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Abstract— In this paper, a new no-reference objective metric
for the quality assessment of H.264/AVC encoded video is
proposed and evaluated. Quality scores provided by the new
metric are computed as a linear combination of simple features
extracted from the video sequence received at the decoder.
Using a set of 8 video sequences spanning a wide range of
spatio-temporal activities, it is shown that the computed quality
scores are well correlated with the ones resulting from subjective
evaluation.

I. I NTRODUCTION

Quality assessment systems have a wide range of applica-
tions, from security services to entertainment, which includes
digital television, internet video and in general the world
of digital multimedia communications. It plays an important
role in deciding the quality of service, network resources
assignment and even to compare different service providers.
However, the automatic evaluation of digital imaging systems
quality is a complex task since it depends on a number of
factors that contribute to what a viewer perceives as “video
quality”. Among these factors are the individual interests,
quality expectations, viewing conditions and display typeand
properties [1].

In order to develop and standardize the required technol-
ogy for assessing video quality, some organizations were
formed. An example of that is theVideo Quality Experts
Group (VQEG), established in October of 1997. Video quality
evaluation has thus become a relevant subject, which is also
evidenced by the number of international conferences focused
on this topic and products available (e.g., video quality
evaluation probes, known asWitbe robots, for measuring the
quality of service offered by multimedia companies such as
Portugal Telecom with MEO).

Evaluation of video quality can be achieved by subjective
or objective metrics. The subjective video quality assessment
is recognized as the most reliable mean of quantifying user
perception since human beings are the ultimate receivers in
most applications. TheMean Opinion Score (MOS), which
is a subjective quality measurement obtained from a group
of viewers, has been regarded for many years as the most
consistent form of quality measurement. However, this quality
measurement has some disadvantages – it is expensive for
most applications, time consuming and cannot be executed
automatically. Thus, in order to provide an automatic evalu-
ation and monitoring of video data quality, objective metrics
are required. By contrast to subjective measurements, the
objective quality metrics are based purely on mathematical
methods, from quite simplistic ones, like thePeak Signal-to-

Noise Ratio (PSNR) and theMean Squared Error (MSE),
to sophisticated ones that exploit models of human visual
perception and produce results far more consistent with the
subjective evaluation.

According to the amount of the reference information
required to assess the quality, objective video quality metrics
are usually classified in three classes:Full Reference (FR),
Reduced Reference (RR) andNo Reference (NR). If the orig-
inal video is totally available as well as the distorted video,
the objective metrics are classified as FR. However, in many
video service applications the reference video sequences are
often not accessible; in that case, the metric is classified as
NR if it is based only on the degraded video. In some cases,
to improve the quality estimation, besides the distorted video
some characteristics of the original video are also known and
used, thus the objective metrics is categorized as RR metric.
Comparatively to FR, few approaches were proposed for RR
video quality assessment and even less for NR video quality
evaluation. Some examples on this last group have been
published in [2]–[4], for the purpose of PSNR estimation.

The work presented in this paper considers the two video
quality assessment metrics mentioned previously, the subjec-
tive and the objective ones. The subjective tests have been
conducted in order to obtain the MOS for a number of
representative (in terms of spatial and temporal activities)
video sequences, and after compressing those sequences with
the H.264/AVC video coding standard [6]. These MOS val-
ues constitute the benchmark relatively to which the MOS
predicted by the objective metric, and the metric itself, will
be evaluated. Note that, among the different sources of video
quality impairments, only those due to compression will be
considered in this paper.

After the subjective tests having been carried out, a new
NR objective video quality evaluation method is proposed
and evaluated, the main purpose of which is to provide
quality scores well correlated with the ones resulting from
the subjective tests (MOS). Quality scores provided by the
proposed metric are computed as a linear combination of
simple features extracted from the video sequences at the
decoder side.

This paper is organized has follows. After the Introduction,
section II presents an overall description of the conditions and
choices taken in order to perform the subjective tests sessions,
as well as their results. Section III proposes a new NR
objective video quality assessment method. Section IV depicts
the results and a performance evaluation of the proposed
metric, as well as the main conclusions of the paper.



II. SUBJECTIVE QUALITY EVALUATION

A. Methodology

The methodology followed in the subjective tests is stan-
dardized in ITU-R BT.500 [7] and ITU-T P.910 [8]. Rec-
ommendation ITU-R BT.500 has been, for long time, the
reference for anyone who has to deal with subjective qual-
ity evaluation of television pictures, when displayed in the
classical CRT screens. In this standard, several subjective
evaluation methods are presented, covering different quality
assessment scenarios. Recommendation ITU-T P.910 adapts
Rec. ITU-R BT.500 to reduced picture formats (such as CIF,
SIF and QCIF) and new types of display screens (e.g. LCD).

The subjective evaluation method followed in this work
was theDegradation Category Rating (DCR) [8] also known
in [7] as Double Stimulus Impairment Scale (DSIS). In this
methodology, the observer is presented with video sequences
organized in pairs: the first to be displayed is called the
reference sequence (usually, the original) while the second
is called the test or impaired sequence (for instance, the
result of lossy encoding); it uses a five grade impairment
scale, that reflects the observer´s judgment about the im-
age impairment level: 1 – Very Annoying; 2 – Annoying;
3 – Slightly Annoying; 4 – Perceptible, but not Annoying;
5 – Imperceptible.

B. Assessment conditions

There are two essential elements for conducting the subjec-
tive quality evaluation sessions properly: the environmental
viewing conditions and the test conditions. The main test
conditions are [8]:

• Maximum test duration per session:22 minutes
• Maximum number of observers per session:2
• Viewing distance:8 × the picture height shown in the

screen

According to [8], at least 15 observers are needed in order
to produce reliable and coherent results. In our tests,22
observers (IST students) have been used. Before performing
the subjective tests, they were screened for visual acuity and
color blindness, using the Snellen Eye Chart and Ishihara’s
plates, respectively.

As for the environmental viewing conditions, three factors
must be considered: the lighting, the ambiance noise and the
quality and calibration of the display. The display and room
characteristics used in the subjective tests, and listed below,
are within the values recommended in [8].

• Height of the picture shown in the screen: 8 cm
• Viewing distance: 64 cm
• Background room illumination: 13.45 lux
• Peak luminance of the LCD screen: 95.8 lux
• Luminance of inactive screen: 2.23 lux
• Luminance of background behind the display: 10.15 lux
• Ratio of luminance of inactive screen to peak luminance:

0.023
• Ratio of luminance of background behind the display to

peak of luminance: 0.14

Fig. 1. Spatial and temporal activity measurements for a set of
video sequences.

C. Selection of test material

In order to get meaningful and realistic tests results, it is
important that a wide variety of video material is used during
the tests. In particular, there are two relevant parameters
which should be taken into account when choosing the test
sequences: their spatial and temporal activities. Since, in
order to avoid boring the observers, a small number of test
sequences have to be used in the test sessions, it is important
to choose a set of sequences that span a large range of
possible values for these activities. The literature provides
several different methods of measuring a video spatial and
temporal activity. In this work, the methods recommended
in [8] have been used:

• Spatial activity: the spatial activity measurement, in a
very simplistic way, uses the two well known Sobel
filters in order to compute the horizontal and vertical
picture gradient. In order to obtain for each pixel a
single measure, the gradient norm (the square root of
the sum of the vertical and horizontal gradient squares) is
obtained. The standard deviation of the gradient norm is
then calculated for each frame, resulting in a time series
of spatial activity of the sequence. In order to achieve a
global value for the spatial activity, the maximum value
in the time series is selected.

• Temporal activity : the temporal activity measure can
be obtained computing the difference, pixel by pixel, be-
tween each two successive frames of the video sequence.
After this procedure has been carried out, the standard
deviation of the frames differences is computed. Simi-
larly to what happens in the spatial activity, the global
temporal activity value is computed as the maximum of
these standard deviations.

However, because some sequences may present changes of
camera perspective during video acquisition, or scene cuts,
the resulting global activities could have a high value even
if the sequence has a low temporal and/or spatial activity. In
order to minimize and smooth this effect, before computing
global values, the 95% percentile was applied to the temporal
and spatial activities series. Results are presented in figure 1.

All video sequences are in CIF format (352× 288 pixels),
have 10 s duration, and all have a 30 Hz frame rate except



Fig. 2. Video sequences used in the subjective experiments. From left toright: Australia; Coastguard; Container; Football; Foreman; Mobile
& Calendar; Stephan; Table-tennis.

Table I
Encoding bit rates for the sequences used in the tests.

Sequence Bit rates asked at the encoder
Australia 32, 64, 128 and 256 kbit/s
Coastguard 64, 128, 256 and 512 kbit/s
Container 64, 128, 256 and 512 kbit/s
Football 256, 512, 1024 and 2048 kbit/s
Foreman 64, 128, 256 and 512 kbit/s
Mobile 64, 128, 256 and 512 kbit/s
Stephan 128, 256, 512 and 1024 kbit/s
Table 64, 128, 256 and 512 kbit/s

“Australia”, which has a 25 Hz frame rate. From the full set
of available video sequences, 8 sequences have been selected
to be used in the subjective evaluation, which are presentedin
figure 2. This selection aims to cover a wide range of content
with different spatio-temporal activity.

They were encoded using the H.264/AVC video coding
standard using 4 different bit rates per sequence (summarized
in table I). The result is a set of 32 encoded sequences, whose
qualities have been judged by test participants. This set allows
to test the HVS perception to different kinds of video qualities
and to indirectly force the observers to use all available rating
scale.

D. MOS computation

The mean opinion scores (MOS) are computed at the end
of the session, based in the image quality assessment results
given by all observers. In order to guarantee the coherence and
the consistency of the results provided by the subjective tests,
a statistical analysis (described in [7]-Annex 2) was applied
to the assessment results. For each test condition, MOS values
are computed by averaging the quality scores of the coherent
observers, only.

III. O BJECTIVE METRIC

A. General description

The objective metric proposed in this paper, represented
in figure 3, results from combining a small set of simple
features taken from the degraded video data subject to quality
assessment. All the features in this set are known to influence
video quality:

• Video bit rate – the bit rate of the encoded video.
Generally, quality increases as bit rate increases, but not
in a linear fashion (i.e., the impact on quality of bit
rate variations decreases as the bit rate increases). Thus,

Linear
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Fig. 3. Model used for MOS estimation.

instead of considering the bit rate value directly as a
model’s input, its logarithm is used.

• Mean square error estimate – an estimation of the mean
squared error between the reference and degraded video
sequence is performed, using the algorithm proposed
in [4]. This algorithm provides a no-reference PSNR
estimate in a frame-by-frame basis, assuming that the
video sequence is corrupted by quantization noise in the
DCT domain (which is the case). Similarly to what has
been done to the bit rate feature, the logarithm function
has also been applied to the MSE estimated value.

• Spatial and Temporal activities – computed in the same
way as described in section II-C, but using the received
encoded sequence instead of the original one. Thus,
it is assumed that the spatial and temporal activities
of a video sequence are not significantly affected by
the lossy encoding processed, which was confirmed
experimentally.

• Spatial activity and Temporal activity variances - In
order to account for activity changes along the video
sequence, the variance of spatial and temporal activities,
measured along time in a frame-by-frame basis, is also
considered.

B. Model parametrization

The features described in the previous section are then
combined using the linear model represented in figure 3, that
computes aMOS estimate,MOSp, according to:

MOSp = β0 +

N
∑

k=1

βkfk, (1)

wherefk is the value of thek-th feature,βk is the correspond-
ing linear weight andN is the number of features. Using
matrix notation, (1) can also be written as:

MOSp = f
Tβ, (2)
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Fig. 4. MOS estimation results.

with

f
T = [1 f1 . . . fN ] andβ

T = [β0 β1 . . . βN ] .

In order to find adequate values for vectorβ, a training pro-
cedure is required. Thus, the set of encoded video sequences
assessed during the subjective tests has been divided in two
groups: training and evaluation sets.

One possible way to computeβ is by minimizing the
square error betweenMOS and MOSp, for the video
sequences in the training set. Assuming that the training
set consists ofK video sequences with their corresponding
MOS values,K feature vectors will be extracted for training.
The equation that givesβ using the least square error criterion
is given by:

β̂ = arg min
β

{

K
∑

k=1

(MOS(k) − MOS(k)
p )2

}

, (3)

which, in matrix form, can also be written as:

β̂ = arg min
β

{

[M − Fβ]T[M − Fβ]
}

. (4)

with
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F is a K × N matrix, where each row contains the feature
values taken from thek-th video sequence in the training
set andM is a vector with the true MOS values. The least
squares solution forβ can be computed according to:

β̂ = (FT
F)−1

F
T
M. (5)

IV. RESULTS AND CONCLUSIONS

The32 encoded video sequences evaluated in the subjective
experiments have been randomly divided according to 16
sequences for training and another 16 for evaluation. In order
to check for variability in the results, several combinations
of training/validation set sequences have been used. Figure 4

depicts the results for two of these configurations. As can be
observed from the figures, MOS estimates are close to their
true values.

The performance of the proposed metric has been evaluated
using the set of measurements proposed by theVideo Quality
Experts Group [9]. These measurements are usually address
to asprediction accuracy, monotonicity andconsistency. They
are computed using the Pearson’s correlation coefficient,
Spearman’s rank order coefficient and the outlier ratio, re-
spectively. Additionally, the root mean square error (RMS)
betweenMOSp and MOS was also measured. The results
are depicted in table II.

Table II
Evaluation of the proposed metric.

Performance measurement Config. #1 Config. #2
Pearson correlation coefficient 0.953 0.952
Spearman rank order coefficient 0.960 0.958
Outlier ratio 0.125 0.125
Root mean square error 0.452 0.418

These results confirm the good performance of the al-
gorithm proposed in this paper. When compared with the
performance of [5], where a reduced-reference metric that
also estimates quality scores through a linear combinationof
video features, the scheme proposed in this paper shows better
results for all VQEG measurements (note, however, that the
tests sequences were different).
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