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Abstract1— This paper summarizes a study conducted over 

traffic generated and received at a network terminal machine. 
The results it includes may be used to simulate the processes of 
the interarrival times, of the packet sizes and of the bit count per 
time unit, at the source level and for several types of telematic 
applications (namely Voice over IP and File Sharing).  Analysis 
shows that the Weibull and Normal distributions may be fitted 
to the greater part of the empirical data and that most of the 
traces exhibit positive correlation. 

I. INTRODUCTION 

Traffic modeling and simulation plays an important role in 
the specific area of Traffic Monitoring and Analysis (TMA) 
and in the more general area of Telecommunications, for it 
provides practitioners and system testers with efficient tools 
to evaluate the performance of networks and of their 
elements. Due to the increasingly complex behavior of 
telematic applications and automatic switching devices, 
perfect synthesis of network traffic is rather difficult, and 
approximated models constitute often an attractive and viable 
choice.  

This paper summarizes a study conducted over traffic 
generated and received at a network terminal machine. Its 
main purpose is to provide practitioners with an idea of the 
main statistical properties of the three following basic aspects 
of such traffic: bit count per time unit, interarrival times and 
packet sizes. The values included below concretize several 
theoretical models that may be used to approximate the 
aforementioned traffic aspects, since their application in 
computer based simulations was on the basis of this study. 

This paper is structured as follows. Section II contains a 
brief mention to traffic modeling and analysis in the past. 
Section III discusses the analysis conducted for the traffic 
traces collected at a personal computer, and summarizes the 
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most important results of the study. The main conclusions 
may be found in Section IV. 

II.  TRAFFIC MODELING IN THE PAST 

A. Network Aggregation Points 

The majority of the studies about traffic from computer 
networks are conducted with the purpose of developing 
models to simulate the behavior of the data flows in 
aggregation points. Most of them explore the self-similarity 
property of the traffic claiming that, in that point of the 
network, the byte count process is self-similar. 

In [7], the authors analyzed traffic from Local Area 
Networks (LANs) and demonstrated that a superposition of 
many ON/OFF sources exhibiting the Noah effect results in 
self-similar traffic. In what is comes to traffic from Wide 
Area Networks (WAN), it is claimed by some studies that it 
exhibits the properties of asymptotically second order self-
similar processes. In [6], the authors studied the File Transfer 
Protocol (FTP), World Wide Web (WWW) and Telnet, 
coming to the conclusion that transmission of files over such 
protocols results also in self-similarity at the WAN level. 

B. Voice over Internet Protocol, Video and Data 

Voice over Internet Protocol (VoIP) traffic is increasing 
within computer networks, motivating the development of 
models for this traffic class that can help to better shape the 
Quality of Service (QoS) policies. While the generation of 
Internet Protocol (IP) packets depends of the codec used by 
the VoIP protocol and cannot, most of the times, be modeled 
by one generic distribution, the duration of calls and the call 
interarrival times is commonly described by the exponential 
distribution [4]. Moreover, although spurts and gaps were 
initially modeled using the exponential distribution, recent 
studies show that the lognormal distribution is the best fit [3]. 

In the case of video traffic, the data transmitted is formed by 
video, voice and system data. However, the majority of the 
existent models are based only in the video part of the data. 
The importance of autocorrelation for video modeling is also 
claimed by several authors, who developed different 
approaches to embed the autocorrelation in the proposed 
models. Ansati et al. [1] extracted the parameters needed to 
model video traffic using Fractional Auto Regressive 



Integrated Moving Average (FARIMA) processes, from 
different videos sequences. 

Bardord and Crovella [2] modeled WWW traffic using 
ON/OFF processes. The ON periods are the ones where a 
given source is transmitting, whereas the OFF periods are 
related with the time between two downloads. The authors 
used mostly Pareto to describe the ON and the OFF times.  

In [5], different distributions were used to model distinct 
properties of FTP traffic: exponential for the session 
interarrival times; lognormal for the connection size; both for 
burst size; and exponential, uniform and lognormal for 
connection interarrival times. 

III.  FITTING DISTRIBUTIONS AND MEASURING 

AUTOCORRELATION 

As previously stated, most of the efforts in the area of traffic 
modeling are placed upon network aggregation points. The 
reason behind this fact lies in the analysis of the queuing 
effects in data forwarding nodes, which has received a lot of 
attention from the telecommunications community in the last 
few years. From the perspective of the aggregation point, the 
characteristics of the particular flows are often irrelevant, but 
from the perspective of QoS mechanisms acting near the 
edges, such properties become rather important.  

The conclusions reported herein do not address all the 
vicissitudes of the traffic generated at the source level. 
Actually, they constitute a tentative to provide a simplified 
and useful view of the behavior of the traffic, which may be 
adopted by researchers aiming to conduct network traffic 
simulations with some control over the characteristics of the 
individual data flows. 

A. Data Sets and Traffic Capturing Scenarios 

The main driver for the study of source traffic was on the 
analysis of its effects in small LANs, directly connected to an 
access network. The traces used in the scope of this work 
were intentionally created with personal computers, and 
collected by tapping the connection between the (Ethernet) 
LAN and the Internet. Some of the traces were collected in a 
final branch of a large local network over Ethernet. The 
several types of traffic were named accordingly to the 
applications used to generate them. These applications are 
amongst some of the most popular ones at the time this 
manuscript was written, namely: Skype, eMule and MSN. The 
Web related traffic was divided into several subclasses, 
including Browsing (termed simply Web), file download from 
a server and Streaming, since the operational mode of the two 
services is slightly different, thought may be supported by the 
same protocol. Because of the same reason, file sharing was 
also investigated for the file upload and download operations.  
The collection is complemented with five recordings of the 
typical use of the Internet by a residential or corporate user.  

Each one of the collected traces was divided into three data 
sets, hereinafter termed as IN, OUT and MIX. IN refers to the 
INcomming communications (from the terminal machine 

perspective), while OUT refers to the OUTgoing portion of 
the traffic. MIX contains both types. 

B. Theoretical Models 

The analysis apparatus was set to construct the cumulative 
distribution functions of the empirical processes of the 
interarrival times, packet sizes and byte count per second. 
Several theoretical models were then fit to the data using well 
documented estimators (when available, maximum likelihood 
estimators were used). From all the theoretical distributions, 
we would like to emphasize the following ones: Pareto 
distribution, with the location and shape parameters, denoted 
afterwards by P(xmin,s); Gaussian distribution, with average 
and variance parameters, herein termed by N(a,b); and the 
Weibull distribution, with scale and shape parameters, 
symbolized by W(a,b). Note that the Lognormal, the 
Exponential, the Rayleigh and the Gamma distributions were 
also taken into consideration during this work, thought they 
did not fit satisfactorily any of the data sets (see table I 
below). 

The criterion for selecting the best fit amongst all models 
was based on the Kolmogorov-Smirnov goodness of fit test. 
i.e. the model presenting the smallest discrepancy value Dk 
was momentarily labeled as the most suitable one, where 
Dk=maxxєΩ|F

k(xi)-Fe(xi)|, Fk(xi) and Fe(xi)  denote the 
theoretical and the empirical cumulative distribution 
functions, respectively, and Ω is the set of all empirical 
occurrences. The final decision about the quality of the fit 
was made recurring to human discernment, so as to exclude 
the cases where the model with the smallest discrepancy was 
noticeably too far from the empirical data. When found 
pertinent, we chose to include the most decisive probability 
peaks of a given distribution, instead of the indication of a 
model and of the estimations of their parameters. To make the 
best use of the available space of this document, it was 
decided to sum up the most significant results in the form of a 
table, included in a subsection below (D. Summary). For the 
sake of coherence, additional comments regarding this subject 
are postponed to that section.  

C. Autocorrelation 

Because the autocorrelation structure of the bit count per 
time unit plays an important role in the study of queuing 
effects (long-range dependent sequences are positively 
correlated), it was decided to explore that statistical aspect 
also. The calculation of this metric was made recurring to the 
standard autocorrelation formula to all lags smaller than 40 
seconds, since some of the studied traces were no longer than 
1 minute (e.g. some VoIP calls). To obtain an idea of the 
amount and type of correlation that needs to be simulated 
when forging individual flows of traffic, the minimum and the 
maximum of the aforementioned 40 values were plotted 
against the designation of the applications that generated the 
respective traces (sorted in an increasing manner by the 
minimum autocorrelation value). These charts are included in 
Fig. 1.  



As may be concluded from careful observation, none of the 
traces exhibits anti-persistence. Several types of traffic 
present different correlation properties depending on the 
direction of the transmission, being that particularly evident 
for highly asymmetric applications (e.g. eMule, Browsing). It 
is interesting to notice that the incoming communications are 
more auto-correlated then the outgoing ones, mostly due to 
the asymmetry of the traffic and size of files / packets being 
exchanged in both directions. Also worth of mentioning is the 
fact the communications concerning Traffic Mixture 5 seem 
to be more random that the others mixtures. The reason for 
such to happen lies in the random behavior of the user of the 

computer, which was merely using the computer to check 
mail, surf the web and chat with friends. No large files were 
transmitted during such communications. The variation 
interval of the autocorrelation of VoIP is also small and near 
to zero, motivated by the random influence of human talk. 

D. Summary 

Table I summarizes the results obtained for each one of the 
data sets. It contains the values of the parameters for the 
model that best fits the several aspects under study when such 
is applicable. In the case where no model could be adapted to 
the cumulative distribution curves because of two or three 
especially probable values (or contiguous interval of values), 
those are explicitly written in the respective cells along with 
their frequency. 

As may be concluded from observation of the table, 
Weibull was able to model most of the experimental data for 
several aspects of the traffic, shaping perfectly all but two 
cases of the interarrivals process (one of those two could not 
be modeled using any distribution). In the case of the byte 
count process, Weibull and Normal were the distributions that 
best modeled the empirical traces. The packet size values 
were represented, in the great majority of the cases, by a bi- 
or tri-modal distribution. In spite of the popularity the Pareto 
distribution has gained in the past, our analysis found it only 
useful to model the packet sizes of the Skype VoIP traffic and 
the interarrivals of streaming broadcast. 

IV.  CONCLUSIONS 

This paper presents a study of the statistical properties of 
traffic collected near terminal nodes of LANs. After the 
inclusion of a short overview to the subject of traffic analysis, 
which contextualizes and differentiates the study by the 
approach we have taken, the experimental apparatus was 
briefly explained and its results provided in a condensed 
form. Several well known distributions were adapted to the 
empirical processes of the byte count per second, interarrival 
and packet sizes. It was concluded that Weibull distribution 
proved itself to be suitable for modeling the majority of the 
processes, especially for the interarrival process. The 
Gaussian distribution was able to fit the byte count per second 
of a big part of the traces, though Weibull was also close to 
the experimental values. It was also concluded that the 
distribution of the packet sizes is dominated by probability 
peaks in many cases, being thus better to model such aspect 
recurring to bi-/tri-modal or empirical distributions. The 
results concerning the autocorrelation of the byte count per 
second corroborate the theory of self-similarity at network 
aggregation points, since persistency is already present in 
some flows at the source level. 

Future research paths concerning the results in this 
manuscript include their usage in traffic simulation or 
prediction works. Planning of next generation networks is one 
of the possible applications of those works. 
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Fig. 1. Variation interval of the first 40 values (i.e. 40s) of 

the autocorrelation function of the byte count per time unit 
process, calculated for the a) OUT, b) IN and c) MIX data 

sets. 
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Table I 
Results of the analysis of several traffic properties for the various data sets. 

Traffic Byte Count Packet Size Interarrivals 

OUT W(0.24, 27.23) W(0.37, 50.95) W(0.38, 0.05) 

IN W(0.17, 11.36) 60(26%), ≥ 1484(52%) W(0.38, 0.03) Web  

MIX W(0.19, 40.95) 54-62(48%), ≥ 1484(30%) W(0.25, 5.3E-3) 

OUT W(10.16, 5099.29) N(144.68, 626.10) W(0.59, 0.06) 

IN W(11.82, 5063.86) N(143.94, 554.09) W(2.99, 0.03) Skype VoIP  

MIX W(21.38, 10047.74) N(145.18, 802.07) W(1.29, 0.02) 

OUT N(2025.45, 399485.72) 54(99%) W(0.34, 6.2E-3) 

IN N(104784.07, 1006.94E6) 1514(95%) W(0.22, 3.6E-4) Streaming download  

MIX N(106554.18, 1115.16E6) 54(34%), 1514(62%) W(0.17, 4.9E-5) 

OUT W(1.04, 108.39) 45-84(93%) no fit 

IN N(5084.77, 19485069.77) 517-526(88%) P(8E-6, 0.27) Streaming broadcast  

MIX N(5257.23, 19611722.80) 45-84(23%), 517-526(71%) W(0.66, 0.06) 

OUT W(3.04, 6422.23) W(0.48, 703.99) W(0.46, 0.09) 

IN W(2.48, 577.73) W(1.27, 47.45) W(0.85, 0.13) eMule (file upload)  

MIX W(3.32, 7002.00) W(0.41, 208.44) W(0.43, 0.03) 

OUT W(1.18, 1968.07) W(0.68, 43.11) W(0.68, 0.04) 

IN N(14033.01, 97066134.82) 60-72 (40%), ≥ 1494 (23%) W(0.89, 0.04) eMule (file download)  

MIX N(15958.23, 110.16E6) W(0.26, 92.68) W(0.51, 1.2E-2) 

OUT N(1550.54, 160774.45) 54-74(99%) W(0.35, 1.5E-2) 

IN N(51789.56, 190653714.80) 1514(99%) W(0.33, 8.5E-3) 
File download from 
web  

MIX N(53370.46, 199739532.26) 54-74(44%), 1514(56%) W(0.19, 4.1E-4) 

OUT N(5456.51, 2940917.82) W(8.77, 128.26) W(1.67, 0.03) 

IN N(2693.21, 6356671.55) W(4.99, 133.54) W(1.19, 0.03) MSN VoIP  

MIX N(8238.40, 4854388.43) W(5.04, 141.32) W(1.22, 0.02) 

OUT W(0.38, 2546.25) 54-77(77%), ≥ 1402(14%) W(0.47, 0.03) 

IN W(0.31, 5230.75) 60-62(10%), 1099(15%), ≥ 1484(61%) W(0.50, 0.02) 
Mail, MSN and file 
sharing traffic  

MIX W(0.40, 10338.75) 54-77(40%), 1099(9%), ≥ 1402(41%) W(0.32, 4.1E-3) 

OUT N(7050.82, 30199712.90) 54-74(88%), ≥ 1414(10%) W(0.63, 0.02) 

IN W(0.87, 44999.36) 60-66(6%), 1514(69%) W(0.71, 0.02) 
File Sharing, download 
from web and MSN 
traffic  MIX W(0.93, 57074.99) 54-74(41%), ≥ 1414(45%) W(0.51, 6.5E-3) 

OUT N(7728.56, 30210101.80) 54-77(73%), ≥ 1506(17%) W(0.57, 0.03) 

IN W(1.19, 19625.19) 60-66(19%), ≥ 1506(43%) W(0.73, 0.03) 
File Sharing, streaming 
download and MSN 
traffic  MIX W(1.26, 29481.66) 54-77(47%), ≥ 1506(30%) W(0.50, 0.01) 

OUT N(8873.73, 36352160.02) P(42, 0.89) W(0.77, 0.03) 

IN N(5546.58, 40574100.44) P(60, 1.13) W(1.00, 0.04) 
Skype, streaming 
download and file 
sharing traffic  MIX N(14419.21, 88421057.85) P(42, 0.88) W(0.68, 0.01) 

OUT W(0.27, 30.01) 54-62(61%), ≥ 1482(12%) W(0.24, 0.02) 

IN W(0.17, 2.28) 60-93(28%), ≥ 1506(49%) W(0.22, 0.01) 
Web, mail and instant 
messaging traffic  

MIX W(0.33, 285.35) 54-93(62%), ≥ 1482(18%) W(0.40, 0.04) 
 


