
Fast Motion Estimation for H.264/AVC using Dynamic Search Window
Sandro Moiron1,2, Mohammed Ghanbari2

1Instituto de Telecomunicações, Portugal; 2University of Essex, Colchester, United Kingdom

e-mails: smoiron@co.it.pt, ghan@essex.ac.uk

Abstract – The motion estimation is one of the most time con-
suming task in the encoding of inter predicted frames. Min-
imising the computational complexity of this task is manda-
tory in order to reduce the implementation cost, either in
hardware or software. This paper proposes a dynamically
adapted search algorithm for motion estimation to reduce the
computational complexity. Moreover, a complementary re-
finement method is proposed to improve the objective qual-
ity of the video. Experimental results show that, when com-
pared with the original fast full search, the proposed algo-
rithm is able to achieve a significant reduction of the computa-
tional complexity up to 98%, introducing only a small quality
penalty near 0.08dB and a bitrate increase up to 3%.

I. INTRODUCTION

Motion estimation is one of the most important techniques
used in video compression systems. It is widely used and
recognised by its high efficiency, while reducing the tem-
poral redundancy between successive frames. As a result,
it plays an important role in most video standards such as
MPEG (Moving Pictures Experts Group) and H.26X.
In the past, several fast search algorithms have been intro-

duced to improve the efficiency in motion estimation [1] [2]
[3]. Methods such as bidirectional prediction and sub pixel
motion accuracy allowed to obtain better predictions [4].
The H.264/AVC [5] video compression standard goes a step
forward into this direction by improving and refining fur-
ther the efficiency of motion estimation. This is accom-
plished by introducing some novel tools which exploit the
visual correlation and increase the compression efficiency
of inter coded frames.
The variable block-size motion compensation with small

block sizes introduces the motion estimation of small block
partitions (from 16×16 up to 4×4). This improves the com-
pression efficiency by allowing a more accurate estimation
of the motion. The improvement is particularly noticeable
in more detailed areas or with objects smaller than the block
size 16×16. However, performing an individual motion es-
timation for each block partition significantly increases the
number of calculations. Consequently, the computational
complexity of the process is intensified. The second tool
introduced was the multiple reference picture motion com-
pensation. This technique allows the motion estimation us-
ing a list of up to 16 previously coded frames which in-
creases the number of possibilities to find a good predic-
tor. The computational complexity introduced by this tool
is proportional to the number of reference frames used in
the motion estimation process. However, while complex-

The work of Sandro Moiron is supported by the Fundação
para a Ciência e a Tecnologia, Portugal under the PhD Grant
SFRH/BD/40117/2007 and by IT - Instituto de Telecomunicações.

ity increases linearly with the number of reference frames
available, the quality improvement has a logarithmic trend.
Overall, combining the new tools significantly improves the
compression gain making the H.264/AVC the flag-ship in
compression efficiency. Compared with the previous stan-
dards, the H.264/AVC is capable to obtain the same visual
quality as its predecessor MPEG-2 [6] with 2 to 3 times
lower bitrate [7].
The most popular algorithm for motion estimation is the

block-based full search algorithm due to a number of rea-
sons. Its implementation is straightforward and fits well
with the rectangular frames used in video. Furthermore, it
effectively combines with other techniques such as block-
based image transforms. However, the high computational
load associated with this algorithm represents 60-80% of
the H.264/AVC encoder complexity. Therefore, a signif-
icant effort has been devoted in minimising the computa-
tional complexity of this algorithm. This is performed in
order to reduce the implementation cost of hardware and
software based encoders, as well as unshielding the possi-
bility to use it in portable devices.
Previous work in this field can be divided into two different

categories according to its strategy. The first category tries
to reduce the search steps [1] [2], while the second tries to
simplify the computation of the error criterion [3]. Both
strategies have proven to achieve a significant reduction in
the computational complexity. However, they lack in terms
of flexibility to the content being coded by disregarding the
current motion type of the movie sequence.
In this paper we introduce a new method to reduce the

complexity of block based motion estimation. Unlike pre-
vious works that combine a fixed search window with a
sparse motion search, this paper proposes the use of a dy-
namic search window combined with a refinement method.
The search window size is defined according to the motion
type of the video sequence and is able to assume rectangular
shapes with variable dimensions and ratios. Experimental
results show that this new method is able to achieve signifi-
cant complexity reductions. When compared with the orig-
inal block-based fast full search algorithm, the proposed
method is able to reduce the computational complexity up
to 98% introducing a minor reduction in the objective qual-
ity up to 0.08dB with a small bitrate increase of 3%.
In the next section the classical full search block-based

motion estimation is introduced describing the process and
metric involved in the process. Section III introduces the
proposed method, discussing the methodology used to de-
fine the search window size and describing the issues aris-
ing from this implementation. An additional refinement
method is also proposed and evaluated in section IV. Fi-
nally, section V presents the experimental results and sec-
tion VI draws some conclusions.



Figure 1 - Original search window.

II. GENERIC MOTION ESTIMATION

Despite the fact that many different implementations were
proposed in the past years, the full search block matching is
still the most popular strategy for motion estimation due to
its high efficiency. It is frequently used in reference imple-
mentations of video encoders where the maximum quality
is a requirement in order to measure the best compression
gain that it can achieve. However, this has a huge com-
putational cost and is not typically used in commercial en-
coders.
The motion compensation aims to reduce the temporal re-

dundancy between two frames. It is implemented using
motion estimation techniques that attempt to find the best
position within the reference frame. This results in the min-
imum residual after the motion compensation. The process
is usually performed in a block basis in order to simplify
the implementation. Subsequently the image is divided into
blocks of 16×16 pixels or smaller and subtracted from the
reference frame in the best matching position. This block
is commonly named predictor since it is the one that best
predicts the motion occurred between the two frames. Due
to the temporal proximity between the current and the ref-
erence frame, it is expected to find the corresponding block
nearby the co-located position within the reference frame.
As a result, the motion compensation is generally restricted
to a predefined number of pixels around the original po-
sition of the block as illustrated in figure 1. This margin
defines a search window that confines the motion estima-
tion which would otherwise search for the best predictor
within the full frame. Performing motion estimation along
the full frame introduces a severe load due to the test of
a wide range of possible positions. Furthermore, it would
only introduce negligible quality gains.
The selection of the best prediction is defined according

to a minimum residual criterion. Several metrics have been
proposed for this purpose but the most frequently used is the
Sum of Absolute Differences (SAD). This metric computes
the difference between the original block and the predicted
block. In equation 1, the current pixels of macroblock
(MB), belonging to the area (A), at spatial position (x, y) are
subtracted from the macroblock prediction (MB’), which is
displaced from (x, y) by the motion vector (vi, vj).

SAD =
∑

(x,y)∈A

|MBx,y −MB′
x,y(vi, vj)|. (1)

Figure 2 - Prediction blocks.

The SAD calculation is performed over the whole search
window. In order to check all the search window positions,
the most straightforward approach is to perform a raster
scan, starting on the top left corner and scanning line by
line until the bottom of the search window edge. However,
there is a high probability for the best prediction to be lo-
cated in the original position of the block as it happens for
static areas. Therefore, a spiral scan centred in the original
block position combined with the early termination tech-
nique is a most desirable strategy. When compared with
the raster scan, the spiral scan guarantees the same quality
with a fraction of the computational complexity. Moreover,
the raster scan fast search like Three Step Search (TSS) [1]
and the Cross Search Algorithm (CSA) [2], do have a poor
performance for dynamic variations of motion among the
objects in the frame.
The goal of search algorithms is to find for each block the

best position in the reference frame.Transmitting one mo-
tion vector for each individual block can represent a sig-
nificant number of bits due to the wide range of values
that each motion vector can assume. Furthermore, motion
vectors of neighbouring blocks are often highly correlated.
As a result, the H.264/AVC determines the centre of the
search window according to the motion of the neighbouring
blocks; also known as motion vector predictor. This vector
is defined by the median of the previously coded blocks
(UL, U, UR and L) illustrated in figure 2. A more compact
representation of the resulting motion vectors is obtained
by the differential coding between the current and the pre-
dicted motion vector.
Overall, motion estimation with a predefined search win-

dow can efficiently remove most of the temporal correlation
between two frames. However, the encoding complexity of
each sequence is almost unaffected by the motion activity
between frames. Sequences with higher motion activity are
more likely to benefit from the use of a large search win-
dow. On the contrary, static sequences such as ’head and
shoulders’ do not benefit much from it. Therefore, using a
fixed search window for all sequences may introduce a sig-
nificant load and negligible quality improve. The following
section proposes a method to adaptively select an appropri-
ate search window size, in accordance with the temporal
activity of the sequence.

III. PROPOSED ALGORITHM

This section describes an algorithm to reduce the computa-
tional complexity of the motion estimation routine through
the use of an adaptive search window. This method defines
the size of the search window based on the temporal mo-



Figure 3 - Motion vectors from neighbouring blocks.

tion activity between frames. Furthermore, the proposed
method is highly adaptive due to the capability to adjust the
search window on a block basis.
In the previous section it was depicted that there is a high

correlation of the motion activity between the neighbouring
blocks. This results from the fact that blocks within a con-
fined area are expected to have similar motion characteris-
tics like direction and size. Figure 3 illustrates the motion
activity of the surrounding predictors of block c where it
can be verified that the motion vectors (VUL, VU , VUR and
VL) tend to have similar direction and amplitude. Conse-
quently, the proposed method defines the boundaries of the
search window for the current block c, according to the mo-
tion characteristics of its neighbours. This method reduces
significantly the size of the search window by exploiting the
motion trend of the neighbours of the current block being
encoded.
The motion vector diversity of the neighbours is analysed

to estimate the area where the best prediction should be lo-
cated. Afterwards, as it is illustrated in figure 3, the neigh-
bouring motion vectors can be used to define the bound-
aries for the search window. Figure 4 shows that each
one of these motion vectors act as a border delimiter for
the motion estimation process, restricting the search range.
The new search window is defined by the minimum and
maximum offset imposed by of the motion vector of each
neighbouring block. This is described in equation 2 where
SWmin(x/y) is the x and y coordinates of the upper corner
of the search window and SWmax(x/y) is the respective
lower right corner. In this equation, SWmin(x/y) is equal
to the minimum x and y coordinate values of all motion
vectors in the input vector group; similar procedure applies
to SWmax(x/y).

SWmin(x/y) = min{VUL, VU , VUR, VL}
SWmax(x/y) = max{VUL, VU , VUR, VL} (2)

Nevertheless, some issues apply to this method. The first
row of blocks of each frame is encoded with the original
full search window due to the lack of a sufficient number of
neighbours. The second issue is the lower accuracy asso-
ciated with the blocks belonging to the first column of the
frame. These groups of blocks can only consider two previ-
ously coded blocks (U and UL), which might lead to a very
restrictive search window and consequently a less accurate

Figure 4 - Dynamic Search Window.

prediction. In order to minimise this inaccuracy an addi-
tional border, defined in the following section, is included
to provide a minimum search range and find a better pre-
dictor. It should be highlighted that this will have a positive
impact on the accuracy of all the following blocks.

IV. REFINEMENT

This section proposes a refinement method to further im-
prove the objective quality of the algorithm described in
the previous section. This refinement is proposed as an ad-
ditional method to be combined with the dynamic search
window method.
The simple definition of the search window size based on

the neighbouring blocks can, in particular cases, lead to a
very restrictive search area. Although this is desirable from
the point of view of the computational complexity, the re-
duction of the search window removes the flexibility re-
quired by motion estimation. The worst case happens when
all the neighbours of the current block c have the same mo-
tion vector. Although this situation shows that the motion is
consistent among all blocks in that area, the resulting search
window size is zero because SWmax(x/y) becomes equal
to SWmin(x/y). This situation limits the motion vector of
the current block to a single value, blocking any attempt to
find a better prediction that may reflect a different motion.
The method hereby proposed expands the search area by

n pixels beyond each edge of the previously defined search
window. Thus, even if the reduced search window is zero,
the refinement margin will guarantee a minimum flexibil-
ity to accommodate variations of the motion. The selection
of the number of pixels used in this refinement border is
discussed in the following section. The analysis gives an
overview of the objective quality improvements and the re-
spective computational complexity increase.

V. EXPERIMENTAL RESULTS

In order to test the performance of the proposed algorithm,
the H.264/AVC reference software JM14.2 [8] was modi-
fied to accommodate the modifications. Three sequences,
(akiyo, bus and stefan), with 352×288 pixels were used to
represent video content with slow, medium and high mo-
tion. These sequences were used to evaluate the perfor-
mance and consistency for high and slow motion scenar-
ios. All sequence were coded at 30 frames per second using
the H.264/AVC in High Profile, variable bitrate, encoding
scheme IPPPP, a single reference frame and without sub



Figure 5 - RD performance for different refinement sizes on bus sequence.

pixel motion estimation. This test measures the objective
quality Peak Signal to Noise Ratio (PSNR) and complexity
reduction in terms of number of positions tested by the mo-
tion estimation routine (average search window size). Since
the main focus of this work is the motion estimation algo-
rithm, the presented complexity results only compare the
area of the search window.
Figure 5 illustrates the quality performance achieved by

the proposed dynamic search window algorithm when com-
bined with the refinement method. Different border sizes
were tested ranging from zero to three pixels, represented
as (FAST0/1/2/3), and compared with the default search al-
gorithm used in the reference software (ORG32). It can be
verified that using a small refinement border significantly
improves the objective quality. Further increasing the bor-
der size only introduce small quality improvements.
Table I presents the comparison results between the pro-

posed algorithm and the default full search and window size
used by the reference software. Each sequence is compared
with its respective version encoded using the default algo-
rithm. The results show an differential objective quality
close to the original encoding (0.08dB) while introducing
a small bitrate increase of 3% for bus and less than 1% for
two other sequences. However, a complexity reduction near
98% is consistent for all the sequences tested. It can also
be verified that sequences with high motion activity use an
average search window bigger than sequences with small
motion activity. This shows that the proposed algorithm is
capable to adjust to the motion activity of each sequence.

VI. CONCLUSIONS

In this paper we presented a new method to reduce the
computational complexity of the motion estimation. The
proposed method is capable to dynamically adjust the
search window on a block basis minimising the number of
positions to be tested by the motion estimation algorithm.
An additional refinement method is also proposed to be
combined with the previous algorithm in order to further
improve the objective quality results.

Table I
PERFORMANCE COMPARISON WITH THE DEFAULT FULL SEARCH OF

JM14.2 WITH A SEARCH WINDOW RANGE OF 32 PIXELS AND

QUANTISER EQUAL TO 28.

Method 4PSNR 4Bitrate Search Complexity
(dB) (%) Window Reduction

(pixels) (%)
akiyo
FAST0 0.02 22.75 1.21 99.72
FAST1 0.00 0.18 1.74 99.52
FAST2 0.00 0.12 2.52 99.14
FAST3 0.00 0.06 3.39 98.56
bus
FAST0 0.07 73.17 1.21 99.72
FAST1 0.00 10.73 2.02 99.40
FAST2 0.02 5.36 2.86 98.93
FAST3 0.01 3.16 3.81 98.24
stefan
FAST0 0.35 27.76 1.22 99.72
FAST1 0.11 2.18 1.99 99.41
FAST2 0.09 1.15 2.87 98.93
FAST3 0.08 0.73 3.81 98.24

Experimental results show that the dynamic search win-
dow algorithm combined with the refinement method is
able to achieve a significant complexity reduction up to
98% while introducing only a negligible objective quality
penalty up to 0.08dB with 3% of bitrate increase.

REFERENCES

[1] Reoxiang Li, Bing Zeng, and M. L. Liou, “A new three-step search al-
gorithm for block motion estimation”, Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 4, no. 4, pp. 438–442, 1994.

[2] M. Ghanbari, “The cross-search algorithm for motion estimation”,
Communications, IEEE Transactions on, vol. 38, no. 7, pp. 950–953,
1990.

[3] W. Li and E. Salari, “Successive elimination algorithm for motion
estimation”, Image Processing, IEEE Transactions on, vol. 4, no. 1,
pp. 105–107, 1995.

[4] T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard”, Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 557–559,
July 2003.

[5] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, “Draft
ITU-T recommendation and final draft international standard of joint
video specification ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC”,
JVT-G050 2003.

[6] ITU-T, Recommendation H.262, Information Technology - Generic
Coding of Moving Pictures and Associated Audio Information: Video,
Feb. 2000.

[7] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke,
F. Pereira, T. Stockhammer, and T. Wedi, “Video coding with
H.264/AVC: Tools, performance, and complexity”, IEEE Circuits
and Systems Magazine, pp. 7–28, 1st Quarter 2004.

[8] http://iphome.hhi.de/suehring/tml/, Suehring JM H.264/AVC.


