
Re-engineering Jake2 to work on a grid 
 Gonçalo Amador and Ricardo Alexandre  and Abel Gomes 

Universidade da Beira Interior, Instituto de Telecomunicações, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal 
Phone: +351-275319891, Fax: +351-275319899, e-mail: a14722@ubi.pt 

 
Abstract—Re-engineering Jake2 (Quake2 port to Java) to 

work on a grid is not a trivial task. For that purpose, we had to 
migrate a networking client-server model to a grid-based model. 
Networking games is an area where considerable computational 
gains might be obtained using this migration, in particular 
management and optimization of resources (i.e. processor and 
memory usage).   

I. INTRODUCTION 

Grids are collections of heterogeneous computation and 
storage resources scattered along distinct network domains. 
Grids provide tools that allow to users to find, allocate and 
use available resources [1,2]. 

In order to control and manage the various resources that 
grids can offer, various grid middlewares have been 
developed, namely:  Optimal Grid [8]; Ice [6]; GridGain [7]. 
We have chosen GridGain because of its modern design (it 
also supports cloud computing) and because it is based on 
Java programming language, as adequate for networking 
systems and applications. 

This paper deals with re-engineering (i.e. re-design and re-
implementation) a multiplayer computer game, called Jake2 
(Fig. 1), which is a Quake2 port to Java, with the objective of 
running it on a grid. 

Fig. 1. Jake2 running shot. 

II. JAKE2 ARCHITECTURE 

Jake2 [10, 11] is a brute force port of the original Quake2  
source code to Java. Like Quake2 it is a client-server 
networking game. The code is divided in eight modules 
(taken from [11]): 

1) “client – key handling, visual effects, screen drawing and 
message parsing. 

2) game – all game logic: triggers, monsters, weapons, 

elevators, explosions, keys and secrets. 
3) qcommon – common support functionality (file system, 

message buffer, config variables, checksums and splash 
screen). 

4) renderer – 3D graphics displays (jogl, fastjogl, lwjgl). 
5) server –  world handling, movement, physics, game 

control and communication. 
6) sound – sound implementations: joal, lwjgl, and a 

proprietary native java sound driver. 
7) sys – methods dealing with the operating system 

(network, keyboard handling). 
8) util – 3d maths, some libc methods, etc.”  
Jake2 has two playing modes: single player and 

multiplayer. When a game starts off, a client and a server are 
created locally (Fig. 2). In single player mode, the client and 
the server run on the same machine. When a single player 
game is started, the player connects to its local server. In 
multiplayer mode, the client can either join to or start a 
network session; joining a network session means that a 
client connects to a remote server, and its local server 
becomes idle (it exists but does not serve any client). Starting 
a new network session implies that client's local server 
becomes globally visible to other clients wishing to join the 
session. It is also possible to create a dedicated server (only 
does server work and is globally visible), setting the local 
client idle. 

 
Fig. 2. Jake2 working logic. 

 
  Each client passes its state information to the server (local 
or remote depending of the previous referred choices), the 
server processes the received data (world handling, 
movement, physics, game control) and returns state updates 
to the connected clients, so the clients can redraw their world 
area. The game multiplayer mode has no bots (artificial 
intelligence controlled entities or agents) support. 



III. GRID ARCHITECTURE 

Grid computing is a kind of parallel computation. A grid 
can be described as a network of interconnected computers, 
where parallel work is done. In grid computing, issues like 
communication time is a more pertinent issue than in 
supercomputers, where parallel computation is done locally. 
On the other hand, a grid is more scalable than a 
supercomputer, because we only need to add new, but not 
necessarily homogeneous, network nodes to expand its 
computational capacity.  

By definition, a grid work is a set of tasks performed by the 
grid work nodes. This means that a work is divided among 
the number of existing nodes, where a node is a sub-grid that 
may be composed by one or more computers. There are two 
main types of nodes, control and work nodes. A grid network 
has several control nodes that ensure work division and 
gathering of results. Every control node is aware of the other 
control nodes, while a work node only sees the work nodes 
directly connected to its parent control node (see Fig. 3).  

Fig. 3. Grid networks doing a task division. 
 
As usual in parallel computing, there are two ways of 

dividing tasks by work nodes: split/reduce and map/reduce. 
The split mechanism equally divides the main task by work 
nodes regardless of which ones are going to accomplish the 
subtasks (Fig. 4). On the contrary, the map mechanism 
assigns the subtasks to specific work nodes. This means that, 
unlike the map logic, the split logic assumes that each node 
has the same work capacity. 

Fig. 4. Work division by non-specific nodes using split. 
 

Fig. 5. Work division by specific nodes using map. 

IV. GRID-BASED JAKE2  

Jake2 is a client-server FPS (First-Person Shooter) 
computer game that works in real time up to a maximum of 
32x8=256 clients or players (for 8 servers with the maximum 
of 32 players per server). Therefore, Jake2 is not a MMOG 
(Massively Multiplayer Online Game). Similar to other FPSs, 
most of the processing work of Jake2 is carried out in the 
server side (player-player and player-world interaction), after 
which the server communicates the updated data back to the 
players.  The Jake2 world consists of 32 zones, where each 
zone corresponds to a game level. That is, the server takes 
care of 32 clients maximum playing in one of the 32 zones.  

In theory, we do not need to have a grid to transform Jake2 
into a MMOG. It would be enough to have 32 server 
computers, with each server doing the computations required 
by each level, resulting in a maximum possible number of 
32x32=1,024 online players. Note that a game is a MMOG if 
it supports more than 1,000 online players. However, this 
scaling strategy does not overcome the problem of having 
crowded zones while others are empty. Using a grid 
middleware, which is inherently capable of dealing with 
unbalanced processing load over different game levels, can 
solve this problem. 

In our work, we have used the GridGain grid middleware. 
Jake2 was re-designed to run on GridGain. In particular, we 
changed the client and server modules, and incorporated a 
grid-specific communication module.  

In respect to the client, the changes were: 
- instead of connecting to a LAN (Local Area Network) 

server or to configure a connection to a global server that 
processes one level of the game world, we connect to a 
cluster server running one out of  32 levels;  

- the number of servers a client can connect to is now 32,  
i.e. the client sees all the servers of the cluster when he/she 
has to select a level to play. 

The changes carried out in the client had nothing to do with 
the grid. On the contrary, the server changes were related to 
the grid infrastructure, namely: 

- each cluster server is now a grid control node; 
- a control node may also work as a work node; 
- each control node uses the map/reduce work division 

mechanism. 



We do not use the split/reduce policy because it is less 
efficient in the distribution of MMOG tasks. This inefficiency 
arises when there are more nodes than tasks to be performed. 
In these circumstances, some tasks are repeated by different 
nodes because of the distribution policy based on workload 
equality of the split/reduce mechanism.  

To take advantage of the grid infrastructure, we had first to 
identify which server methods could be parallelized. Without 
it there is no gain in parallelizing a sequential method on a 
grid because there is no gain in processing time, with the 
drawback of having an extra communication time. 

The parallelized methods were those related to the physics 
engine, including collisions. The world handling methods 
(e.g. world partitioning methods) are also parallelizable as 
described in [3,4], but they were not re-designed and re-
implemented yet. Processing a parallelized method involves 
the distribution of its tasks among other grid work nodes 
from a control node (Fig. 5).  After finishing their tasks, the 
work nodes return the results to the control node, which 
passes such results (i.e. updated states) to clients (Fig. 6).  

 

Fig. 6. Jake2 grid architecture. 
 

For example, when a player moves around the game world, 
it is necessary to check whether any other player lies within 
his/her area of interest and to proceed accordingly to establish 
possible interactions. Assuming that we have N+1 players, 
the control node that is running the move method delegates 
the N interaction tests between players into available work 
nodes. 
  We could use another grid architecture for Jake2. For 
example, we could transform clients into work nodes, each 
one of which only takes care of its area of interest, also called 
interaction area. They communicate their updated state to the 
server, which keeps track the state of interacting players and 
sends such updated state to each player that requires it. This 
way, each server ensures that each player gets all the needed 
data to handle its area of interaction.  

V. GRID MANAGER 

During GridGain usage learning process, we needed to 
create several work nodes over our network. Since no 
graphical interface application was available to the GridGain 
community, it was built a small graphical application to 
create remote or local work node sets (a given number of 
work nodes per machine). This application is still a prototype 
that can be extended by incorporating other interesting 
features, namely an info collector that gathers data from the 
nodes and redirect such data to the graphical application. 
Another interesting feature could be to allow for node 
shutdown.  

Currently, the grid manager uses OpenSSH [9] to 
communicate remote node activation commands. OpenSSH is 
a free implementation of the SSH1 and SSH2 protocols that 
allows remote execution of commands between two 
machines, after some sort of authentification. To allow a key 
pair authentication, for the password login requirement to be 
bypassed, some configuration scripts were made for for 
Linux (OpenSuse and Ubuntu) and Windows (XP and Vista). 

VI. CONCLUSIONS AND FUTURE WORK 

Grid computing is a suited technology to solve problems 
that require intensive processing. But in the beginning, it was 
not clear that it could cope with real time applications as 
needed in networking computer games. The real bottleneck in 
using grid computing for games is whether the 
communication time between nodes increases to a point of 
degrading the overall game performance. As seen above, this 
problem can be surrounded with a correct selection of the 
parallelizable methods. 

Thus, applying grid computing to networking games such 
as massively multiplayer online first person shooters 
(MMOFPSs) or massively multiplayer online role playing 
games (MMORPGs) is not a trivial task. This requires re-
implementing the original code from scratch or, as in our 
case, redesigning much of the code.  

We have modified Jake2 to run on the GridGain 
infrastructure, as illustrated in Fig. 6. This has led us to re-
design the server code; in particular, nine server methods 
have been parallelized. The result is a more scalable Jake2, 
i.e. more adaptable game to an increasing number of players. 

REFERENCES 

[1] Stephen Jarvis, Nigel Thomas, and Aad van Moorsel, 
“Open issues in grid performability”, I.J. Of Simulation, 
vol 5, pp. 3–12, 2004. 

[2] Nigel Thomas, “Challenges and opportunities in grid 
performability”, Technical Report 842, School Of 
Computing Science, University Of Newcastle Upon 
Tyne, School Of Computing Science, Claremont Tower. 

[3] Sergio Caltagirone, Matthew Keys, Bryan Schlief and 
Mary Jane Willshire, “Architecture for a massively 
multiplayer online role playing game engine”, Journal of 



Computing Sciences vol 18 , pp. 105–116, December 
2002. 

[4] G. Deen, M. Hammer, J. Bethencourt, I. Eiron, J. 
Thomas, J. H. Kaufman, “Running Quake II on a Grid”, 
IBM Systems Journal, vol 45, 2006, pp. 21-44. 

[5] James Kaufman, Tobin Lehman, Glenn Deen, John 
Thomas, “OptimalGrid -- autonomic computing on the 
Grid”,  developerWorks. 

[6] Ice: http://www.zeroc.com/, last access 22-01-09. 
[7] GridGain:  http://www.gridgain.com/, last access 22-01-

09. 
[8] Optimal Grid: http://www.alphaworks.ibm.com/tech/op-

timalgrid, last access 22-01-09. 
[9] OpenSSH : http://www.openssh.com/, last access 22-01-

09. 
[10] Jake2: http://bytonic.de/html/jake2.html, last access 22-

01-09. 
[11] Unofficial Jake2 Resource Jake2: https://wiki.in-

chemnitz.de/bin/view/RST/Jake2, last access 22-01-09.


