Active traffic monitoring for heterogeneous
environments

Helder Veiga, Teresa Pinho, #okuis Oliveira, Rui Valadas, Paulo Salvador, and
Antonio Nogueira

University of Aveiro / Institute of Telecommunications Aveiro
Campus de Santiago, 3810-193 Aveiro, Portugal
{ilo,rvi@et.ua.pt, {hveiga, salvador, nogueirajl@v.it.pt

Abstract. Traffic management of IP networks comprises increasing challenges
due to the occurrence of sudden and deep traffic variations that carainéy
attributed to the combined effects of several factors, like the greatsitiye

of supported applications and services, different user's behaaimdifferent
mechanisms of traffic generation and control. In this context, activiéctrabni-
toring is particularly important as it enables characterizing essentiat@sipe
network operation, like for example, quality of service as measured imster
of packet delays and losses. The main goal of this work is to carry aivea
measurements in a real operational network consisting in a heterageeea-
ronment that includes both wired and wireless LANSs. In order to perfitnis
task, a measurement methodology, and its corresponding meastigatéorm,

will be proposed. The measurement methodology is based on the @pe-W
Active Measurement Protocol (OWAMP), a recent proposal froenlttiernet2
and IETF IPPM groups for active measurements of delays and lossesingle
direction. The measurement platform was implemented, tested andnoemihe
validated. This paper begins by a brief presentation of the measurethants
we intend to perform, then it describes the OWAMP protocol and the deseélo
measurement system, including its implementation, test and validation throug
its application to different network scenarios.

keywords: Network management, traffic monitoring, active measurement, OWAMP

1 Introduction

The relevance of traffic monitoring in the global managenwédP networks has been
growing due to the recent acknowledgment that sudden angd tleffic variations
demand for frequent traffic measurements. This peculiaadieh of network traffic
can be mainly attributed to the combination of differenttéas, like for example the
great diversity of supported applications and servicdfereéint user’s behaviors and the
coexistence of different mechanisms for traffic generagiod control.

Traffic monitoring systems can be classified in active andgigasones [1], [2],
[3]. Passive systems simply perform the analysis of thdi¢r#tiat flows through the
network, without changing it. Usually, they are used to tfgrthe type of protocols
involved and to measure one or more characteristics of #ffictthat flows through

the measurement point, like the average rate, the mean fpsizkeor the duration of
the TCP connections. Nowadays, there are several passivitomiog systems, like for
example NeTraMet [4] and NetFlow [5]. Active systems inggaffic directly into the
network. Usually, they are intended to provide network gemfance statistics between
two distinct measurement points, like for example mean gladklay and packet loss
ratio. Those statistics can be one-way statistics, whep rbier to a single direction
of traffic flow, and round-trip statistics, when they referttaffic that flows in both
directions.

Passive measurements involve measurement intervalsahattietch from several
milliseconds to weeks or even months, thus forcing the gtoeand processing of huge
data quantities. In active measurements, the only padkatate sent to the network are
the ones that will be processed, and measurement intemeals the order of seconds
or minutes. However, it is usually necessary to guaranteesyimchronization of the
involved measurement points, using for example GPS (GIBbaltioning System) or
NTP (Network Time Protocol).

The IETF IPPM (IP Performance Metrics) group establishethénlast few years
a set of recommendations in order to assure that measureegiits obtained from
differentimplementations are comparable, namely reggrdieasurements of one-way
packet delays and losses [6], [7]. However, these recomatiemd do not address the
interoperability of the measurement elements, that ispthesibility of having traffic
senders and receivers that belong to different administrdbmains and are developed
by different entities. OWAMP is a proposal for a one-wayaetneasurement protocol
that intends to solve this problem [8].

In this work, we intend to perform a set of active measuresera real operational
network consisting in a heterogeneous environment thdtides both wired and
wireless LANs. Thus, instead of using available tools (&G, for example), some
of them with a limited scope of applications, we have decieichplement a complete
measurement platform (freely available at http://wwwitgpt/ JOWAMPY/). In order to
guarantee its compliance with other available platformssynieasurement methodology
is based on the OWAMP protocol.

The paper is structured in the following way: section 2 déssrthe architecture and
the operational details of the OWAMP protocol, that formslitlasis of the implemented
solution; section 3 presents the details of the implemesodation; section 4 presents
the active measurements experiments, and their corresmpacenarios, that we want
to carry out in this work; section 5 presents and discussegesults obtained from
its application to the defined measurement scenarios amdlyfisection 6 presents the
main conclusions.

2 One-Way Active Measurement Protocol (OWAMP)

The One-Way Active Measurement Protocol (OWAMP) is a repeaposal from the
Internet2 group, developed under the scope of the End-tbH&rformance Initiative
project [9], [10], for performing active measurements iniregke direction. This pro-
posal is also promoted by the IETF IPPM work group [8].

A 4

OWAMP-Test

A

Proprietary
Protocol
Proprietary OWAMP-Contro

Protocol

OWAMP-Control
Y

Control-Client AP Contral

y Server
Control-Client Fetch-Client Fetch-Client »| session-Receiver

OWAMP-Test

Fig. 1. OWAMP architecture. Fig. 2. OWAMP simplified architecture.

2.1 Architecture

The OWAMP architecture is based on two inter-dependentopod$, the OWAMP-
Control and the OWAMP-Test, that can guarantee a completatisn between client
entities and server entities. The OWAMP-Control is usedagithand end test sessions
as well as receive the results of those tests, whereas theMIRAIFest protocol is used to
allow the exchange of test packets between any two pointdéhang to the monitored
network.

The proposed architecture includes the following elem@igare 1):

— Session-Sender: the sender of the test packets;

— Session-Receiver: the receiver of the test packets;

— Server: the entity that is responsible for the global mansege of the system; it can
configure the two terminal elements of the testing netwouk r@ceive the results
of a test session;

— Control-Client: a terminal system that programs demandgegi sessions, triggers
the beginning of a session set and can also finish one or atiioggessions;

— Fetch-Client: a terminal system that triggers the demamdsbults of test sessions
that have already ended or are still running.

A network element can carry out several logical functionshat same time. For
example, we can have only two network elements (figure 3r&:is carrying out the
functions corresponding to a Control-Client, a Fetch-@lignd a Session-Sender and
the other one is carrying out the functions corresponding ®erver and a Session-
Receiver.

The OWAMP-Control protocol runs over TCP and is used to begid control
measurement sessions and to receive their results. At tjiarieg of each session,
there is a negotiation about the sender and receiver agédrele port numbers that both
terminals will use to send and receive test packets, thannsf the session beginning,
the session duration, the packets size and the mean intestiaben two consecutive
sent packets (it can follow an exponential distributiom,dgample).

The OWAMP-Test runs over UDP and is used to exchange tesefmbletween
sender and receiver. These packets include a Timestampttiictontains the time
instant of packet emission. Besides, packets also indittte sender is synchronized
with some exterior system (using GPS or NTP) and each padketiacludes a
Sequence Number.

OWAMP supports test packets with service differentiatib®CP (Differentiated
Services Codepoint), PHB ID (Per Hop Behavior Identificatidode) or Best-effort.
Additionally, OWAMP supports some extra facilities likephyer and authentication
for the test and control traffic, intermediary elementsezhlServers that operate as
proxies between measurement points and the exchange o &edtie generation of
random variables that are used in the definition of transahiiést flows. The OWAMP
specification also allows the use of proprietary protocthat(can be monolithic
or distributed programming interfaces) in all connectidhat do not compromise
interoperability.

2.2 Protocol

In the architecture of the developed system (figure 1) we shdo use the OWAMP-
Control as the communication protocol between client amdleseand between server
and receiver (protocols used in these connections are raifiga in the OWAMP
model). This approach guarantees a higher independenbe difterent modules, that
can thus be shared between several systems.

A measurement session is started by the client, who edtablis connection with
the server. This connection comprises the establishmest DCP connection and
the exchange of three messages, designate@dmpection Setup Server Greating,
Connection Setup Client Response and Connection Setup Server Response. All sub-
sequent connections between network elements follow thiedt. From this moment
on, the client is able to make requests of test sessions tsettver. However, before
each request the client establishes a connection with tredvied sender in order to
determine if it exists and is in an active state (figure 3héf sender is in an active state,
the established TCP connection is maintained and the diemds eéRequest-Session
command to the server. When the server receives this comrhéinds the involved
receiver and establishes a new connection with it. If thelired receiver is active, the
server re-sends it thRequest-Session message. The receiver answers withAgoept-
Session message, indicating whether it accepted or rejected theestqThe server
waits for this response and re-sends Hueept-Session message to the client. If the
Accept-Session is positive, the client sendsRequest-Session command to the involved
sender, which will answer again with &ccept-Session message. If thBeguest-Session
request is rejected by the receiver, the client must closel'tbP connection that was
previously established with the sender.

If the Request-Session request(s) are accepted, the client starts the test sedsjon
sending each senderQart-Sessions message, and the senders will respond with a
Control-Ack packet (figure 4). If the sender accepts the session requestwait until
the start time (the instant of session beginning) in ordestact sending test packets to
the receiver. However, if any of the senders’ responseggjative, the client must close
all connections by sending%iop-Sessions command to the server. If all senders accept
the request, the client sendsSart-Sessions message to the server, which in turns re-
sends this message for each one of the involved receiveeseTeceivers will in turn
respond to the server with @ontrol-Ack packet, informing it if they accept or reject
the request. If all responses are positive, the server &tepSart-Sessions request
by sending a positiv€ontrol-Ack packet to the client. Otherwise, the server sends a

Connection

Setup

Request-Session
o Sende Client @ Receive

Start-Sessions
Control-Ack

Star-Session
Star-Session

Control-Ack

Control-Ack

Accept-Session

UDP Test Packet

Fig. 3. Temporal diagram of all messagesFig. 4. Temporal diagram of all mes-
that are exchanged during the establishsages that are exchanged during the es-
ment of aRequest-Session request. tablishment of &&art-Sessions request.

negativeControl-Ack packet to the client. Whenever a receiver acce[@sid-Sessions
request, it will be automatically waiting for the start tinmeorder to start receiving test
packets.

In the monitor, whenever there is a request for results a extion is firstly
established between the monitor and the server (figure Bn,Tdietch-Session packet
is sent from the monitor to the server. Based on the sessemtifiér (SID), that is
included in the packet, the server identify the receiveresiand re-routes the reading
request to it. The receiver verifies if it has any availableulis that can satisfy the
monitor request and sends a positive or nega@eetrol-Ack packet to the server
according to the available results. The server re-sendp#tket to the monitor, which
in case of a positive response, will remain waiting for theults. Immediately after a
positive Control-Ack, the receiver sends to the serveBassion-Data packet followed
by a 16 bytedntegrity Zero Padding packet. The server re-routes these packets to the
monitor.

A test session can be terminated even before its beginnibgfore sending all test
packets. This can be achieved using®p-Sessions command. This command can be
sent by both the client and the server. This is the only conahtlat can be used after
the beginning and before the end of a test session, thatringdihe session. In order to
perform complete measurement sessions, both the cliertharskrver must wait until
the end of the session (which is marked by a Timeout sincealtédst packet has been
sent) to exchangg&op-Sessions packets.

3 J-OWAMP: a system based on OWAMP

In order to create an innovator platform for active measrets) that can also represent
a basis for the development and test of new algorithms ancelmode built a system
designated by J-OWAMP (a Java implementation of the OWAMBtqmol). The

TGP connection Sey
.~=.
D

W’

Fetch (essiol

Contro-Ack

Contro-Ack

y

Fig. 5. Temporal diagram of all messages that are exchanged diméngstablishment
of a Fetch-Session request.

current version implements the May 2004 OWAMP proposal. T&ecloped system
corresponds to the scenario depicted in figure 1, a more gleasrhitecture. This
architecture allows the definition of only one client and @®ever in the network
(possibly installed in machines with the highest processiapacity) and allows the
installation of senders and receivers in any machine of gteark, which leads to a
lower processing impact. In this way, the network managarpeaform tests all over
the network from a single machine, which is not possible andimplified scenario of
figure 3.2.

3.1 Structure and implementation

The J-OWAMP system was developed in Java language becasisatjuage presents
a set of favorable characteristics, like semantic simglipiortability and a set of classes
that greatly simplify the construction of distributed apptions.

The structure of the system is based on two levels: Messagkgatities. At the
Messages level, we developed a set of classes correspawadaagrh one of the data
packets that are exchanged in the OWAMP protocol. The maisscPacket is the
basis for all messages (derived classes), so it contaimaettiods (basic functions)
for manipulating and formating the different data typeimed in the protocol. It also
contains the methods that are needed to receive and seretpaskng a socket.

Each type of packet is defined in a class that derives from #uoked® class. Each
one of these subclasses includes also two new subclassethains used to send -
class ...ToBeSend - and another that is used to receive the packeass ...Receiver.
Sending a packet always implies transferring all its bydes buffer and send it through
a socket, so the subclass that is responsible for sendingketpalways includes two
methods: alatagramToBuffer method and &endTCP... method, that implement these
two functionalities, respectively. In the same way, theepion of a packet implies its
reception through a socket and transferring informatiomfthe reception buffer to the

respective packet format. Thus, the reception subclassdes two methodseceive...
andcreate_Datagram._..., that implement these two functionalities.
The Packet class also contains the Timestamp subclas®ihathe methods and
objects that are needed to obtain and process the tempfoahgetion of the system.
At the Entities level, a set of seven classes was developeddier to implement
the five elements@lient, Server, Session-Sender, Session-Receiver and Fetch-Client)
of the OWAMP architecture:

— OWAMP_Base extendsThread

— OWAMP_ControlClient extendsOWAMP_Base

— OWAMP_Server extendsOWAMP_Base

— OWAMP_SessionTerminal extendSOWAMP_Base

— OWAMP_SessionReceiver extendOWAMP_SessionTerminal
— OWAMP_SessionSender extendsOWAMP_SessionTerminal
— OWAMP_FetchClient extendsOWAMP_Base

We now give a more detailed description of each developesscla

The OWAMP_Base class was defined in order to group in a same class all methods
that are common to the several classes that implement tferatif elements of the
OWAMP architecture (for example, the method that is usedstaldish the commu-
nication between two OWAMP elementgConnection Setup). This class extends the
Thread class, because some of its derived classes (like, for exarplsses related to
the server, sender and receiver) use this multiprocessimcept to process the various
received requests. All remaining system classes that atepthe entities constitute
subclasses of this class.

The OWAMP_ControlClient class is a subclass of tHeWAMP_Base class and
implements theClient element of the protocolClient is the entity that makes the
requests for test sessions, and can also be the entity sibfgofor making the requests
for results. This class includes all the objects and metttiwatsare necessary to establish
the communication between client and sender or servercldies, among others, a
method to sendRequest-Session packets to the server and the sender, a method that
implementstart-Sessions, a method to senftop-Sessions commands and another one
to test this sending, and a method to evaluate if all sessiomginished. This class
also comprises a subclass, nanRatddomExponential Distribution, to generate random
numbers having exponential distribution. System confitjpma can be done from the
command line or using a configuration file.

The OWAMP_Server class is a subclass of t@NVAMP_Base class and implements
the Server entity of the protocol. The server is a process that is cantisly running
and acts as an intermediary between clients and receiverbetween monitors (if
they exist) and receivers. This class comprises all thectbpnd methods that enable
the server to respond to aRequest-Sessions and Start-Sessions requests from the
clients, guarantying that the receiver is ready to acceps#ssion. Whenever a client
establishes a new connection with the server (Connectidmpea new process is
triggered in order to accept aequest-Session requests that exist in thi©WAMP-
Control connection. In this way, the server becomes available teggequests from a
new OWAMP-Control connection. This class also contains a method to test thiiregen

of Sop-Sessions commands and a method that is able to answer to requestsstotsre
(fetch) that are made by the monitor. Whenever a new readipgest is made, a new
process is started in order to process this request.

The OWAMP_SessionTerminal class is a subclass of tH@WAMP_Base class and
groups in a same class all methods that are common ©OWEMP_SessionSender and
OWAMP_SessionReceiver classes. This class contains all methods and objects that ar
necessary for the sender and receiver to answReqoest-Session, Start-Sessions and
Sop-Sessions requests that come from the client or server, respectiVédychose this
configuration because both the sender and receiver answiee isame way to these
messages.

The OWAMP _SessionReceiver class is a subclass of tH&WAMP_SessionTerminal
class that implements thiReceiver entity of the protocol. The receiver is responsible for
accepting the test packets and mark them with their armsthint. This class contains
all methods and objects that are necessary for the receiaarswer td-etch-Sessions
requests that come from the server, and to receive and gratf¢sst packets. Whenever
a new test session coming from the same receiver is startely @rocess is created in
order to receive and process packets.

The OWAMP_SessionSender class is a subclass of tH@WAMP_SessionTerminal
class and implements tt8ender entity of the protocol. The sender is a process that is
continuously running in a specific pot number and is resgd@gor marking the test
packets with a sending timestamp and sending these paokétsteceiver, using UDP.
This class contains all methods and objects that are negdssdahe sender to create
and send test packets to the receiver. Whenever a new teginrsesesing from the
same sender is started, a new process is created in ordercespgrand send packets.

The OWAMP_FetchClient is a subclass of thOWAMP_Base class and implements
the FetchClient entity of the protocol. The main feature of this entity is ttowa the
reading of results belonging to a session that is still mgnin this way, it is not
necessary to wait for the end of the session in order to getsesults (related to
the first 20 packets, for example). This class comprises #tods and objects that are
necessary to read and print the results, as well as procasal gtatistics corresponding
to one or more sessions.

3.2 Compliance tests

In order to guarantee the compliance of the developed syst#éimthe OWAMP
proposal we have performed a set of tests involving an imeigation for a UNIX
platform developed by the Internet2 group and publicly laéé in [9]. The tests were
carried out in the private IT-Aveiro network using, in a fiesiperiment, the J-OWAMP
modules as the client, monitor and sender modules and usinimternet2 modules as
server and receiver modules and, in a second experiment; @WAMP and Internet2
modules in the reverse order (figuz@).

The communication between the J-OWAMP modules (developddva language)
and the Internet2 modules (developed in C language) wagattyrestablished, in
both directions. Using the Ethereal traffic analyzer, weeheerified that the control
messages and the test packets are correctly exchangeegcisesiin the protocol.

Internet2 Internet2

OWAMP-Tes{

OWAMP-Test [T -owamP
7| Session-Receiver

J-OWAMP
Session-Sender
J-OWAMP
Control-Client

Session-Send

Session-Receiver

Fetch-Client
Server

Control-Client
OWAMP-Control ¢——»| J-OWAMP Server

OWAMP-Control
OWAMP-Control
J-OWAMP
Fetch-Client

Fig. 6. Configuration of the compliance tests.

4 Measurement scenarios

Before carrying out active traffic measurements in the realark involving a het-
erogeneous environment, we have first established a labb@alammeasurement setup
that was used to test the developed measurement solutionniora controllable
environment.

4.1 First scenario: laboratorial environment

The measurement setup for this scenario is illustrated urdi@. Routers 1 and 2 are
connected through a serial link configured with a transmissiapacity of 64 Kb/s

and three networks are configured with the following strrestunetwork 192.0.0.0,

that contains PC1 running the OWAMP sender; network 192)0tBat contains PC2

running the traffic generator MGEN and network 192.0.1.0 ¢batains PC3 where we
have previously installed the OWAMP client, server and iregeelements as well as a
receiver (Drec) of the traffic generated by the MGEN appiécatunning on PC2. The

service discipline for all queues belonging to the seritdrifiaces of routers 1 and 2 is
FIFO. PCs 1 and 3 are synchronized through NTP.

Using this scenario we intend to measure and study the paekays that occur
in the queuing system of Router 1 and are due to the trangmissipacity of the
serial link between routers 1 and 2, for different values e traffic load in that
serial link. So, we have configured the MGEN application tnagate traffic according
to a Poisson distribution and send it to PC3 using the sdrikl Using the sender
installed in PC1 and the receiver installed in PC3 we are @blmeasure the delay
values that occur in the queue of Router 1 serial interfamedifferent values of the
traffic load. Arrows represented in figure 8 show the direwdithat are followed by the
traffic generated with MGEN and the traffic consisting of festkets generated by the
developed measurement system.

4.2 Second scenario: University of Aveiro wireless network

In this scenario we want to make some measurements in thdessraetwork of
University of Aveiro (UA), trying mainly to evaluate the germance of accessing this

PC1
OWAMP Session-Sender
NTP Server = MGEN traffic

OWAMP-Test traffic
+.192.00.2

Router 1 Router 2

> 192.0.1.1
= 192.0.4.1 192.0.452
- _ =
Serial link
64 Kbps 192.0.1.2

PC2 PC3
MGEN OWAMP Control-Client
OWAMP Server
OWAMP Session-Receiver
Drec
NTP Client

Fig. 7. Network corresponding to the first measurement scenario.

network from the students’ residences. In order to do thathade some measurement
experiments between a PC located in the laboratory of instif Telecommunications
(IT), named Lab PC, and another one located in a studentdemse of the University
campus, named Residence PC (figure 9).

Executing thétracert 192.168.140.47° command in the Lab PC we can get the path
and the round-trip delays between the Lab and the Residebséfigure 9).

D:\>tracert 192.168.140.47

Tracing route to FRANCIS [192.168.140.47]
over a maximum of 30 hops:

1 1ms 1ms 1ms gtav.itpt[193.136.92.1]
2 37ms 97ms 41ms gt-cicua.core.ua.pt [193.136.86.193]
3 86ms 33ms 51ms VPN-WIRELESS [192.168.140.253]
4 52ms 94ms 36ms FRANCIS [192.168.140.47]

Trace complete.

Fig. 8. Result of the 'tracert’ command between Lab PC and Residefice

We studied the traffic that flows between the Residence andahe&Cs in both
directions. We installed the client, server and receivethia PC that receives the
test packets and the sender in the PC that is used to senddketpaBoth PCs are
synchronized via NTP. Note that Internet access from thaleases is performed
through the UA network. So, traffic in the downstream ditincludes the downloads
from the Internet to the residences.

All tests were performed in a 24 hours period. In each hous eé 10 tests
(including both packet delay and loss) were performed, nwli total of 240 tests.
In each group, the tests beginning instants were separgt2dniinutes. All tests lasted
for 1 minute and consisted in sending 60 packets of 14 bytels, @ an average rate
of 1 packet/second. In order to conveniently charactelieepaicket average delay and
packet loss ratio, we have calculated 90% confidence irltebesed on the 10 average
values obtained in each test belonging to a group of 10 tests.

.. OWAMP-Test traffic

Wireless Router
Lab PC IT Router CICUA Router \j \[Residence PC
@y—‘_ e gl. »
T > L
OWAMP Session-Client
OWAMP Server
OWAMP Session-Sender

OWAMP Session-Receiver
NTP Server

OWAMP Session-Client
OWAMP Server
OWAMP Session-Sender
OWAMP Session-Receiver
NTP Client

Fig. 9. Network corresponding to the second measurement scenario.

10000

1000

Packet loss ratio
°
°

100

Average delay (msec)

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

MGEN traffic (kbits/sec) MGEN traffic (kbits/sec)

Fig. 10. Results of the first scenario: Fig.11. Results of the first scenario:
average packet delay versus MGENpacket loss ratio versus MGEN gener-
generated traffic. ated traffic.

5 Results

5.1 Results of the first scenario

Figures 10 and 11 present the results corresponding to tkepdelay and packet loss
tests conducted in the first scenario, for different valdfeab®MGEN generated traffic.
From the analysis of the obtained results we an verify thatexpected, there is an
increase in packet delays and losses with increasing netwad. For network load
values that are far from the maximum value supported by thal $iek (64 Kb/s), there
are no packet losses. However, packet loss values increagdast as network load
approaches the limit load supported by the serial link tbanects both routers.

5.2 Results of the second scenario

For this scenario, we have studied the traffic that flows betwbe Residence PC and
the Lab PC (upstream) and in the reverse direction (dowenstreThe results of the
average packet delay and packet loss ratio for the upstréctidn are presented
in figures 12 and 13, respectively, and the analogous resaltesponding to the
downstream direction are presented in figures 14 and 15¢ctgely.

From the analysis of the packet delay and packet loss valeesaw verify that
in the upstream direction delays vary between approxim@e@land 120 milliseconds

140 04

120 4

100

80 4

Average delay (msec)
Packet loss ratio
°
N

20 T 00l 6660606 dbode rOP YOO UBUW!
R N R S R R R R R Y e
PEELLLELEELLENLSEESNN OO S
B AN A N R SO RSN CELELELCELELELISERLL SRS S P
B R A A e o S R e A S
First packet sending time First packet sending time

Fig. 12.Results of the second scenario,Fig. 13. Results of the second scenario,
upstream direction: average packet deupstream direction: packet loss ratio
lay versus first packet sending time. versus first packet sending time.

3000 04

2500
03
1500 02
1000
0.1
500
0 [R

,L.QQ,S@Q.@.@.@ SEEELELSEELRELERL DL S
P

N
5]
5]
8

Average delay (msec)
Packet loss ratio

A e R SR BN SEELELLLCEEERLELL S SORDP P

First packet sending time First packet sending time

Fig. 14.Results of the second scenario,Fig. 15. Results of the second scenario,
downstream direction: average packetdownstream direction: packet loss ratio
delay versus first packet sending time. versus first packet sending time.

and are much lower that the corresponding values of the dogara direction, that
vary between 20 and 2300 milliseconds. Packet losses aténntile upstream di-
rection but have non zero values in the downstream direcfAsnexpected, there is
a direct relationship between packet delays and lossdsehjgacket delay values also
correspond to higher packet loss values. In the perfornmstd, tdownstream traffic was
much higher than upstream traffic, which is a typical resudtiiese kind of scenarios.
In the downstream direction, the highest delay and lossegalere observed in the
night and afternoon (between 2PM and 6PM) periods. Thesesalan be attributed to
the use of file sharing applications. In the night period, utibzation level of these
applications is even higher, mainly from the students’destes. In the afternoon
period, the utilization of these applications is mainlyrfréhe library building, which
is also covered by a wireless network.

6 Conclusions

Traffic monitoring through active measurements is havinmareasing relevance in the
IP networks management context, since it enables to direathitor quality of service
parameters, like for example average packet delay and plaskeatio. The IETF IPPM
group has recently proposed a protocol for conducting e¢taffic measurements in a
single direction, the OWAMP (One-Way Active Measuremertt&col).

This paper presented a solution (based on the OWAMP prgtéaoperforming
active measurements in a heterogeneous network, inclitdiimgplementation, valida-
tion and some examples that allow a further exploration ef@WAMP protocol. The
proposed system was developed in Java language, mainly digepbrtability. Several
compliance tests with the only known implementation (fréma Internet2 group) were
successfully conducted. The system was evaluated throwggh af performed tests,
conducted both in a laboratorial environment and in a reatatonal network. The
obtained results show that the implemented system is a w&fyactive measurement
tool that can be used for characterizing quality of serwicEinetworks.

Acknowledgments This research was supported by Furtitagara a @ncia e a
Tecnologia, project POSI/42069/CPS/2001, and Europeanniission, Network of
Excellence EuroNGI (Design and Engineering of the Next Gaien Internet).

References

1. A.Pasztor, D.Veitch: High precision active probing for internet sneament. In:
Proceedings of INET'2001. (2001)

2. Corral, J., Texier, G., Toutain, L.: End-to-end active measergmrchitecture in ip networks
(saturne). In: Proceedings of Passive and Active Measuremerksiop PAM’'03. (2003)

3. Grossglauser, M., Krishnamurthy, B.: Looking for science in the ai network
measurement. In: Proceedings of IWDC Workshop. (2001)

4. NeTraMet home page: (http://www.auckland.ac.nz/net/netramet/)

5. White Paper - NetFlow Services and Applications:
(http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/napgshtm)

6. Almes, G., Kalidindi, S., Zekauskas, M.: RFC 2679: A one-wayyelatric for ippm (1999)

7. Almes, G., Kalidindi, S., Zekauskas, M.: RFC 2680: A one-waykphaloss metric for ippm
(1999)

8. Shalunov, S., Teitelbaum, B., Karp, A., andMatthew J. ZekayskésB.: A one-way active
measurement protocol (owamp), internet draft (2004)

9. Internet2 End-to-End Performance Initiative: (http://e2epi.interadtd.

10. Boyd, E.L., Boote, J.W., Shalunov, S., Zekauskas, M.Je ifiternet2 e2e pipes project: An

interoperable federation of measurement domains for performdeingging (2004)

