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Abstract1— This paper deals with phoneme recognition based 

on a hybrid Multi-Layer Perceptron (MLP)/ hidden Markov 
model system. The effects of the combination of multiple feature 
sets and the use of a new wide acoustic context procedure on the 
training of a MLP are investigated.  

Experimental results show that the contribution of specific 
features to phoneme recognition, when used in combination 
with standard MFCC features was about 1.3% of accuracy 
improvement. The proposed acoustic context window widening 
leads to FER relative improvements of 2.8%. Relative 
improvements of 3.3% and 8.5%, respectively, on accuracy and 
correctness rates, were obtained if both proposals are included 
in the training of the phoneme recognition system. 

I. INTRODUCTION 

Two of the most important aspects in developing a Multi-
Layer Perceptron based speech recognition system are to 
extract the useful information from the speech signal and to 
find a reliable network architecture. This paper tackles both 
questions. With regard to the training data, two approaches 
are suggested and tested. 1) MEL-frequency cepstral 
coefficients (MFCC), Perceptual Linear Prediction, and 
variations, are the most used features in current speech 
recognition systems. These parameterizations have been 
found to retain the most important acoustic information 
needed for accurate speech recognition. However, there have 
also been attempts to use other kind of speech 
parameterizations in the acoustic front-end, also leading to 
good recognition results,[1],[2]. In this paper we investigate 
the contribution of specific features to phoneme recognition 
accuracy, when used in combination with standard MFCC 
features. Combining the strengths of MFCC features with a 
set of features with some meaningful physical interpretation, 
like voicing, spectral flatness, etc., is a way of explicitly 
incorporating knowledge of important details of human 
speech production in the recognition process. 2) On the other 
hand, better recognition results are achieved when the system 
incorporates both short-time information and information 
over longer periods of time, [2],[5],[14]. Nevertheless, the 
resulting improvement in recognition accuracy is also related 
to a proportional increase in the number of training 
parameters. In order to overcome this problem, we propose a 
widening of the acoustic context at zero additional parameter, 
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by using frames alternately. The number of training 
parameters is maintained, but a greater temporal context is 
incorporated. 

II. FRAME ERROR REDUCTION THROUGH INPUT 

FEATURE SET COMBINATION 

Neural Networks are capable of incorporating all kinds of 
input features and adjust itself in such a way that the optimal 
combination of these features is found for classification. 
Exploiting this potentiality, input features derived from two 
different parameterization algorithms are combined: standard 
MFCC and an additional set. Different parameterizations of 
the speech signal may potentially extract additional 
information useful to increasing the discrimination between 
confusable sound classes. As Li pointed out in [7], MFCC 
based spectral features, work well to classify some attributes, 
but fail in other cases where temporal features may be more 
discriminative. This motivated us to explore the contribution 
that other kinds of temporal and spectral speech features 
could make to phoneme discrimination. Table 1 shows the set 
of features used. These 10 features have already proved to be 
suitable for the identification of broad classes of events, [3]. 
 

Table I 
Acoustic Feature Set used in combination 

with standard MFCC Features  

Number Feature description 

1 35 ms log-energy 

2 Max amplitude 

3 Spectral Flatness Measure (SFM) 

4 Spectral Centroid 

5 Log of energy ratio at high/low frequencies 

6 Median of energy in a HF band 

7 Log energy for f<500Hz 

8 Log energy for 500< f <1500Hz 

9 Voice evidence (from a pitch detector) 

10 Peakiness 

 
The system used in the experiments consists of an MLP, 

which trains the original 61 phoneme set of the TIMIT 
database [6]. Speech is analyzed every 10ms with a 25ms 
Hamming window. Thirty-nine parameters were used as 



standard input features representing 12 MFCC, plus energy, 
and its first and second derivatives. 

 A context window of 9 frames was considered for training. 
The MLP performance is evaluated by means of frame error 
rate (FER). In FER calculations boundary frames between 
two adjacent models are not considered. Both systems have 
similar number of parameters (about 124k). This is a result of 
an alteration of the number of hidden nodes. The MLP 
system that uses 39 features have 300 hidden nodes while the 
MLP of 49 features have 250. 
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Fig. 1. FER comparison of training results when 
 using 39 or 49 input features. 

 
Results are displayed in Figure 1. In all training iterations, 

the MLP with 49 features (39 MFCC plus the 10 from Table 
I got, the best accuracy. Accuracy is about 1.3% higher (3% 
relative) than if we use only the standard 39 MFCC features, 
which means that the new set of features actually contributes 
to the discrimination between classes. 

This effect is more evident for vowels, but silences, stops, 
fricatives and nasal classes also saw improvements. 
Furthermore, the best improvement was 8.6% for a nasal 
phoneme (/nx/). Figure 2 shows some examples of the 
improvements achieved when comparing the MLP with 49 
features (dark gray) with the MFCC baseline system. 
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Fig. 2. Frame error rate major improvements due to the use 
of 49 input features instead of the traditional 39. 

III. FRAME ERROR REDUCTION THROUGH 

ACOUSTIC CONTEXT WINDOW WIDENING 

Short-time speech representations are widely used in 
current speech recognition systems, and have already proved 
to be suitable to represent the most important acoustic 
information needed for accurate speech recognition. 
However, better recognition results are achieved when the 
system also incorporates information over longer periods of 
time, [2],[5],[14].  

In neural networks a context window spanning several 
input frames, enables the system to learn, within certain 
limits, the temporal patterns of speech units. This context 
window typically stops at about 9 frames. It is usually 
determined in order to balance the trade-off between the 
number of parameters and recognition accuracy. 

To test the usefulness of incorporating a larger temporal 
context window, an MLP was trained doubling the context 
window (but also using 9 frame features) and its performance 
was compared with two standard 9 frame context window. 
One is centered in the middle frame and the other looks only 
to past frames. Figure 3 illustrates the procedure. The context 
window is 170ms (equivalent to 17 frames) but only 9 frame 
features were used, one every other. The unused frame 
features are used in the next window analysis. The current 
frame is in the center of the context window (temporal 
information of past and future is included). Regarding Figure 
3, the white squares represent the frames discarded and the 
gray ones are the ones considered. In this way the number of 
training parameters was maintained with a larger temporal 
context. 

Current frame 

a) 

b) 

Context window 

Context window 

c) 

Context window 

 
Fig. 3. a) Typical context window extension where the used 

context looks only to past frames. b) Context 
window extension where current frame is in the 
center of the context window. c) Proposed context 
window extension and position. 

 
The results, in terms of FER are shown in Figure 4. The 

MLP trained with the proposed structure has a better FER in 
all iterations. The FER relative improvements are about 
2.8%, comparing to the typical context window, which 
means that it is advantageous to use the proposed widening 
of the acoustic context, even though the used information is 
only a rude description. 
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Fig. 4. FER comparison of training results when using 

170ms vs. 90ms of context using only past frame

 

IV. PHONEME RECOGNITION SYSTEM 

An M etw tput 
layer train oth 
tr

es, these symbols are sometimes 
c

s 
and 90ms of context using past and future frames 
(in all tests the 49 features were used). 

LP n ork consisting of an input layer and an ou
was ed for phoneme frame classification. B

aining and testing were carried out with the TIMIT database 
[6], using the original 61 phoneme set. The training set 
consisted of all si and sx sentences of the original train-ing 
set (3698 utterances) and the test set consisted of all si and sx 
sentences from the complete 168-speaker test set (1344 
utterances). The targets derive from the phoneme boundaries 
provided by the TIMIT database. The 49 parameters 
described in Section 2 were used as standard input features, 
and the context window described in Section 3 (170ms using 
9 frames) was considered for training. The softmax function 
was used as the activation function of the output layer, 
 so that the output values are interpreted as a posterior 
probability of phoneme. All the weights and bias of the 
network are adjusted using batch training with a 
resilient back-propagation (RP) algorithm [9] so as to 
minimize the minimum-cross-entropy error between  
network output and the target values. The choice of the error 
function followed Bishop’s suggestion [4], which was later 
clarified by Dunne [11]. It states that the softmax activation 
function should couple with the cross-entropy penalty 
function.  

Besides the neural network discriminating between the full 
61 TIMIT phonem
onsidered a too narrow description for practical use, and for 

evaluation we collapsed the 61 TIMIT labels into the 
standard 39 phonemes proposed by Lee and Hon [8]. 

 

A. Frame Based Detection 

For frame error rate results we simply chose the unit with 
the largest class prediction value from all the classes’ output 
values (“winner-takes-all”).  In the output layer we managed 
25.62% of FER among the 39 classes. The results achieved 
are depicted in the first line of Table II. It was compared with 
another work which, in addition to being based on different 
methods and architectures, also evaluates FER on TIMIT. It 
was proposed by Scanlon, Ellis and Reilly, [10] and it is 
based on a modular architecture in which information about 
broad phonetic groups’ membership is ‘patched’ into a 
baseline classifier, Their work also presents frame level 
accuracies, but in terms of four broad phonetic groups 
(vowels, stops, fricatives, nasals). Using TIMIT data, and the 
broad phonetic class description they provide in Table 1 of 
their paper, we also computed FER in terms of 5 broad 
classes (vowels, stops, fricatives, nasals and silence). 

 We transformed the 61 outputs of the network into 5 by 
summing the outputs that belong to the same class. This 
procedure differs from the one proposed in [10]. In their 
work, 4 networks work in parallel (frame belongs/does not 
belong to the class) while we have a single network. Apart 
from this difference, we obtained very promising results.  

The results are depicted in Table II. Except in the stop class 
our results outperform the others. For example, for vowels 
we achieved a relative improvement of 90%! 

 
Table II 

Frame Error Rate comparison: overall FER evaluation of 
39 TIMIT phonemes and four broad phonetic groups. 

 

Frame Error Rate (%) 
 

39  
phonemes vowels stops fricatives nasals

Our Proposal 25.62 4.2 23.5 14.3 21.1

Scanlon, Ellis 
& Reilly ⎯ 40.2 16.9 18.6 24.1

 

B. Segment Based Detection 

Besides a good frame error rate performance, another goal of 
speech recognition systems is segment based detection. For 
that reason, we propose a hybrid system that combines the 
time warping abilities of hidden Markov model (HMM) with 
the discrimination capabilities of Neural Networks.  
The proposed system performs utterance segmentation in 
terms of the 39 TIMIT phonemes.  
It uses a Markov process to temporally model the speech 
signal, but instead of using a priori state-dependent 
observation probabilities defined by Gaussian mixtures, it 
uses a posteriori probabilities estimated by the MLP, keeping 
the overall HMM topology unchanged.  
 



In the proposed hybrid approach we considered that the 
output predictions of the MLP correspond to phoneme 
posterior probabilities for the input features, ( )|kP p X , with 

pk representing the kth phoneme and X the feature observation 
vector. We use them as local probabilities in HMM, avoiding 
the use of Gaussian mixtures.  
The HMM acoustic models were built for all phonemes by 
using HTK 3.4 [13]. Each phoneme was modeled by a three-
state left-to-right HMM and each state shared the same MLP 
output. We used HTK, for testing with some changes in order 
to replace the usual Gaussian mixture models by the 
normalized MLP outputs values.  
The performance of the hybrid system was evaluated by 
means of Correctness (Corr) and Accuracy (Acc) using HTK 
evaluation tool (HResults). 
Table III presents the results (see the “Single Layer” row). 
Also the results of a HMM baseline system (using standard 
Gaussian mixtures to model state-dependent observation 
probabilities) are presented for comparison. It was found that 
the proposed system outperforms the HMM system, using 
one Gaussian mixture in relation to both correctness and 
accuracy.  
Relative improvements of 3.3% and 8.5%, respectively were 
achieved. This means that the proposed system has both good 
frame classification performance and good segmentation 
performance. 
 

Table III 
Phoneme recognition results, in TIMIT 39 phonemes 

 
 Corr Acc Details 

HMM 59.84 56.21 1 mixture 

Hybrid 

ANN/HMM 
61.79 61.00 Single layer 

 

V. CONCLUSIONS 

In this paper, a multi-layer perceptron architecture selection 
to improve phoneme recognition rate are described and 
tested. Combining the strengths of MFCC features with a set 
of features with some meaningful physical interpretation and 
combining both short and long time information lead to 1.3% 
of phoneme accuracy improvement. A new strategy related to 
the enlargement of the temporal information included in 
training resulted in relative frame error rate reduction of 
2.8%. Using both the input feature set combination and the 
acoustic context window widening in the training of the MLP 
resulted on an improvement of the performance of the hybrid 
MLP/HMM phoneme recognition system. Experimental 
results show relative improvements of 3.3% and 8.5%, on 
accuracy and correctness rates, respectively. 
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