
Active traffic monitoring for heterogeneous
environments

Hélder Veiga, Teresa Pinho, José Luis Oliveira, Rui Valadas, Paulo Salvador, and
António Nogueira

University of Aveiro / Institute of Telecommunications Aveiro
Campus de Santiago, 3810-193 Aveiro, Portugal

{jlo,rv}@det.ua.pt,{hveiga, salvador, nogueira}@av.it.pt

Abstract. Traffic management of IP networks comprises increasing challenges
due to the occurrence of sudden and deep traffic variations that can bemainly
attributed to the combined effects of several factors, like the great diversity
of supported applications and services, different user’s behaviorsand different
mechanisms of traffic generation and control. In this context, active traffic moni-
toring is particularly important as it enables characterizing essential aspects in
network operation, like for example, quality of service as measured in terms
of packet delays and losses. The main goal of this work is to carry out active
measurements in a real operational network consisting in a heterogeneous envi-
ronment that includes both wired and wireless LANs. In order to perform this
task, a measurement methodology, and its corresponding measurement platform,
will be proposed. The measurement methodology is based on the One-Way
Active Measurement Protocol (OWAMP), a recent proposal from the Internet2
and IETF IPPM groups for active measurements of delays and lossesin a single
direction. The measurement platform was implemented, tested and conveniently
validated. This paper begins by a brief presentation of the measurementsthat
we intend to perform, then it describes the OWAMP protocol and the developed
measurement system, including its implementation, test and validation through
its application to different network scenarios.

keywords: Network management, traffic monitoring, active measurement, OWAMP.

1 Introduction

The relevance of traffic monitoring in the global managementof IP networks has been
growing due to the recent acknowledgment that sudden and deep traffic variations
demand for frequent traffic measurements. This peculiar behavior of network traffic
can be mainly attributed to the combination of different factors, like for example the
great diversity of supported applications and services, different user’s behaviors and the
coexistence of different mechanisms for traffic generationand control.

Traffic monitoring systems can be classified in active and passive ones [1], [2],
[3]. Passive systems simply perform the analysis of the traffic that flows through the
network, without changing it. Usually, they are used to identify the type of protocols
involved and to measure one or more characteristics of the traffic that flows through

the measurement point, like the average rate, the mean packet size or the duration of
the TCP connections. Nowadays, there are several passive monitoring systems, like for
example NeTraMet [4] and NetFlow [5]. Active systems inserttraffic directly into the
network. Usually, they are intended to provide network performance statistics between
two distinct measurement points, like for example mean packet delay and packet loss
ratio. Those statistics can be one-way statistics, when they refer to a single direction
of traffic flow, and round-trip statistics, when they refer totraffic that flows in both
directions.

Passive measurements involve measurement intervals that can stretch from several
milliseconds to weeks or even months, thus forcing the storage and processing of huge
data quantities. In active measurements, the only packets that are sent to the network are
the ones that will be processed, and measurement intervals are in the order of seconds
or minutes. However, it is usually necessary to guarantee the synchronization of the
involved measurement points, using for example GPS (GlobalPositioning System) or
NTP (Network Time Protocol).

The IETF IPPM (IP Performance Metrics) group established inthe last few years
a set of recommendations in order to assure that measurementresults obtained from
different implementations are comparable, namely regarding measurements of one-way
packet delays and losses [6], [7]. However, these recommendations do not address the
interoperability of the measurement elements, that is, thepossibility of having traffic
senders and receivers that belong to different administrative domains and are developed
by different entities. OWAMP is a proposal for a one-way active measurement protocol
that intends to solve this problem [8].

In this work, we intend to perform a set of active measurements in a real operational
network consisting in a heterogeneous environment that includes both wired and
wireless LANs. Thus, instead of using available tools (likePING, for example), some
of them with a limited scope of applications, we have decidedto implement a complete
measurement platform (freely available at http://www.av.it.pt/JOWAMP/). In order to
guarantee its compliance with other available platforms, its measurement methodology
is based on the OWAMP protocol.

The paper is structured in the following way: section 2 describes the architecture and
the operational details of the OWAMP protocol, that forms the basis of the implemented
solution; section 3 presents the details of the implementedsolution; section 4 presents
the active measurements experiments, and their corresponding scenarios, that we want
to carry out in this work; section 5 presents and discusses the results obtained from
its application to the defined measurement scenarios and, finally, section 6 presents the
main conclusions.

2 One-Way Active Measurement Protocol (OWAMP)

The One-Way Active Measurement Protocol (OWAMP) is a recentproposal from the
Internet2 group, developed under the scope of the End-to-End Performance Initiative
project [9], [10], for performing active measurements in a single direction. This pro-
posal is also promoted by the IETF IPPM work group [8].

Fig. 1.OWAMP architecture.

Fig. 2.OWAMP simplified architecture.

2.1 Architecture

The OWAMP architecture is based on two inter-dependent protocols, the OWAMP-
Control and the OWAMP-Test, that can guarantee a complete isolation between client
entities and server entities. The OWAMP-Control is used to begin and end test sessions
as well as receive the results of those tests, whereas the OWAMP-Test protocol is used to
allow the exchange of test packets between any two points that belong to the monitored
network.

The proposed architecture includes the following elements(figure 1):

– Session-Sender: the sender of the test packets;
– Session-Receiver: the receiver of the test packets;
– Server: the entity that is responsible for the global management of the system; it can

configure the two terminal elements of the testing network and receive the results
of a test session;

– Control-Client: a terminal system that programs demands for test sessions, triggers
the beginning of a session set and can also finish one or all ongoing sessions;

– Fetch-Client: a terminal system that triggers the demands for results of test sessions
that have already ended or are still running.

A network element can carry out several logical functions atthe same time. For
example, we can have only two network elements (figure 2): oneis carrying out the
functions corresponding to a Control-Client, a Fetch-Client and a Session-Sender and
the other one is carrying out the functions corresponding toa Server and a Session-
Receiver.

The OWAMP-Control protocol runs over TCP and is used to beginand control
measurement sessions and to receive their results. At the beginning of each session,
there is a negotiation about the sender and receiver addresses, the port numbers that both
terminals will use to send and receive test packets, the instant of the session beginning,
the session duration, the packets size and the mean intervalbetween two consecutive
sent packets (it can follow an exponential distribution, for example).

The OWAMP-Test runs over UDP and is used to exchange test packets between
sender and receiver. These packets include a Timestamp fieldthat contains the time
instant of packet emission. Besides, packets also indicateif the sender is synchronized
with some exterior system (using GPS or NTP) and each packet also includes a
Sequence Number.

OWAMP supports test packets with service differentiation:DSCP (Differentiated
Services Codepoint), PHB ID (Per Hop Behavior Identification Code) or Best-effort.
Additionally, OWAMP supports some extra facilities like cypher and authentication
for the test and control traffic, intermediary elements called Servers that operate as
proxies between measurement points and the exchange of seeds for the generation of
random variables that are used in the definition of transmitted test flows. The OWAMP
specification also allows the use of proprietary protocols (that can be monolithic
or distributed programming interfaces) in all connectionsthat do not compromise
interoperability.

2.2 Protocol

In the architecture of the developed system (figure 1) we choose to use the OWAMP-
Control as the communication protocol between client and sender and between server
and receiver (protocols used in these connections are not specified in the OWAMP
model). This approach guarantees a higher independence of the different modules, that
can thus be shared between several systems.

A measurement session is started by the client, who establishes a connection with
the server. This connection comprises the establishment ofa TCP connection and
the exchange of three messages, designated byConnection Setup Server Greating,
Connection Setup Client Response and Connection Setup Server Response. All sub-
sequent connections between network elements follow this format. From this moment
on, the client is able to make requests of test sessions to theserver. However, before
each request the client establishes a connection with the involved sender in order to
determine if it exists and is in an active state (figure 3). If the sender is in an active state,
the established TCP connection is maintained and the clientsends aRequest-Session
command to the server. When the server receives this command it finds the involved
receiver and establishes a new connection with it. If the involved receiver is active, the
server re-sends it theRequest-Session message. The receiver answers with anAccept-
Session message, indicating whether it accepted or rejected the request. The server
waits for this response and re-sends theAccept-Session message to the client. If the
Accept-Session is positive, the client sends aRequest-Session command to the involved
sender, which will answer again with anAccept-Session message. If theRequest-Session
request is rejected by the receiver, the client must close the TCP connection that was
previously established with the sender.

If the Request-Session request(s) are accepted, the client starts the test sessions by
sending each sender aStart-Sessions message, and the senders will respond with a
Control-Ack packet (figure 4). If the sender accepts the session request,it will wait until
the start time (the instant of session beginning) in order tostart sending test packets to
the receiver. However, if any of the senders’ responses is negative, the client must close
all connections by sending aStop-Sessions command to the server. If all senders accept
the request, the client sends aStart-Sessions message to the server, which in turns re-
sends this message for each one of the involved receivers. These receivers will in turn
respond to the server with aControl-Ack packet, informing it if they accept or reject
the request. If all responses are positive, the server accepts theStart-Sessions request
by sending a positiveControl-Ack packet to the client. Otherwise, the server sends a

Sender Receiver

Request-Session

Client Server

Connection

Setup

Connection

Setup

TCP connection setup

Request-Session

Accept-Session

Accept-Session

Request-Session

Accept-Session

TCP connection setup

Fig. 3. Temporal diagram of all messages
that are exchanged during the establish-
ment of aRequest-Session request.

Sender Receiver

Start-Sessions

Client Server

Start-Sessions

Control-Ack

Start-Sessions

Control-Ack

Control-Ack

UDP Test Packets

Fig. 4. Temporal diagram of all mes-
sages that are exchanged during the es-
tablishment of aStart-Sessions request.

negativeControl-Ack packet to the client. Whenever a receiver accepts aStart-Sessions
request, it will be automatically waiting for the start timein order to start receiving test
packets.

In the monitor, whenever there is a request for results a connection is firstly
established between the monitor and the server (figure 5). Then, aFetch-Session packet
is sent from the monitor to the server. Based on the session identifier (SID), that is
included in the packet, the server identify the receiver address and re-routes the reading
request to it. The receiver verifies if it has any available results that can satisfy the
monitor request and sends a positive or negativeControl-Ack packet to the server
according to the available results. The server re-sends this packet to the monitor, which
in case of a positive response, will remain waiting for the results. Immediately after a
positiveControl-Ack, the receiver sends to the server aSession-Data packet followed
by a 16 bytesIntegrity Zero Padding packet. The server re-routes these packets to the
monitor.

A test session can be terminated even before its beginning orbefore sending all test
packets. This can be achieved using theStop-Sessions command. This command can be
sent by both the client and the server. This is the only command that can be used after
the beginning and before the end of a test session, that is, during the session. In order to
perform complete measurement sessions, both the client andthe server must wait until
the end of the session (which is marked by a Timeout since the last test packet has been
sent) to exchangeStop-Sessions packets.

3 J-OWAMP: a system based on OWAMP

In order to create an innovator platform for active measurements, that can also represent
a basis for the development and test of new algorithms and models, we built a system
designated by J-OWAMP (a Java implementation of the OWAMP protocol). The

Receiver Monitor Server

OWAMP-Test Session Data

Control-Ack

Control-Ack

TCP connection setup

Connection
Setup

Fetch Session

Fetch Session

IZP 16 bytes

OWAMP-Test Session Data IZP 16 bytes

Fig. 5. Temporal diagram of all messages that are exchanged during the establishment
of a Fetch-Session request.

current version implements the May 2004 OWAMP proposal. Thedeveloped system
corresponds to the scenario depicted in figure 1, a more general architecture. This
architecture allows the definition of only one client and oneserver in the network
(possibly installed in machines with the highest processing capacity) and allows the
installation of senders and receivers in any machine of the network, which leads to a
lower processing impact. In this way, the network manager can perform tests all over
the network from a single machine, which is not possible in the simplified scenario of
figure 2.

3.1 Structure and implementation

The J-OWAMP system was developed in Java language because this language presents
a set of favorable characteristics, like semantic simplicity, portability and a set of classes
that greatly simplify the construction of distributed applications.

The structure of the system is based on two levels: Messages and Entities. At the
Messages level, we developed a set of classes correspondingto each one of the data
packets that are exchanged in the OWAMP protocol. The main class Packet is the
basis for all messages (derived classes), so it contains allmethods (basic functions)
for manipulating and formating the different data types involved in the protocol. It also
contains the methods that are needed to receive and send packets using a socket.

Each type of packet is defined in a class that derives from the Packet class. Each
one of these subclasses includes also two new subclasses, one that is used to send -
class ...ToBeSend - and another that is used to receive the packet -class ...Receiver.
Sending a packet always implies transferring all its bytes to a buffer and send it through
a socket, so the subclass that is responsible for sending a packet always includes two
methods: adatagramToBuffer method and asendTCP... method, that implement these
two functionalities, respectively. In the same way, the reception of a packet implies its
reception through a socket and transferring information from the reception buffer to the

respective packet format. Thus, the reception subclass includes two methods,receive...
andcreate Datagram ..., that implement these two functionalities.

The Packet class also contains the Timestamp subclass that joins the methods and
objects that are needed to obtain and process the temporal information of the system.

At the Entities level, a set of seven classes was developed inorder to implement
the five elements (Client, Server, Session-Sender, Session-Receiver andFetch-Client)
of the OWAMP architecture:

– OWAMP Base extendsThread
– OWAMP ControlClient extendsOWAMP Base
– OWAMP Server extendsOWAMP Base
– OWAMP SessionTerminal extendsOWAMP Base
– OWAMP SessionReceiver extendsOWAMP SessionTerminal
– OWAMP SessionSender extendsOWAMP SessionTerminal
– OWAMP FetchClient extendsOWAMP Base

We now give a more detailed description of each developed class.
TheOWAMP Base class was defined in order to group in a same class all methods

that are common to the several classes that implement the different elements of the
OWAMP architecture (for example, the method that is used to establish the commu-
nication between two OWAMP elements -Connection Setup). This class extends the
Thread class, because some of its derived classes (like, for example, classes related to
the server, sender and receiver) use this multiprocessing concept to process the various
received requests. All remaining system classes that are part of the entities constitute
subclasses of this class.

The OWAMP ControlClient class is a subclass of theOWAMP Base class and
implements theClient element of the protocol.Client is the entity that makes the
requests for test sessions, and can also be the entity responsible for making the requests
for results. This class includes all the objects and methodsthat are necessary to establish
the communication between client and sender or server. It includes, among others, a
method to sendRequest-Session packets to the server and the sender, a method that
implementsStart-Sessions, a method to sendStop-Sessions commands and another one
to test this sending, and a method to evaluate if all sessionsare finished. This class
also comprises a subclass, namedRandomExponentialDistribution, to generate random
numbers having exponential distribution. System configurations can be done from the
command line or using a configuration file.

TheOWAMP Server class is a subclass of theOWAMP Base class and implements
the Server entity of the protocol. The server is a process that is continuously running
and acts as an intermediary between clients and receivers and between monitors (if
they exist) and receivers. This class comprises all the objects and methods that enable
the server to respond to allRequest-Sessions and Start-Sessions requests from the
clients, guarantying that the receiver is ready to accept the session. Whenever a client
establishes a new connection with the server (Connection Setup), a new process is
triggered in order to accept allRequest-Session requests that exist in thisOWAMP-
Control connection. In this way, the server becomes available to accept requests from a
newOWAMP-Control connection. This class also contains a method to test the sending

of Stop-Sessions commands and a method that is able to answer to requests for results
(fetch) that are made by the monitor. Whenever a new reading request is made, a new
process is started in order to process this request.

The OWAMP SessionTerminal class is a subclass of theOWAMP Base class and
groups in a same class all methods that are common to theOWAMP SessionSender and
OWAMP SessionReceiver classes. This class contains all methods and objects that are
necessary for the sender and receiver to answer toRequest-Session, Start-Sessions and
Stop-Sessions requests that come from the client or server, respectively.We chose this
configuration because both the sender and receiver answer inthe same way to these
messages.

The OWAMP SessionReceiver class is a subclass of theOWAMP SessionTerminal
class that implements theReceiver entity of the protocol. The receiver is responsible for
accepting the test packets and mark them with their arrival instant. This class contains
all methods and objects that are necessary for the receiver to answer toFetch-Sessions
requests that come from the server, and to receive and process all test packets. Whenever
a new test session coming from the same receiver is started, anew process is created in
order to receive and process packets.

The OWAMP SessionSender class is a subclass of theOWAMP SessionTerminal
class and implements theSender entity of the protocol. The sender is a process that is
continuously running in a specific pot number and is responsible for marking the test
packets with a sending timestamp and sending these packets to the receiver, using UDP.
This class contains all methods and objects that are necessary for the sender to create
and send test packets to the receiver. Whenever a new test session coming from the
same sender is started, a new process is created in order to process and send packets.

TheOWAMP FetchClient is a subclass of theOWAMP Base class and implements
the FetchClient entity of the protocol. The main feature of this entity is to allow the
reading of results belonging to a session that is still running. In this way, it is not
necessary to wait for the end of the session in order to get some results (related to
the first 20 packets, for example). This class comprises the methods and objects that are
necessary to read and print the results, as well as process global statistics corresponding
to one or more sessions.

3.2 Compliance tests

In order to guarantee the compliance of the developed systemwith the OWAMP
proposal we have performed a set of tests involving an implementation for a UNIX
platform developed by the Internet2 group and publicly available in [9]. The tests were
carried out in the private IT-Aveiro network using, in a firstexperiment, the J-OWAMP
modules as the client, monitor and sender modules and using the Internet2 modules as
server and receiver modules and, in a second experiment, theJ-OWAMP and Internet2
modules in the reverse order (figure 6).

The communication between the J-OWAMP modules (developed in Java language)
and the Internet2 modules (developed in C language) was correctly established, in
both directions. Using the Ethereal traffic analyzer, we have verified that the control
messages and the test packets are correctly exchanged, as specified in the protocol.

Fig. 6.Configuration of the compliance tests.

4 Measurement scenarios

Before carrying out active traffic measurements in the real network involving a het-
erogeneous environment, we have first established a laboratorial measurement setup
that was used to test the developed measurement solution in amore controllable
environment.

4.1 First scenario: laboratorial environment

The measurement setup for this scenario is illustrated in figure 7. Routers 1 and 2 are
connected through a serial link configured with a transmission capacity of 64 Kb/s
and three networks are configured with the following structure: network 192.0.0.0,
that contains PC1 running the OWAMP sender; network 192.0.2.0, that contains PC2
running the traffic generator MGEN and network 192.0.1.0 that contains PC3 where we
have previously installed the OWAMP client, server and receiver elements as well as a
receiver (Drec) of the traffic generated by the MGEN application running on PC2. The
service discipline for all queues belonging to the serial interfaces of routers 1 and 2 is
FIFO. PCs 1 and 3 are synchronized through NTP.

192.0.0.2

192.0.0.1

192.0.2.2
192.0.2.1 192.0.4.1 192.0.4.2 192.0.1.1

192.0.1.2

MGEN

OWAMP Control-Client

OWAMP Server
OWAMP Session-Receiver

Drec
NTP Client

Router 1 Router 2

Serial link
64 Kbps

MGEN traffic
OWAMP-Test traffic

PC 1

PC 2 PC 3

OWAMP Session-Sender
NTP Server

Fig. 7.Network corresponding to the first measurement scenario.

Using this scenario we intend to measure and study the packetdelays that occur
in the queuing system of Router 1 and are due to the transmission capacity of the
serial link between routers 1 and 2, for different values of the traffic load in that
serial link. So, we have configured the MGEN application to generate traffic according
to a Poisson distribution and send it to PC3 using the serial link. Using the sender
installed in PC1 and the receiver installed in PC3 we are ableto measure the delay
values that occur in the queue of Router 1 serial interface, for different values of the
traffic load. Arrows represented in figure 7 show the directions that are followed by the
traffic generated with MGEN and the traffic consisting of testpackets generated by the
developed measurement system.

4.2 Second scenario: University of Aveiro wireless network

In this scenario we want to make some measurements in the wireless network of
University of Aveiro (UA), trying mainly to evaluate the performance of accessing this
network from the students’ residences. In order to do that, we made some measurement
experiments between a PC located in the laboratory of Institute of Telecommunications
(IT), named Lab PC, and another one located in a students’ residence of the University
campus, named Residence PC (figure 9).

Executing the’tracert 192.168.140.47’ command in the Lab PC we can get the path
and the round-trip delays between the Lab and the Residence PCs (figure 8).

D:\>tracert 192.168.140.47

Tracing route to FRANCIS [192.168.140.47]
over a maximum of 30 hops:

 1 1 ms 1 ms 1 ms gtav.it.pt [193.136.92.1]
 2 37 ms 97 ms 41 ms gt-cicua.core.ua.pt [193.136.86.193]
 3 86 ms 33 ms 51 ms VPN-WIRELESS [192.168.140.253]
 4 52 ms 94 ms 36 ms FRANCIS [192.168.140.47]
Trace complete.

Fig. 8.Result of the ’tracert’ command between Lab PC and ResidencePC.

We studied the traffic that flows between the Residence and theLab PCs in both
directions. We installed the client, server and receiver inthe PC that receives the
test packets and the sender in the PC that is used to send the packets. Both PCs are
synchronized via NTP. Note that Internet access from the residences is performed
through the UA network. So, traffic in the downstream direction includes the downloads
from the Internet to the residences.

All tests were performed in a 24 hours period. In each hour, sets of 10 tests
(including both packet delay and loss) were performed, making a total of 240 tests.
In each group, the tests beginning instants were separated by 2 minutes. All tests lasted
for 1 minute and consisted in sending 60 packets of 14 bytes each, at an average rate
of 1 packet/second. In order to conveniently characterize the packet average delay and
packet loss ratio, we have calculated 90% confidence intervals based on the 10 average
values obtained in each test belonging to a group of 10 tests.

OWAMP Session-Client

OWAMP Server
OWAMP Session-Sender

OWAMP Session-Receiver
NTP Client

IT Router CICUA Router

OWAMP-Test traffic

OWAMP Session-Client
OWAMP Server

OWAMP Session-Sender
OWAMP Session-Receiver

NTP Server

Lab PC Residence PC Wireless Router

Fig. 9.Network corresponding to the second measurement scenario.

Fig. 10. Results of the first scenario:
average packet delay versus MGEN
generated traffic.

Fig. 11. Results of the first scenario:
packet loss ratio versus MGEN gener-
ated traffic.

5 Results

5.1 Results of the first scenario

Figures 10 and 11 present the results corresponding to the packet delay and packet loss
tests conducted in the first scenario, for different values of the MGEN generated traffic.
From the analysis of the obtained results we an verify that, as expected, there is an
increase in packet delays and losses with increasing network load. For network load
values that are far from the maximum value supported by the serial link (64 Kb/s), there
are no packet losses. However, packet loss values increase very fast as network load
approaches the limit load supported by the serial link that connects both routers.

5.2 Results of the second scenario

For this scenario, we have studied the traffic that flows between the Residence PC and
the Lab PC (upstream) and in the reverse direction (downstream). The results of the
average packet delay and packet loss ratio for the upstream direction are presented
in figures 12 and 13, respectively, and the analogous resultscorresponding to the
downstream direction are presented in figures 14 and 15, respectively.

From the analysis of the packet delay and packet loss values we can verify that
in the upstream direction delays vary between approximately 30 and 120 milliseconds

Fig. 12.Results of the second scenario,
upstream direction: average packet de-
lay versus first packet sending time.

Fig. 13.Results of the second scenario,
upstream direction: packet loss ratio
versus first packet sending time.

Fig. 14.Results of the second scenario,
downstream direction: average packet
delay versus first packet sending time.

Fig. 15.Results of the second scenario,
downstream direction: packet loss ratio
versus first packet sending time.

and are much lower that the corresponding values of the downstream direction, that
vary between 20 and 2300 milliseconds. Packet losses are null in the upstream di-
rection but have non zero values in the downstream direction. As expected, there is
a direct relationship between packet delays and losses: higher packet delay values also
correspond to higher packet loss values. In the performed tests, downstream traffic was
much higher than upstream traffic, which is a typical result for these kind of scenarios.
In the downstream direction, the highest delay and loss values were observed in the
night and afternoon (between 2PM and 6PM) periods. These values can be attributed to
the use of file sharing applications. In the night period, theutilization level of these
applications is even higher, mainly from the students’ residences. In the afternoon
period, the utilization of these applications is mainly from the library building, which
is also covered by a wireless network.

6 Conclusions

Traffic monitoring through active measurements is having anincreasing relevance in the
IP networks management context, since it enables to directly monitor quality of service
parameters, like for example average packet delay and packet loss ratio. The IETF IPPM
group has recently proposed a protocol for conducting active traffic measurements in a
single direction, the OWAMP (One-Way Active Measurement Protocol).

This paper presented a solution (based on the OWAMP protocol) for performing
active measurements in a heterogeneous network, includingits implementation, valida-
tion and some examples that allow a further exploration of the OWAMP protocol. The
proposed system was developed in Java language, mainly due to its portability. Several
compliance tests with the only known implementation (from the Internet2 group) were
successfully conducted. The system was evaluated through aset of performed tests,
conducted both in a laboratorial environment and in a real operational network. The
obtained results show that the implemented system is a very useful active measurement
tool that can be used for characterizing quality of service in IP networks.

Acknowledgments: This research was supported by Fundação para a Cîencia e a
Tecnologia, project POSI/42069/CPS/2001, and European Commission, Network of
Excellence EuroNGI (Design and Engineering of the Next Generation Internet).

References

1. A.Pasztor, D.Veitch: High precision active probing for internet measurement. In:
Proceedings of INET’2001. (2001)

2. Corral, J., Texier, G., Toutain, L.: End-to-end active measurement architecture in ip networks
(saturne). In: Proceedings of Passive and Active Measurement Workshop PAM’03. (2003)

3. Grossglauser, M., Krishnamurthy, B.: Looking for science in the art of network
measurement. In: Proceedings of IWDC Workshop. (2001)

4. NeTraMet home page: (http://www.auckland.ac.nz/net/netramet/)
5. White Paper - NetFlow Services and Applications:

(http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/nappswp.htm)
6. Almes, G., Kalidindi, S., Zekauskas, M.: RFC 2679: A one-way delay metric for ippm (1999)
7. Almes, G., Kalidindi, S., Zekauskas, M.: RFC 2680: A one-way packet loss metric for ippm

(1999)
8. Shalunov, S., Teitelbaum, B., Karp, A., andMatthew J. Zekauskas, J.W.B.: A one-way active

measurement protocol (owamp), internet draft (2004)
9. Internet2 End-to-End Performance Initiative: (http://e2epi.internet2.edu)

10. Boyd, E.L., Boote, J.W., Shalunov, S., Zekauskas, M.J.: The internet2 e2e pipes project: An
interoperable federation of measurement domains for performancedebugging (2004)

