterValue)/counterFrequency. The time reference
can be defined by using the system time, in which case the system should be
synchronized, or directly from a NTP server. J-OWAMP allows these two approaches.
For the second approach, J-OWAMP includes a NTP client which can be used to get the
time reference directly from a NTP server, without the requirement of a synchronized
clock on the machine hosting J-OWAMP. This approach can lead to even better results
than the first one. On both approaches, time reference should be frequently synchronized.
Therefore, an update interval should be defined.

With J-OWAMP it is possible to accomplish two kinds of test sessions: single test
sessions and confidence interval test sessions. The single test session corresponds to the
configuration of one single test between two machines. The user can define the number of
packets, the packet interarrivals, the packet length and the start time of the session. The

Page 3 of 35

http://www.internet2.edu/%7Eshalunov/ippm/draft-ietf-ippm-owdp-08.txt
http://www.internet2.edu/%7Eshalunov/ippm/draft-ietf-ippm-owdp-08.txt
http://www.internet2.edu/%7Eshalunov/ippm/draft-ietf-ippm-owdp-14.txt
http://www.internet2.edu/%7Eshalunov/ippm/draft-ietf-ippm-owdp-14.txt
http://dev.mysql.com/downloads/

J-OWAMP – Java Implementation of OWAMP

results obtained with this type of session are the estimation performance metrics such as
mean delay, losses, duplication and throughput. The confidence interval test session
allows splitting the complete session period in a number of smaller test intervals and to
perform a set of tests in each interval to enable the construction of 90% confidence
intervals. For example, if the session period is set at 24 hours, the user can define 24
intervals (of one hour duration), and define also that in each interval a total of 10 tests
should be performed in order to calculate the 90% confidence interval. In this case, the
interval between the start of consecutive session can also be defined (say 2 minutes).

In this manual, we will refer to the Windows version of J-OWAMP for explaining how to
use this application to perform active measurements. The manual is structured in the
following way: section 2 presents the system architecture; section 3 shows how to run J-
OWAMP; section 4 describes in detail all the necessary steps to conveniently configure
the different system modules and section 5 describes in detail all the necessary steps to
conveniently configure the CalculateCI module.

Page 4 of 35

J-OWAMP – Java Implementation of OWAMP

2 System architecture
The J-OWAMP system implements the OWAMP architecture shown in Figure 1:

Figure 1: OWAMP architecture

The OWAMP architecture is based on two inter-dependent protocols, the OWAMP-
Control and the OWAMP-Test, which can guarantee a complete isolation between client
entities and server entities. The OWAMP-Control is used to begin and end test sessions
as well as receive the results of those tests, whereas the OWAMP-Test protocol is used to
allow the exchange of test packets between any two points that belong to the monitored
network.

The proposed architecture includes the following elements (Figure 1):

• Session-Sender: the sender of the test packets. It is implemented by the
OWAMP_SessionSender.exe application.

• Session-Receiver: the receiver of the test packets. It is implemented by the
OWAMP_SessionReceiver.exe application.

• Server: the entity that is responsible for the global management of the system. It
can configure both network terminal elements that are being tested and receive the
results of a test session. It is implemented by the OWAMP_Server.exe
application.

• Control-Client: a terminal system that programs the requests for test sessions,
triggers the beginning of a session set and can also finish one or all ongoing
sessions. It is implemented by the OWAMP_ControlClient.exe application.

• Fetch-Client: a terminal system that triggers the requests for results of test
sessions that have already ended or are still running. It is implemented by the
OWAMP_FetchClient.exe application.

Page 5 of 35

J-OWAMP – Java Implementation of OWAMP

A network element can carry out several logical functions at the same time (simplified
scenario). For example, we can have only two network elements: one is carrying out the
functions corresponding to a Control-Client, a Fetch-Client and a Session-Sender and the
other one is carrying out the functions corresponding to a Server and a Session-Receiver
(Figure 2).

Figure 2: OWAMP simplified architecture

The architecture of Figure 1 allows the definition of only one client and one server in the
network (possibly installed in machines with the highest processing capacity) and allows
the installation of senders and receivers in any machine of the network, which leads to a
lower processing impact. In this way, the network manager can perform tests all over the
network from a single machine, which is not possible in the simplified scenario.

Note: All machines that are in charge of executing the different applications that
compose this measurement system should be precisely synchronized in order to guarantee
good measurements results.

Page 6 of 35

J-OWAMP – Java Implementation of OWAMP

3 Running J-OWAMP
To run J-OWAMP the user has to execute each one of the elements (applications) that
compose its architecture: it can make a double click with the mouse button in the
respective icon or use the command line (DOS window in Windows OS). Using double
click the default port numbers that will be used in the TCP connections between the
different elements of the J-OWAMP architecture are the following:

J-OWAMP element Port number

OWAMP-Server 22368
OWAMP Session-Receiver 28181
OWAMP Session-Sender 4181

Table 1: Port numbers used in each element for TCP connections

In order to use other port numbers, each one of these modules must be executed in the
command line using the following format:

OWAMP-Server:

Usage: OWAMP_Server [-options]

where options include:

-a | -address The local IP address to bind to. This address
can be used on a multi-homed host for a
Server that will only accept connection
requests to one of its addresses. If not
defined, it will by default accept connections
on any/all local addresses.

-p | -port port The TCP port number to be used in
OWAMP-Control.

-r | -receiverTCPport port TCP port number to be used in OWAMP-
Control with all OWAMP Session-Receivers.

-n | -ntpServer The address of the NTP server used to get
the time reference. If not defined, the system
time will be used to get the time reference.

-u | -updateInterval The value (in minutes) to be used for the
time interval between two consecutive
updates of the time reference.

 -? -help Print this help message.

Page 7 of 35

J-OWAMP – Java Implementation of OWAMP

The receiverTCPport is the TCP port number to be used in the OWAMP-Control
between the Server and all OWAMP Session-Receivers. It is the TCP port where the
OWAMP Session-Receivers will be waiting for connection requests. If not defined, the
default receiver TCP port 28181is used for OWAMP-Control.

Note: The configuration (Request-Session packet and the schedule slot description
packets) of each test session processed is saved to a file whose name is composed by
session SID string with the extension ‘.rs’. This file is saved in the serverRSdir directory
located on the directory from where the OWAMP-Server is running. The serverRSdir
directory is made every time the OWAMP-Server is started. If it exists, it will be deleted
and created again.

OWAMP Session-Sender:

Usage: OWAMP_SessionSender [-options]

where options include:

-a | -address The local IP address to bind to. This address
can be used on a multi-homed host for a
Session-Sender that will only accept
connection requests to one of its addresses.
If not defined, it will by default accept
connections on any/all local addresses.

-p | -port port The TCP port number to be used in
OWAMP-Control.

-r | -portRange [lowport,highport] The UDP port range to be used in OWAMP-
Test sessions.

-n | -ntpServer The address of the NTP server to be used to
get the time reference. If not defined, the
system time will be used to get the time
reference.

-u | -updateInterval The value (in minutes) to be used for the
time interval between two consecutive
updates of the time reference.

-? | -help Prints this help message.

Page 8 of 35

J-OWAMP – Java Implementation of OWAMP

OWAMP Session-Receiver:

Usage: OWAMP_SessionReceiver [-options]

where options include:

-a | -address The local IP address to bind to. This address
can be used on a multi-homed host for a
Session-Receiver that will only accept
connection requests to one of its addresses.
If not defined, it will by default accept
connections on any/all local addresses.

-p | -port port The TCP port number to be used in
OWAMP-Control.

-r | -portRange [lowport,highport] The UDP port range to be used in OWAMP-
Test sessions.

-s | -sleepVal sleepVal The number of milliseconds to wait between
the sending of two consecutive packet
records, when in fetch results operation.
This value is used to prevent overloading the
Session Receiver's machine CPU during
Fetch Sessions.

-k | -keepResults If defined, the configuration and the results
of the test session will be kept after the
processing of a Fetch-Session requesting all
the results of that test session. Otherwise the
results are deleted (Used by default).

-n | -ntpServer The address of the NTP server to be used to
get the time reference. If not defined, the
system time will be used to get the time
reference.

-u | -updateInterval The value (in minutes) to be used for the
time interval between two consecutive
updates of the time reference.

-? | -help Prints this help message.

The sleepVal value is used to configure the time interval between the sending of two
consecutive test packet records, when the system is in fetch results operation. This value
is used to prevent the overload of the machine processor (where the Session-Receiver is
installed) when fetching the results.

If keepResults is defined the configuration and the results of the test session will be kept
after the processing of a Fetch-Session requesting all the results of that test session. The

Page 9 of 35

J-OWAMP – Java Implementation of OWAMP

configuration of the test session (Request-Session packet and the schedule slot
description packets) is saved to a file whose name is composed by session SID string with
the extension ‘.rs’. This file is saved in the receiverDir\receiverRSdir directory located on
the directory from where the Session-Receiver is running. The results of the test session
(results for each individual packet received) are saved to a file whose name is composed
by the session SID string with the extension ‘.owp’. This file is saved in the
receiverDir\receiverTestResults directory also located on the directory from where the
Session-Receiver is running. The receiverDir directory is made every time the OWAMP
Session-Receiver is started. If it exists, it will be deleted and created again.

If keepResults is not defined, the configuration and the results of the test session are
deleted after the processing of a Fetch-Session that requested all the results of that test
session (option used by default).

These command lines should be executed in the directory that contains the executable
files.

Page 10 of 35

J-OWAMP – Java Implementation of OWAMP

4 Configuring J-OWAMP modules
The following sub-sections show how the user can configure each module of the J-
OWAMP measurement system.

4.1 OWAMP Server, OWAMP Session-Sender and OWAMP
Session-Receiver

The execution of each one of these modules can be made as explained in section 3.

The execution of OWAMP Server executable presents the following window:

Figure 3: Window illustrating the execution of OWAMP_Server.exe

The execution of OWAMP Session-Sender executable presents the following window:

Figure 4: Window illustrating the execution of OWAMP_SessionSender.exe

The execution of OWAMP Session-Receiver executable presents the following window:

Figure 5: Window illustrating the execution of OWAMP_SessionReceiver.exe

Page 11 of 35

J-OWAMP – Java Implementation of OWAMP

4.2 OWAMP Control-Client
This module has two modes of operation:

• Configure test sessions, show results to user and/or save them to a file;

• Configure test sessions and save test configurations and results to a MySQL
database.

4.2.1 Configure test sessions, show results to user and/or save them
to a file

In this mode of operation the OWAMP Control-Client is executed using the Windows
executable or from the command line without any arguments. The execution of this
module presents the following window:

Figure 6: Window illustrating the execution of OWAMP_ControlClient.exe

At this prompt, the user should introduce the IP address of the machine where the
OWAMP Server is installed. The validation of the introduced address is made by
pressing the ENTER key. The server IP address should be in the following format:

 IPv4_address:TCPportNumber // for IPv4 address

 [IPv6_address]:TCPportNumber // for IPv6 address

The TCPportNumber is the TCP port to be used in OWAMP-Control communication
between the Control-Client and the respective OWAMP-Server. The Server’s TCP port
number corresponds to the port where the Server is waiting for connection requests. If the
user wants to use the default TCPportNumber (22368), the server IP address can be in the
following format:

 IPv4_address // for IPv4 address

 [IPv6_address] // for IPv6 address

Page 12 of 35

J-OWAMP – Java Implementation of OWAMP

Figure 7 illustrates a possible example:

Figure 7: Window illustrating the execution of OWAMP_ ControlClient.exe

The address considered by default (pressing the ENTER key without introducing any
value) is 127.0.0.1:22368 (loopback address). Then, the user has to choose whether he
wants to get the time reference directly from a NTP server or not. If yes, the address of
the NTP server should be introduced. If no, the system time is used to define the time
reference. The time interval between two consecutive updates of the time reference is the
next parameter to configure. Then, the following Menu is presented:

Figure 8: Main Menu

Before requesting any test session, it is necessary to establish a connection with OWAMP
Server, even if the user has already requested previous tests sessions. To request this
connection, the first option to be selected is option ‘0’. Pressing the ENTER key will
validate the selected option and continue the configuration.

Figure 9: Connection Setup

With J-OWAMP it is possible to accomplish two kinds of test sessions: single test
sessions and confidence interval test sessions. The single test session corresponds to the
configuration of one single test between two machines. The user can define the number of
packets, the packet interarrivals, the packet length and the start time of the session. The
results obtained with this type of session are the estimation performance metrics such as

Page 13 of 35

J-OWAMP – Java Implementation of OWAMP

mean delay, losses, duplication and throughput. The confidence interval test session
allows splitting the complete session period in a number of smaller test intervals and to
perform a set of tests in each interval to enable the construction of 90% confidence
intervals. For example, if the session period is set at 24 hours, the user can define 24
intervals (of one hour duration), and define also that in each interval a total of 10 tests
should be performed in order to calculate the 90% confidence interval. In this case, the
interval between the start of consecutive session can also be defined (say 2 minutes).

To request a test session the user should now choose option 1, resulting in the display of
the following menu:

Figure 10: Request of a test session

This menu presents three options:

• Option 0 – to read the test configurations in the configuration file. This is the
RsconfigFile.txt file that must be located in the same directory as the OWAMP-
Client executable (single test sessions);

• Option 1 – to read the test configurations from the keyboard (single test sessions);

• Option 2 – to choose the time interval during which test sessions should be made.
These tests will be used on the measurement of some network behaviour
parameters and their respective confidence intervals (confidence interval test
sessions). In this case, the initial configurations should be read from the
configuration file.

The option considered by default is option ‘0’. Now, a more detailed description of each
option is provided:

i) Option 0: all configuration parameters should be configured using the format
specified in the configuration file, RsconfigFile.txt;

ii) Option 1: this option requires the configuration of the following parameters (a
description of each parameter is also included):

Introduce the number of test packet to be sent (Default 100): number of test
packets to be sent

Introduce the address of the Sender: IP address of the machine where the
OWAMP Session-Sender is installed

Page 14 of 35

J-OWAMP – Java Implementation of OWAMP

Introduce the address of the Receiver: IP address of the machine where the
OWAMP Session-Receiver is installed

The sender IP address should be in the following format:

 IPv4_address:TCPportNumber // for IPv4 address

 [IPv6_address]:TCPportNumber // for IPv6 address

The TCPportNumber is the TCP port to be used in OWAMP-Control
communication between the Control-Client and the respective OWAMP-
SessionSender. The sender’s TCP port number corresponds to the port where the
sender is waiting for connection requests. If the user wants to use the default
TCPportNumber (4181), the sender IP address can be in the following format:

 IPv4_address // for IPv4 address

 [IPv6_address] // for IPv6 address

The receiver address should be in the following format:

 IPv4_address // for IPv4 address

 [IPv6_address] // for IPv6 address

The TCP port to use in the OWAMP-Control communication between the Server
and receiver should be defined when running OWAMP_Server; otherwise the
default TCP port will be used.

Note: Sender and Receiver address should have the same IP version (both IPv4 or
IPv6). If one of these addresses, sender or receiver, is the loopback address the
other should be loopback address too. The address considered by default (pressing
the ENTER key without introducing any value) is 127.0.0.1 (loopback address).
The loopback address can only be used if the Control-Client and the Server
elements are running on the same host.

Introduce the padding length of test packet to be sent (Default 0): additional size,
in bytes, that can be introduced in the test packets

Introduce the start time of this session: Introduction of the start time of the session.
Introduce the year (Default x): x is the default year. Its value is the current year
when configuring the session.
Introduce the month (Default x): x is the default month. Its value is the number
representation of the current month when configuring the session (1 for January).
Introduce the date (Default x): x is the default day of the month. Its value is the
current day of the month when configuring the session.
Introduce the hour (Default x): x is the default hour. Its value is the current hour
when configuring the session.
Introduce the minutes (Default x): x is the default minute. Its value is the current
minute when configuring the session.
Introduce the seconds (Default 0): is the seconds value to use. Its default value is
zero.

Page 15 of 35

J-OWAMP – Java Implementation of OWAMP

Introduce the timeout value to use for test packets (Default 10): maximum time
interval during which a packet should be received. Packets that arrive to Receiver
after timeout seconds are considered as lost

Introduce the number of packets Schedule slot descriptions (Default 1): This
parameter defines a group of packets to be sent with the request session. Each
packet represents a ‘slot’. So, we have a schedule with a given number of ‘slots’.
Each slot has a type and a parameter. Two types are supported: exponentially
distributed pseudo-random quantity (denoted by a code of 0) and a fixed quantity
(denoted by a code of 1). The parameter is expressed as a timestamp and specifies a
time interval. For a type 0 slot this interval is the mean value (or λ/1 , if the
distribution density function is expressed as ()xe λλ − for positive values of x). For a
type 1 slot, the parameter is the delay itself. The sender starts with the beginning of
the schedule and executes the instructions in the slots: for a type 0 slot, it waits for
an exponentially distributed time interval, with mean equal to the specified
parameter, and then it sends a test packet (and proceeds to the next slot); for a type
1 slot, it waits for the specified time interval and sends a test packet (and proceeds
to the next slot). The schedule is circular: when there are no more slots, the sender
returns to the first slot.

This circular schedule can be configured to follow one of the following intervals:

Choose witch type of schedule do you want (Default 0):

0 - All Exponentially distributed pseudo-random quantity

1 - All Fixed quantity

2 - Mixed type (to combine the two previous options)
Choosing one of these options results in the following configuration steps:
• Option 0: the mean value of the exponentially distributed time interval to

use should be introduced:
Introduce the mean value of the exponentially distributed pseudo-
random quantity in seconds (Default 1): to configure the mean value of
the exponentially distributed time interval to use

• Option 1: the fixed time interval to use should be introduced:
Introduce the fixed quantity value in seconds (Default 1): to configure
the interval of fixed time to be used

• Option 2: proceeds to the configuration of the time intervals to use, that can
be of types ‘0’ or ‘1’. Figure 11 illustrates an example corresponding to the
case of an interval with exponential distribution and to the case of a fixed
one:

Page 16 of 35

J-OWAMP – Java Implementation of OWAMP

Figure 11: Choosing the type of Schedule

From the group of schedule packets:

• for a fixed interval between the sending of packets, it is necessary to
configure the fixed interval for each schedule packet;

• for the case of exponentially distributed intervals, it is only necessary to
introduce the mean value of the time interval between sending of packets.

The following two figures illustrate two configuration examples, with a group of
circular schedule with three interval values between sending of test packets, for the
first two schedule types (exponential and fixed):

Page 17 of 35

J-OWAMP – Java Implementation of OWAMP

Figure 12: Introduction of the mean time value between the sending of packets (case of exponentially
distributed intervals)

Figure 13: Introduction of the mean time value between sending of packets (case of fixed intervals)

iii) Option 2: this option is used to allow the accomplishment of tests and the calculation
of the 90% confidence intervals corresponding to the following parameters: mean
delay, loss and throughput. In this way, in a certain time interval the user should
perform y tests for each test session within a total of n OWAMP test sessions. At the
end, the user will have n confidence intervals, each one based on y tests that were
made. In order to obtain these statistics, it is necessary to create a configuration file
with the initial configuration (mainly, the time instant for starting test sessions, that is
taken as a reference to determine the beginning time instant of each one of the
OWAMP test sessions to be made).

Page 18 of 35

J-OWAMP – Java Implementation of OWAMP

Configuration example

If we intend to study the behaviour of packet delays and losses between any two
network machines, during a period of 24 hours, option 2 can be used to automatically
configure all the necessary test session requests. Next, a possible test scenario will be
described.

Test scenario: All tests are performed in a 24 hours period. In each hour, sets of 10
tests (including both packet delay and loss) are performed, making a total of 240 tests.
In each group, the starting time instants of the tests are separated by 2 minutes. All
tests lasted for 1 minute and consisted in sending 60 packets of 24 bytes each
(minimum test packet size), at an average rate of 1 packet/second. In order to
conveniently characterize the packet average delay and packet loss ratio, 90%
confidence intervals were calculated based on the 10 average values obtained in each
test belonging to a group of 10 tests.

The different configuration steps for this example are shown in Figure 14:

Figure 14: Configuration of sessions of tests for the calculation of intervals of confidence

The description of each parameter request shown in the above figure is as follows:

Process Request Session:
Choose one of the options (Default 0):

0 - Read configurations from the config file
1 - Read configurations from keyboard
2 - Choose a time interval and read the initial configurations from the
config file to calculate confidence intervals

2 (the user’s choice)

Introduce the ending date and time of these Sessions: Introduction of the date
for ending the sessions
Introduce the year (Default x): x is the default year. Its value is the current
year when configuring the session.

Page 19 of 35

J-OWAMP – Java Implementation of OWAMP

Introduce the month (Default x): x is the default month. Its value is the number
representation of the current month when configuring the session (1 for
January).
Introduce the date (Default x): x is the default day of the month. Its value is the
current day of the month when configuring the session.
Introduce the hour (Default x): x is the default hour. Its value is the current
hour when configuring the session.
Introduce the minutes (Default x): x is the default minutes. Its value is the
current minute when configuring the session.
Introduce the seconds (Default 0): is the seconds value to use. Its default value
is zero.

Introduce the time interval between the set of tests in minutes: 60 (time
interval between groups of measurements)

Introduce the number of tests to be placed in each interval: 10 (number of test
sessions to accomplish in each interval)

Introduce the time interval between tests in seconds: 120 (temporary
separation between the beginning instants of each session of individual test)

After all these configurations, the number of test session requests is automatically
calculated; these requests are then performed one by one.

For the case of single test sessions (options 0 and 1), after configuring one or more test
session requests, their execution can be started. In order to do this, option 2 should be
selected from the Main Menu (Figure 8). All sessions are started with only one request of
start sessions. After choosing this option, the following menu is presented:

Figure 15: Menu presented during the execution of the test sessions

For the case of confidence interval test sessions (options 2), the test session is
immediately started after its configuration (Figure 16).

Page 20 of 35

J-OWAMP – Java Implementation of OWAMP

Figure 16: Configuration of sessions of tests for the calculation of intervals of confidence

A test session, either a single test or a confidence interval test session, can be finished
even before its beginning or before sending all test packets. In order to do that, the Stop-
Session (option 3) command is used. This is the only command that can be used after the
beginning and before the end of test sessions, that is to say, during the session. To
perform complete sessions, the user should wait until all Sessions are complete before
sending the Stop-Sessions message. If the user intends to finish all the test sessions that
are running, option 6 should be selected. In this situation, the selected option only appears
on the screen after pressing the Enter key.

Detailed description of option 3: after having chosen option 3, the following menu is
presented (this figure corresponds to an example of one test session conducted, in both
directions, between two machines with IP addresses ares.av.it.pt/193.136.92.121 and
america.av.it.pt/193.136.92.191):

Figure 17: Menu used to choose the session to be finished

Using this menu, the user can choose which test session to finish, or can finish all
sessions.

Page 21 of 35

J-OWAMP – Java Implementation of OWAMP

After all test sessions have finished, either by user’s option or because the time duration
of the measurement session has expired, the following menu is presented (for the
example under consideration):

Figure 18: Menu to request the results

In this menu the user can select the session whose results he intends to obtain, determine
the confidence intervals for a group of test sessions or he can just finish and return to the
Main Menu (option Finish).

If the user only intends to obtain results corresponding to a specific session of tests, after
choosing the option related to this session he has to introduce the interval of test packets
whose results he intends to receive. This interval is defined in terms of the packet
Sequence Number: the user has to introduce the sequence numbers of the first and the last
packets that he intends to obtain.

Note: Each test packet is sent with a sequence number that begins at zero and finishes at
the total number of test packets sent less 1.

If the user intends to obtain the results corresponding to all the test packets of the test
session, the defined Sequence Number interval should be [0 -1].

Using the example under consideration, the following steps must be executed in order to
obtain the complete results of session 1:

Figure 19: Menu to request the interval of results to be presented

After choosing the test packets interval, it is necessary to choose the type of results the
user intends to obtain:

• Results referring to each packet and global statistics;

• Just global statistics.

Figure 20 illustrates this situation, for the example under consideration:

Page 22 of 35

J-OWAMP – Java Implementation of OWAMP

Figure 20: Menu to choice the type of results to be presented

Then, it is necessary to choose one from these three options:

• To present the results on the screen;

• To present the results on the screen and save them to a file;

• Just save the results to a file.

For the last two options, the user has to introduce the name of the file where the statistics
results will be saved. This file will be saved, with the .txt extension, in the
fetchClientDir\fetchTestResults directory that is created in the same directory where
OWAMP Control-Client is being executed.

The results of the test session (results for each individual packet record fetched) are saved
to a file whose name is composed by the session SID string with the extension ‘.owp’ (if
it exists it will be overwrited). This file is saved in the fetchClientDir\fetchPacketRecords
directory located on the directory from where the OWAMP Control-Client is running. If
the fetchClientDir directory doesn’t exist, it will be made.

Returning again to the example under consideration, suppose that the user asked for the
results of each packet and for global statistics (presented on the screen) of the second
session, also indicating a file to save the statistics results. Then, the results of executing a
session of tests should look like the ones shown in Figure 21:

Page 23 of 35

J-OWAMP – Java Implementation of OWAMP

Figure 21: Results of a session of tests

If the user intends to obtain the 90% confidence intervals corresponding to the mean
delay, loss and throughput of a group of test sessions, he has to choose the option
‘Determine 90% confidence interval’ in the request results Menu. Using this option, it is
necessary to introduce the number of test sessions that will be used for the calculation of
the confidence intervals. The total number of confidence intervals is calculated by
dividing the total number of existent sessions by the introduced number of sessions to be
used. If this division is smaller than one no interval is presented, otherwise the number of
intervals corresponds to the result of the division.

In this case, there are also three possibilities for visualizing the results:

• Show the results on the screen ;

• Present the results on the screen and save them to a file;

• Just save the results to a file.

For the last two options it is necessary to introduce the name of the file where the
statistics results will be saved. This file will be saved, with the .txt extension, in the
directory fetchClientDir\fetchTestResults created in the same directory where OWAMP
Control-Client is being executed.

The results of each test session (results for each session’s individual packet record
fetched) are saved to a file whose name is composed by the session SID string with the
extension ‘.owp’ (if it exists it will be overwrited). This file is also saved in the
fetchClientDir\fetchPacketRecords directory located on the directory from where the

Page 24 of 35

J-OWAMP – Java Implementation of OWAMP

OWAMP Control-Client is running. If the fetchClientDir directory doesn’t exist, it will
be made.

Figure 22 illustrates an example, for the case of 5 test sessions between a machine with
IP address ares.av.it.pt/193.136.92.121 and a machine with IP address
america.av.it.pt/193.136.92.191:

Figure 22: Results of confidence intervals referring to 5 sessions of tests

Alternative starting of sessions:
As an alternative to option 2 (Start-Sessions) of the main Menu, the start of test sessions
can be made through option 5 (Start-Sessions and Fetch). This option allows the user to
begin a session and to obtain its results automatically, as soon as it ends, without having
to go to the menu that is used to select the session for which the user wants to obtain the
results. However, this option can only be chosen if the user has made only one request of
sessions of tests.

After the end of a session of tests and before the request of another session, option 4 of
the Main Menu can be used to return to the menu that is used to choose the test session
for which the user intends to visualize the results.

Before requesting to start a test session (options 2 and 5 of the Main Menu), the user can
conclude the execution of the OWAMP Control-Client application by using option 6 of
the Main Menu. In this situation, all requests of test sessions made before this time instant
are invalidated.

Page 25 of 35

J-OWAMP – Java Implementation of OWAMP

4.2.2 Configure test sessions and save test configurations and
results to a MySQL database

In this mode of operation the OWAMP Control-Client module is used to configure a test
session whose configurations and results must be saved to a MySQL database.

In order to configure test sessions and save its configurations and results to a MySQL
database, the OWAMP Control-Client should be executed in the command line using the
following syntax:

For single test sessions:

Usage: OWAMP_ControlClient <userID> <serverAddress> <confSender>
<confReceiver> <numberOfScheduleSlots> <numberOfPackets> <senderPort>
<receiverPort> <senderAddress> <receiverAddress> <paddingLength> <startYear>
<startMonth> <startDate> <startHour> <startMinute> <startSecond> <timeout>
<typePDescriptor_Type> <typePDescriptor_Value> <slotType> <slotParameter>
<DB_HOSTNAME> <DB_NAME> <DB_USERNAME> <DB_PASSWORD> <
SSconfigTable > < ntpServerAddress> < updateInterval>

For Confidence Interval test sessions (CI session):

Usage: OWAMP_ControlClient <userID> <serverAddress> <confSender>
<confReceiver> <numberOfScheduleSlots> <numberOfPackets> <senderPort>
<receiverPort> <senderAddress> <receiverAddress> <paddingLength> <startYear>
<startMonth> <startDate> <startHour> <startMinute> <startSecond> <timeout>
<typePDescriptor_Type> <typePDescriptor_Value> <slotType> <slotParameter>
<DB_HOSTNAME> <DB_NAME> <DB_USERNAME> <DB_PASSWORD>
<CIconfigTable> <CIsidTable> <timeBetweenSetOfTests> <timeBetweenTests>
<numIntervals> <numOfTestsInInterval> < ntpServerAddress> < updateInterval>

Note: A single test session is used to calculate the average delay and loss of x packets
sent from host A to host B. A CI session is used to calculate 90% confidence intervals
based on the y average values obtained in each test belonging to a group of y tests.

The userID is the identification of the user who is configuring this test session. It is the IP
address of the user’s machine.

The serverAddress is the IP address of the OWAMP Server to be used in this test session.
The server IP address should be in the following format:

 IPv4_address:TCPportNumber // for IPv4 address

 [IPv6_address]:TCPportNumber // for IPv6 address

The TCPportNumber is the TCP port to use in the OWAMP-Control communication
between the Control-Client and the respective OWAMP-Server. The Server’s TCP port
number corresponds to the port where the Server is waiting for connection requests. If the
user wants to use the default TCPportNumber (22368), the server IP address can be in the
following format:

 IPv4_address // for IPv4 address

 [IPv6_address] // for IPv6 address

Page 26 of 35

J-OWAMP – Java Implementation of OWAMP

ConfSender and confReceiver MUST be set to 0 or 1 by the client. The server MUST
interpret any non-zero value as 1. If the value is 1, the server is being asked to configure
the corresponding agent (sender or receiver). In this case, the corresponding Port value
should be disregarded by the server. At least one of confSender and confReceiver must
be 1. (Both can be set, in which case the server is being asked to perform a session
between two hosts it can configure.)

The numberOfScheduleSlots (Number of Schedule Slots) specifies the number of slot
records. It is used by the sender to determine when to send test packets.

The numberOfPackets (Number of Packets) is the number of active measurement packets
to be sent during this OWAMP-Test session.

If Conf-Sender is not set, senderPort (Sender Port) is the UDP port from which
OWAMP-Test packets will be sent. If Conf-Receiver is not set, receiverPort (Receiver
Port) is the UDP port of the OWAMP-Test to which packets are requested to be sent. But,
if senderPort or receiverPort are zero a free port will be used to send or receive packets,
respectively.

The senderAddress (Sender Address) and receiverAddress (Receiver Address) fields
contain, respectively, the sender and receiver addresses of the end points of the Internet
path over which an OWAMP test session is requested. The sender IP address should be in
the following format:

 IPv4_address:TCPportNumber // for IPv4 address

 [IPv6_address]:TCPportNumber // for IPv6 address

The TCPportNumber is the TCP port to use in the OWAMP-Control communication
between the Control-Client and the respective OWAMP-SessionSender. The sender’s
TCP port number corresponds to the port where the sender is waiting for connection
requests. If the user wants to use the default TCPportNumber (4181), the sender IP
address can be in the following format:

 IPv4_address // for IPv4 address

 [IPv6_address] // for IPv6 address

The receiver address should be in the following format:

 IPv4_address // for IPv4 address

 [IPv6_address] // for IPv6 address

The TCP port to use in the OWAMP-Control communication between the Server and
receiver should be defined when running OWAMP_Server, or the default TCP port will
be used.

Note: Sender and Receiver address should have the same IP version (both IPv4 or IPv6).
If one of these addresses, sender or receiver, is the loopback address the other should be
loopback address too. The address considered by default (pressing the ENTER key
without introducing any value) is 127.0.0.1 (loopback address). The loopback address can
only be used if the Server and the Control-Client elements are running on the same host.

Page 27 of 35

J-OWAMP – Java Implementation of OWAMP

The paddingLength (Padding length) is the number of octets to be appended to the
normal OWAMP-Test packet.

 The startYear, startMonth, startDate, startHour, startMinute, and startSecond fields
represent the start time, which is the time instant when the session will be started.
Sessions with a start time located in the past and separated from the present by more than
timeOut are rejected.

The timeOut (Timeout or a loss threshold) is time interval (in seconds). A packet
belonging to the current test session will be considered lost if it is not received during
Timeout seconds after being sent.

The typePDescriptor_Type and typePDescriptor_Value fields represent the Type-P
Descriptor which covers only a subset of (very large) Type-P space. If the first two bits of
the Type-P Descriptor are 00, then subsequent six bits specify the requested
Differentiated Services Codepoint (DSCP) value of the sent OWAMP-Test packets, as
defined in RFC 2474. If the first two bits of Type-P descriptor are 01, then the
subsequent 16 bits specify the requested PHB Identification Code (PHB ID), as defined
in RFC 2836. Therefore, a value of all zeros specifies the default best-effort service.

The sender and the receiver both need to know the same sending schedule. In this way,
when packets are lost the receiver knows when they were supposed to be sent. It is
desirable to compress common schedules and still to be able to use an arbitrary one for
the test sessions. In many cases, the schedule will consist of repeated sequences of
packets: in this way, the sequence performs some test and the test is repeated a certain
number of times in order to gather statistics. To implement this, we have a schedule with
a given number of slots (numberOfScheduleSlots). Each slot has a type (slotType) and a
parameter (slotParameter). Two types are supported: exponentially distributed pseudo-
random quantity (denoted by a code of 0) and fixed quantity (denoted by a code of 1).
The parameter is expressed in seconds and specifies a time interval. For a type 0 slot
(exponentially distributed pseudo-random quantity) this interval is the mean value (or
1/lambda, if the distribution density function is expressed as lambda*exp(-lambda*x) for
positive values of x). For a type 1 (fixed quantity) slot, the parameter is the delay itself.
The sender starts with the beginning of the schedule and executes the instructions in the
slots: for a slot of type 0, wait for an exponentially distributed time with mean equal to
the specified parameter and then send a test packet (and proceed to the next slot); for a
slot of type 1, wait for the specified time and send a test packet (and proceed to the next
slot). The schedule is circular: when there are no more slots, the sender returns to the
first slot.

The DB_HOSTNAME represents the IP address of the database server.

The DB_NAME represents the database where configurations and results of all sessions
will be saved.

The DB_USERNAME and DB_PASSWORD are the username and password to be used in
the connection to the database server.

The SSconfigTable is the name of the table to be used to save the Single Session’s
configurations. If this table doesn’t exist in the database, it will be created.

Page 28 of 35

J-OWAMP – Java Implementation of OWAMP

The CIconfigTable is the name of the table to be used to save the Confidence Interval
Session’s configurations. If this table doesn’t exist in the database, it will be created.

The CIsidTable is the name of the table to be used to save the SID (session identifier),
senderPort, receiverPort, real start time and total test duration for each one of the
individual single sessions of each interval of a Confidence Interval session. If this table
doesn’t exist in the database, it will be created.

Note: For the Confidence Interval session we have to use one table (CIconfigTable) to
save the initial session’s configuration but we also need another table to save the SID
(session identifier), senderPort, receiverPort, real start time and total test duration for
each individual single session of the CI session. This is so because each SS has a different
SID and may have a different test duration if slot type zero is used and a different sender
UDP test port if senderPort = 0 (a free UDP port will be used to send test packets). We
always use confReceiver = 1 and confSender = 0, so receiverPort may be different for
each SS test session.

The timeBetweenSetOfTests represents the time interval (in minutes) between a set of
tests in CI sessions and the timeBetweenTests represents the time interval (in seconds)
between each test session of a set of sessions belonging to an interval.

The numIntervals is the number of intervals of a Confidence Interval session and the
numOfTestsInInterval is the number of tests in each interval.

The ntpServerAddress is the address of the NTP server used to get the time reference.
The updateInterval is the value (in minutes) to use for the time interval between two
consecutive updates of the time reference. The ntpServerAddress and updateInteval are
optional but, when defined, they should be simultaneously defined. If they are not
defined, the system time will be used to get the time reference and the update interval will
have the default value of 2 minutes.

Using this mode of operation, the results of each individual test session are saved in a
table which name is the SID (session identifier) string representation of the session. This
table will be created in the DB_NAME database used for the respective test session. The
Skip Range description information is saved in the table SIDSRD, where SID is the
session identifier.

The table SessionDescriptionRecords is also created if it doesn’t exist. This table is used
to save the Session Description Record information [SID, nextSeqno (next sequence
number that would have been sent from the send session), numberOfSkipRanges (number
of skipped ranges) and numberOfRecords (number of packet records fetched from the
Session-Receiver after the end of a test session)] of all fetched test sessions.

These last three tables are created using the Fetch-Session element. Please refer to section
4.3.2 for more information.

This mode of operation is used in the Web interface for J-OWAMP. This interface was
developed to have a friendly user interface to our implementation of OWAMP.

Page 29 of 35

J-OWAMP – Java Implementation of OWAMP

4.3 OWAMP Fetch-Client
This module allows the user to request for the results of test sessions that are in progress
or have successfully finished. For test sessions that are still in progress, the request of the
complete results is not allowed. This request is rejected by the OWAMP Session-
Receiver. The advantage of using the OWAMP Fetch-Client is to have the possibility of
requesting results of test sessions that are still in progress, something that is not possible
to do using OWAMP Control-Client (between a request for starting a session of tests and
its end the only allowed command is a premature stop of the session - option 3, Stop
sessions).

This module has two modes of operations:

• Fetch the results of a session and show them to user and/or save them to a
file;

• Fetch the results of a session and save them to a MySQL database.

4.3.1 Fetch the results of a session and show them to user and/or
save them to a file

In this mode the OWAMP Fetch-Client is executed using the Windows executable or
from the command line without any arguments. The execution of the OWAMP Fetch-
Client module presents the following window:

Figure 23: Window of execution of OWAMP_FetchClient.exe.

In this line the IP address of the same Server that was used to configure the sessions
should be introduced, followed by the ENTER key. The server IP address should be in
the following format:

 IPv4_address:TCPportNumber // for IPv4 address

 [IPv6_address]:TCPportNumber // for IPv6 address

The TCPportNumber is the TCP port to use in the OWAMP-Control communication
between the Fetch-Client and the respective OWAMP-Server. The Server’s TCP port
number corresponds to the port where the Server is waiting for connection requests. If the
user wants to use the default TCPportNumber (22368), the server IP address can be in the
following format:

 IPv4_address // for IPv4 address

 [IPv6_address] // for IPv6 address

Figure 24 illustrates a possible example:

Page 30 of 35

J-OWAMP – Java Implementation of OWAMP

Figure 24: Window of execution of OWAMP_FetchClient.exe

The address considered by default (pressing the ENTER key without introducing any
value) is 127.0.0.1:22368 (loopback address). Then, the user has to choose if he wants to
get the time reference directly from a NTP server or not. If yes, the address of the NTP
server should be introduced. If no, the system time is used to define the time reference.
The time interval between two consecutives updates of the time reference is the next
parameter to configure.

Then, considering the same example that was used in the OWAMP Control-Client
description, the following Menu is presented:

Figure 25: Menu used to request the results

In this way, it is possible to obtain at any instant the results of any session that is still in
progress or that has already finished. The procedure, concerning the Menu that is used to
request the results, is the same as the one presented in the OWAMP Control-Client's
description (Figure 18).

4.3.2 Fetch the results of a session and save them to a MySQL
database

In this mode of operation the OWAMP Fetch-Client fetches the results of a session and
saves them to a database. If the session isn’t finished yet, all available results are
periodically fetched until the end of the test session. So a fetch session instance for a test
session fetches all the results of that session. In this way, if a previous Fetch-Session was
executed for a given test session, a new Fetch-Session will not be processed.

In order to fetch the results of a test session and save them to a MySQL database the
OWAMP_FetchClient should be executed in the command line using the following
syntax:

Page 31 of 35

J-OWAMP – Java Implementation of OWAMP

Usage: OWAMP_FetchClient <serverAddress> <DB_HOSTNAME> <DB_NAME>
<DB_USERNAME> <DB_PASSWORD> <SID> <numberOfPackets> <
slotParameter> <startTime> <totalTimeToWait> < ntpServerAddress> <
updateInterval>

The serverAddress is the IP address of the OWAMP-Server to be used in the Fetch-
Session. It should be in the same format specified in section 4.3.1.

The DB_HOSTNAME represents the IP address of the database server.

The DB_NAME represents the database where the results of the test session will be saved.

The DB_USERNAME and DB_PASSWORD are the username and password to be used in
the connection to the database server.

The SID is the string representation of the session identifier of the test session whose
results the user wants to fetch.

The numberOfPackets and the slotParameter are the number of test packets to be sent
and the slot parameter configured for the corresponding test session.

The startTime is the time in milliseconds since 0h 1 Jan 1970, corresponding to the start
time of the session to be fetched.

The totalTimeToWait is the total time (in milliseconds) duration of the corresponding test
session.

The ntpServerAddress is the address of the NTP server used to get the time reference.
The updateInterval is the value (in minutes) to use for the time interval between two
consecutive updates of the time reference. The ntpServerAddress and updateInteval are
optional but, when defined, they should be simultaneously defined. If they are not
defined, the system time will be used to get the time reference and the update interval will
have the default value of 2 minutes.

Using this mode of operation, the results of each individual test session are saved in a
table which name is the SID (session identifier) string representation of the session. This
table will be created in the DB_NAME database used for the respective test session. This
table is created using the following SQL statement:

“CREATE TABLE SID (id int NOT NULL AUTO_INCREMENT, sequenceNumber int,
sendTimestamp double, sendError_s_z_scale int, sendError_multiplier int,
receiveTimestamp double, receiveError_s_z_scale int, receiveError_multiplier int,
sentTime text /*String representation of the packet send time.*/, receivedTime text
/*String representation of the packet receive time.*/, delay double /*Packet delay in
milliseconds*/, PRIMARY KEY (id))”

The Skip Range description information is saved in the table SIDSRD, where SID is the
session identifier. This table is created using the following SQL statement:

"CREATE TABLE SIDSRD (id int NOT NULL AUTO_INCREMENT, firstSeqnoSkipped
int, lastSeqnoSkipped int, PRIMARY KEY (id))"

Also the table SessionDescriptionRecords is created if it doesn’t exist. This table is used
to save the Session Description Record information [SID, nextSeqno (next sequence

Page 32 of 35

J-OWAMP – Java Implementation of OWAMP

number that would have been sent from the send session), numberOfSkipRanges (number
of skipped ranges) and numberOfRecords (number of packet records fetched from the
Session-Receiver after the end of a test session)] of all fetched test sessions. Each row of
this table represents a fetched session and is identified by the session SID. The Session
Description Record information of a session only should be saved in this table when the
Fetch-Session is complete. So, using this table we can determine if the Fetch-Session of a
test session is finished or not. This table is created using the following SQL statement:

"CREATE TABLE SessionDescriptionRecords (sid VARCHAR(32) NOT NULL,
nextSeqno int, numberOfSkipRanges int, numberOfRecords int, PRIMARY KEY (sid))"

Page 33 of 35

J-OWAMP – Java Implementation of OWAMP

5 CalculateCI
This module is an auxiliary module used in the calculation of the 90% confidence
intervals corresponding to the following parameters: mean delay, loss and throughput of a
Confidence Interval test session. In this way, in a certain time interval the user should
perform y tests for each test session within a total of n OWAMP test sessions. At the end,
the user will have n confidence intervals, each one based on y tests that were made. These
tests should be made using the configuration of section 4.2.2.

In order to calculate the 90% confidence intervals statistics of a CI session and save them
to a MySQL database, the CalculateCI module should be executed in the command line
using the following syntax:

Usage: CalculateCI <serverAddress> <DB_HOSTNAME> <DB_NAME>
<DB_USERNAME> <DB_PASSWORD> <CIconfigTable> <CIsidTable> <CI_id>
<CI_ResultTable> <SS_ResultTable> < ntpServerAddress> < updateInterval>

The serverAddress is the IP address of the OWAMP-Server to be used in the Fetch-
Session. The server IP address should be in the following format:

 IPv4_address:TCPportNumber // for IPv4 address

 [IPv6_address]:TCPportNumber // for IPv6 address

The TCPportNumber is the TCP port to use in the OWAMP-Control communication
between the Fetch-Client and the respective OWAMP-Server. The Server’s TCP port
number corresponds to the port where the Server is waiting for connection requests. If the
user wants to use the default TCPportNumber (22368), the server IP address can be in the
following format:

 IPv4_address // for IPv4 address

 [IPv6_address] // for IPv6 address

Note: If an individual test session of an interval isn’t finished yet, this module waits until
the end of the session and process the Fetch-Session (using mode 4.3.2 of operation) for
the corresponding session. To do so, the OWAMP-Server address and port to use are
needed.

The DB_HOSTNAME represents the IP address of the database server.

The DB_NAME represents the database where the results of the test session will be saved.

The DB_USERNAME and DB_PASSWORD are the username and password to be used in
the connection to the database server.

The CIconfigTable is the name of the table where the Confidence Interval Session’s
configurations are saved (see section 4.2.2).

The CIsidTable is the name of the table where the SID (session identifier), senderPort,
receiverPort, real start time and total test duration for each one of the individual single
sessions belonging to each interval of a Confidence Interval session are saved (see
section 4.2.2).

Page 34 of 35

J-OWAMP – Java Implementation of OWAMP

The CI_id is the row number of the entry of table CIconfigTable corresponding to this CI
session.

The CI_ResultTable is the table to be used to save the statistic results of each interval of
the CI session. This table is created using the following SQL statement:

" CREATE TABLE CI_ResultTable (id int not null AUTO_INCREMENT, averageDelay
DOUBLE, varDelay DOUBLE, minIntervalDelay DOUBLE, maxIntervalDelay
DOUBLE, averageTimeoutLosses DOUBLE, varTimeoutLosses DOUBLE,
minIntervalTimeoutLosses DOUBLE, maxIntervalTimeoutLosses DOUBLE,
averageNotReceivedLosses DOUBLE, varNotReceivedLosses DOUBLE,
minIntervalNotReceivedLosses DOUBLE, maxIntervalNotReceivedLosses DOUBLE,
averageNumDuplicates DOUBLE, varNumDuplicates DOUBLE,
minIntervalNumDuplicates DOUBLE, maxIntervalNumDuplicates DOUBLE,
averageThroughput DOUBLE, varThroughput DOUBLE, minIntervalThroughput
DOUBLE, maxIntervalThroughput DOUBLE, PRIMARY KEY (id))"

The SS_ResultTable is the table where the statistic results of each individual Single
Sessions will be saved. These statistic results are: number of packets sent, number of
packets received, minimum, maximum and average delay, delay variance, packets loss by
timeout ratio, packets not received ratio, duplication ratio and throughput generated by
OWAMP. This table is created using the following SQL statement:

" CREATE TABLE SS_ResultTable (id INT NOT NULL AUTO_INCREMENT, SID
VARCHAR(32), numOfPacketsSent INT, numPacketsReceived INT, minDelay DOUBLE,
averageDelay DOUBLE, maxDelay DOUBLE, varDelay DOUBLE, numTimeoutLosses
DOUBLE, numNotReceivedLosses DOUBLE, numDuplicates DOUBLE, throughput
DOUBLE, PRIMARY KEY (id))"

The ntpServerAddress is the address of the NTP server used to get the time reference.
The updateInterval is the value (in minutes) to use for the time interval between two
consecutive updates of the time reference. The ntpServerAddress and updateInteval are
optional but, when defined, they should be simultaneously defined. If they are not
defined, the system time will be used to get the time reference and the update interval will
have the default value of 2 minutes.

Page 35 of 35

	1 Introduction and requirements
	2 System architecture
	3 Running J-OWAMP
	4 Configuring J-OWAMP modules
	4.1 OWAMP Server, OWAMP Session-Sender and OWAMP Session-Receiver
	4.2 OWAMP Control-Client
	4.2.1 Configure test sessions, show results to user and/or save them to a file
	4.2.2 Configure test sessions and save test configurations and results to a MySQL database

	4.3 OWAMP Fetch-Client
	4.3.1 Fetch the results of a session and show them to user and/or save them to a file
	4.3.2 Fetch the results of a session and save them to a MySQL database

	5 CalculateCI

