1st CREaTION Workshop 18th November 2013

Synchronous Frequency-Domain Measurements for the Extraction of X-parameters in Digital to Analog Transmitters

Introduction & Motivation

- The radio industry direction for the future is integration
- Integrated **digital to analog transmitters** are one of the most promising technologies
- Though, such components will pose "similar" problems (e.g., nonlinear distortion) as analog-based transmitters

D/A Integrated Transmitter

instituto de telecomunicacões

Introduction & Motivation

- It is mandatory to develop models capable of describe the linear and nonlinear behavior of mixed-signal (analog/digital) systems or devices
- For radios integrated in a single IC (SoC), it is difficult to measure the only-analog blocks apart from the mixedsignal ones

instituto de

telecomunicações

Introduction & Motivation

Suitable measurement methods and test benches are essential to extract meaningful behavioral models

instituto de

telecomunicações

Motivation

- In short... The goal is to:
 - Characterize the entire digital to analog transmitter from an RF point-of-view
 - Use a scattering waves framework

instituto de

telecomunicações

Motivation

universidade

de aveiro

- In short... The goal is to:
 - Characterize the entire digital-to-analog transmitter from an RF point-of-view
 - Use a scattering waves framework

X-Parameters for Mixed-Signal Devices

- X-Parameters are a superset of S-Parameters
- They are based on scattering waves
 - But they require the measurement of absolute waves values for kernel extraction

- Instrumentation exists to directly extract the model in fully analog devices
- But what about D/A integrated transmitters??

MEASUREMENT OVERVIEW

- Analog Signal
 - Sampler-based Receiver (Oscilloscope)

 $f_{\rm S \ Sampling \ Receiver} = f_{\rm S \ DUT}$

- To simplify the synchronization problem
- Digital Signal
 - **FPGA** (Pattern Generator Like)
- Different pieces of hardware for each signal
 Synchronization issues will arise

- Since, $f_{S \text{ Sampling Receiver}} = f_{S \text{ DUT}}$
- Only a phase mismatch occur between:
 - The sampling instants of the analog signal
 - The sampling instants of the digital signal
- To synchronize both signals it is necessary:
 - To know the amount of phase shifting between sampling instants
 - Phase de-trend one of these signals, in this case, the <u>analog sampled signal</u>

instituto de

telecomunicações

- How to know the amount of phase shift?
- Use a reference signal to track all the sampling instants...
 - Reference Signal \rightarrow DUT Clock Signal (Sinusoidal)

- However, the reference signal received by the analog sampling receiver is a DC voltage, V₃ and V₄
- The following **trigonometric relation** is used to calculate its phase at the receiver sampling instant

- The normalization instant has been chosen to be:
 - -90° of the reference signal (at the DUT reference plane)
 - Sampling instant of the DUT
 - An *a priori* measurement is needed to know what this normalization instant means at the analog receiver port plane
- A trigger signal is used to indicate the begin of a measurement
 - Fed into the analog sampling receiver at point C

Condition to met:

The trigger instant must be the first event to happen

instituto de

telecomunicações

INSTITUIÇÕES ASSOCIADAS:

universidade de aveiro

Analog Sampling instant happens before the trigger instant

Necessary to correct this ... Add it a period of 360°

- Phase calculation is retrieved from the correct bin of the time domain signal FFT transformation
 - To align the analog waves with the digital ones, the expression is used:

$$C_{k \ aligned} = C_k \cdot e^{\left(i \ \Delta \theta^{f_k} / f_s\right)}$$

- $\Delta \theta = \theta_{norm} \theta_{analog}$ $f_s \rightarrow$ sampling frequency
- $C_k \rightarrow \text{FFT}$ bin of the signal to be aligned, at index k
- $f_k \rightarrow$ frequency of the previous index k
- $C_{k aligned} \rightarrow FFT$ bin of the aligned signal, at index k

Phase Alignment Procedure Analog Waves Calibration

- To correct the measured analog wave quantities
 - A calibration scheme was employed before the phase alignment procedure
 - It is based on a 4-term error model
- To individually know the e_{01} and e_{10} error terms an approach similar to the absolute calibration scheme used on NVNAs was used
 - SOL + Absolute Thru

Measurement Results

- **DUT1** \rightarrow DAC + low-pass filter + PA
- **DUT2** \rightarrow DAC + band-pass filter + PA
- **DUT1** S_{21,11} parameter is dominant
 - 1st Nyquist zone \rightarrow direct phase response
 - **DUT2** T_{21,11} parameter is dominant

• 2^{nd} Nyquist zone \rightarrow conjugate phase response

Measurement Results

- Phase values for the same parameters were also extracted
- With a high repeatability from extraction to extraction

Measurement Results - DUT1

- Magnitude and phase behaviors of S_{23,11} and T_{23,11}
- The contribution of the fundamental at the input to the third harmonic at the output increase as expected

INSTITUIÇÕES ASSOCIADAS:

universidade de aveiro

Conclusion

- A first approach to the extraction of X-parameters of complete Digital to Analog integrated transmitters has been presented
- The extraction validity was proved with meaningful measurements of different D/A transmitter DUT's
- These measurements mimic the expected behavior of such an integrated transmitter

INSTITUIÇÕES ASSOCIADAS:

instituto de telecomunicações