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Abstract1— This paper addresses the problem of automatic 

detection and classification of road pavement surface cracks by 
the analysis of images acquired during road pavement surface 
surveys. In particular, pre-processing techniques and their 
combination are discussed and evaluated. Local statistics, as the 
mean and standard deviation of pixel intensities, computed for 
non-overlapping image regions, are considered. The various pre-
processing techniques are combined in different orders, to 
evaluate their impact in adequately modelling the feature space 
and thus leading to the best distress detection results. A set of 
well-know metrics is used for the evaluation, to conclude about 
the best pre-processing order.  

I. INTRODUCTION 

Cracks are the most common road pavement surface 
defects, requiring an adequate rehabilitation management 
policy. The search for an automated surface defect detection 
system is an active research topic, aiming to reduce the 
subjectivity of human operators during the traditional visual 
inspection methodologies and contributing to develop a safer 
and less labor intensive procedure.  

Digital images are typically the most important source of 
information for qualitative and quantitative crack distress 
evaluation. Neural networks, Markov random fields, edge 
detectors and morphological operators have been considered 
for the development of automatic crack distress detection 
systems [1] [2].  

This paper considers a new approach for road pavement 
surface defects analysis, combining image processing and 
pattern recognition techniques. Here, the processing of non-
overlapping image regions based on local statistics (mean and 
standard deviation of block pixel intensities) is used for the 
pre-processing of images before feature space construction. 
Features are then processed by a pattern classifier, labeling 
image regions as either containing crack pixels or not. This 
pattern classifier is supervised, consisting of training and test 
stages. 

This paper is organized as follows: in section II the 
proposed pre-processing strategies, as well as the crack 
detection classifier, are described. Section III presents 
experimental results and section IV draws some conclusions 
and presents some hints for future work. 

II.  IMPLEMENTATION DETAILS 

The proposed road pavement surface crack detection system 
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processes images at a region level instead of pixel based. 
Images are divided into non-overlapping regions of 75×75 
pixels, as this was empirically found to provide a good ratio 
between computational complexity and accuracy. 

For each region, two features are computed: the mean and 
the standard deviation of the gray level values. In the present 
work, an image database containing 56 gray level images with 
size 2048×1536 pixels, acquired by a digital camera with its 
optical axis perpendicular to the pavement surface, are 
considered. The database is split into two distinct sets: 
Training Set Images (TIS) and Testing Set Images (TTIS), 
using the methodology proposed in [3]. Two sample images 
containing cracks are shown in Figure 1, the left one being 
used for training, while the right image belongs to the test set. 

  
Fig. 1. Sample database images (training image on the left 
and testing image on the right side figure), showing the 

subdivision into distinct blocks. 

The system architecture of the proposed supervised crack 
detection and classification system is represented in Figure 2.  
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Fig. 2. Proposed system architecture. 



In the following, the two main components of the 
pre-processing module, intensity normalization and 
saturation, are described and their combination is discussed. 

A. Region intensity normalization 

To improve the classification results, it is important to 
ensure that the input data is adequately normalized, so that 
image acquisition imperfections and the variability inherent to 
this type of images, such as variations in road surface 
materials reflectance, have a minimal impact in the 
classification results [2].  

One step in this direction, is computing a reference gray 
level value (rglv) for all regions in each image, taken as the 
mean value of all gray levels in the available regions. Image 
normalization is performed at the region level, ensuring that 
all regions in each image present the same mean gray level 
value. 

For each image a matrix with the average pixel intensity 
values within regions is computed (mean matrix), with its 
dimensions, nlmm and ncmm, given by: 
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where nlimg and ncimg stand for the number of image lines 
and columns, respectively, and fix is an operator rounding a 
number towards zero. 

As image regions containing cracks tend to present 
average pixel intensities lower than those not having crack 
pixels, their normalization procedure is performed differently. 
This requires a preliminary identification of regions with 
cracks according to the methodology described in [3]. Each 
mean matrix is scanned, vertically and horizontally, to find 
local minima in each column or line of the mean matrix. 
Regions likely to contain cracks should present average pixel 
intensities lower than a given threshold, computed taking into 
account the mean of average intensity values of vertical or 
horizontal neighbors and also the mean and the standard 
deviation of all average intensity values, along the scan 
direction (entire column or row), see equations (2) and (4) 
respectively in [3]. At this stage, a binary matrix is created 
where regions likely to contain crack pixels are labeled ‘1’. 
Figure 3 shows a region normalization example, ensuring that 
all regions without cracks present the same mean gray level 
(right side of figure) in opposition to the original image (left 
side of figure). 

 
Fig. 3. Region average intensity levels along one row of the 

mean matrix computed over the original (left) and  
normalized (right) images. 

Both graphs in Figure 3 reveal that the relevant lower 
average pixel intensities for regions likely to contain crack 
pixels are maintained. 

B. Region intensity saturation 

Another important component of the pre-processing module 
exploits specific knowledge about the characteristics of 
cracks, which are expected to correspond to darker image 
areas. As such, any pixel within a block with a value above 
the computed rglv for each image can be set to the value of 
rglv, as illustrated in Figure 4. This allows simplifying the 
input images, reducing noise and thus the global variance of 
gray level values in non crack regions, without loosing any 
relevant crack information. 
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Fig. 4. Region intensity saturation function. 

The effects of applying the saturation function to reduce the 
variance of non crack input regions is illustrated in Figure 5, 
by displaying the values of standard deviation of pixel 
intensities within regions (std matrix). The two graphs show 
how the std values along an image row is better suited to 
identify crack regions after applying the saturation function. 
In fact, higher amplitude differences between the std values of 
the two object classes are observed after intensity saturation. 

 
Fig. 5. Regions intensity standard deviation values for a row 

in the std matrix, computed for original (left) and  
saturated (right) images. 

C. Combining normalization and saturation techniques 

The procedures described in the previous sections may be 
applied over the entire image database in different orders. 
The normalization of region intensities can be followed by 
region intensity saturation, or vice-versa. In order to better 
show the effects of these two procedures, scatter plots are 
constructed for both cases, with the horizontal axis 
representing region average intensities, while the vertical axis 
corresponds to the standard deviation values. 

Figures 6 shows the case where intensity normalization is 
followed by the intensity saturation, and Figure 7 represents 

Possible region with 
crack pixels 

Amplitude 

Amplitude 



the case where the opposite processing order is considered. 
Comparing the two scatter plots, it can be noted that, in 
Figure 6, the points representing the no cracks region class 
seem to be adequately modeled by normal distributions, while 
in Figure 7 they tend to be aligned along straight lines. The 
points labeled by the human operator as regions with crack 
pixels seem to have a more disperse distribution in both cases, 
when compared to the regions without crack pixels class. 

 
Fig. 6. Scatter plot representing regions for TIS images 

(five images), considering intensity normalization followed 
by intensity saturation operations. 

 
Fig. 7. Scatter plot representing regions for TIS images 

(five images), considering intensity saturation followed by 
intensity normalization operations. 

D. Feature extraction and normalization 

For the proposed system, a two dimensional feature space is 
constructed based on two simple features: the mean and 
standard deviation of pixels intensities within each non-
overlapping image region. Once features are available, 
another normalization step is carried out, to reduce the feature 
representation scattering among database images, which 
would negatively influence the classification results. For each 
database image, the centroid of its two dimensional feature 
space is calculated (median values of coordinates along 
horizontal and vertical axis). Then, a global centroid is 
computed (mean value of all image centroid coordinates), 
and, for each individual image, the two dimensional feature 
space points are translated so that the respective centroid 
coincides with the global centroid. An example of feature 
space representation after this normalization step, applied 
over the same data used to create Figures 6 and 7, is shown in 
Figures 8 and 9, respectively, where the horizontal axis 
represents the average region intensity values and the vertical 
axis corresponds to standard deviation values. 

 
Fig. 8. Scatter plot corresponding to the same data used for 
Figure 6, after applying the feature space normalization. 

 
Fig. 9. Scatter plot corresponding to the same data used for 
Figure 7, after applying the feature space normalization. 

E. Crack region detection 

To classify each region as containing crack pixels or not, 
the available measurements (mean and standard deviation of 
gray levels values within a region) for each image are used to 
compose a pattern vector x, representing a sample of the 
random variable X, taking values on a sample space X. For 
each element xi of the pattern vector x one possible class yi is 
assigned, where Y is the class set. Thus, the training set is: 
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where n is the number of points for the pattern vector x. yi is 
assumed to be a hidden variable. Only two classes are used: 
regions with crack pixels (c1) and regions without crack 
pixels (c2). 

A classification of unlabeled image regions into the 
considered classes can be made according with Bayes 
theorem, using a uniform cost function. The decision rule [4] 
is symbolically represented by: 
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where the class priors p(yi=ck) for k∈{1,2}, are calculated 
according with: 
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Since a general covariance matrix was adopted, the 
boundary decision is quadratic. The decision boundaries 



obtained with the TIS using the two different combinations of 
the pre-processing modules are shown in Figure 10, for the 
feature spaces presented in Figures 8 and 9. 

 

 
Fig. 10. Boundary decisions computed using the feature 

spaces show in Figure 8 (left) and Figure 9 (right). In the 
second case, 10 points (five on each side of region without 
crack pixels class) were added for computational stability. 

III.  PERFORMANCE EVALUATION  

The performance of the implemented pre-processing 
strategies has been evaluated on a set of real pavement 
surface images, acquired along a Portuguese road. Part of the 
algorithmic development was supported by the PRtools 
toolbox [5]. 

Intraclass and interclass distances [6] are show in Table 1 
for the distribution of region values observed in the 
considered TIS (five images from the entire image database).  

Table I 
Intraclass and interclass distances. 

Procedures Intraclass      
(crack regions) 

Intraclass             
(no crack 
regions) 

Interclass 

Norm + 
Saturation 

87.18 8.65 402.44 

Saturation + 
Norm 

90.21 7.95 366.52 

Original 147.90 145.00 395.80 

Classes’ separability could be evaluated by the intraclass to 
interclass ratio. According to the values listed in Table I, the 
first pre-processing approach presents the best no crack 
regions intraclass to interclass distances ratio (0.0215 against 
0.0217 obtained by the second processing approach), 
revealing that a better class separability is achieved. As for 
the crack regions intraclass to interclass distances ratio, a 
better value is again achieved for the first approach showing a 
better clustering of crack regions points (ratios of 0.217 and 
0.246 for the first and second approaches, respectively). The 
no crack ratios are better than those of unprocessed images 
(0.366). This same tendency can be observed for crack 
regions ratios (0.374), showing that region intensity 
normalization and saturation procedures leads to 
improvements over the original feature space, with the two 
classes becoming more separable 

Table II lists precision, recall and performance criterion 
(PC) metrics [7] for the detection of regions with crack 
pixels. 

According to the values of Table II, the second sequence of 

procedures produces better PC values, but since for this type 
of application the detection of regions with cracks is more 
important, the first approach leads to better results. Notably, 
recall (96.75% vs. 93.96%) is more important than precision 
for this type of application. Both pre-processing orderings 
produce better results than the usage of unprocessed images, 
showing their utmost relevance in terms of detecting regions 
with crack pixels. 

 Table II 
Evaluation metrics 

Procedures Recall (%) Precision (%) PC (%) 
Norm + 

Saturation 
96.75 87.30 91.45 

Saturation + 
Norm 

93.96 90.70 91.95 

Original 82.25 91.90 86.12 

IV. CONCLUSIONS AND FUTURE WOK 

This paper discusses the components of the pre-processing 
module of a road crack detection system, and the different 
ways to combine them. The proposal consisting of region 
intensity normalization followed by intensity saturation  
enhance the detection of regions with crack pixels, showing 
good recall values, without loosing significantly on the 
overall system performance due to a better class separability.  

Future developments may consider a reject-option and a the 
usage of a non uniform loss function, since false positive 
detections often have less impact on this type of application. 
Also, the search for other features with better interclass and 
intraclass distance properties, eventually using texture 
analysis will be addressed. 
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