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Quantum identification system over private
quantum channel

J. C. Nascimento, P. Mateus and R. R. Viana

Abstract—All proposals for quantum key distribution re-
quire that the parties have access to an authenticated chan-
nel. Therefore, a key pre-distribution system is needed to
provide authentication for the users. In this paper we pro-
pose an efficient scheme for key pre-distribution and identi-
fication for users with quantum channel. Our proposal uses
quantum one-time-pad for implementing a quantum private
channel. The quantum identification scheme proposed re-
quires eight times less qubits than the trivial schemed used
in other QKD, and moreover, the network initialization with
n users requires only O(n) keys.

Index Terms—Quantum key Distribution, quentum cryp-
tography, authentication.

I. Introduction

RECENTLY, information security techniques based on
quantum mechanics have been actively studied be-

cause in many important case they are more secure than
classical ones. The most famous schemes are quantum key
distribution schemes [1], [2], [3] and some of them have
been proved to be unconditionally secure [4], [5]. Moreover,
if large-scale quantum computers can be built they will be
able to solve certain problems much faster than current
classical computers. Indeed, Shor proposed a polynomial-
time algorithm for prime factorization and discrete loga-
rithm on a quantum computer [6] than can be used to
”break” widely used public-key cryptography scheme, such
as RSA.

The essence of a quantum channel is to provide a method
for encoding bits in quantum states in such a way that any
measure taken by an eavesdropper can be discovered by
the legitimate users. The security relies on the laws of
quantum mechanics, and more specifically on the fact that
it is impossible to gain information about non-orthogonal
states without disturbing these states [7]. Furthermore,
quantum noise also disturbs quantum information in a
quantum channel, wherefore one needs error correction
and, thus add ancillas qubits. In quantum error correc-
tion the total of ancillas is proportional to the total of
qubits that we want to correct (although it is possible to
perform quantum error correction without ancillas [8], [9],
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[10]). However, for the sake of clarity and concise exposi-
tion, we assume an ideal quantum channel (without noise)
because this assumption does not affect the results.

In addition, we assume that a classical channel may be
used by the involved parties to exchange classical informa-
tion. Both channels, classical channels and quantum chan-
nels, can be divided into two types: unsecure and secure.
Unsecure channels can be actively tampered in such a way
that the intruder may insert or modify messages, while
secure channels provide data integrity and authentication.
Classical secure channels can be implemented through mes-
sage authentication codes (MAC), such as those proposed
by Wegman and Carter [11], and provide unconditional se-
curity. In quantum channel the qubit integrity is enabled
by a quantum channel privacy method [12].

All proposals of quantum key distribution require that
the parties have access to an authenticated channel. Any
QKD protocol that does not fulfill this requirement is vul-
nerable to a man-in-the-middle attack [13]. The reliable
relations can be organized hierarchically, which offers the
advantage that one does not need to trust everybody in
the network, but only to trust a third party – the certifica-
tion authority (CA). Suppose that the user ux and CA can
identify each other, and they share, at the initial time, a
key Kx to be able to implement a secure classical channel.
The same situation is valid for any other user, say uy. In
other words, both ux and uy have reliable relations with
the CA. At the moment that both users want to identify to
each other, they ask the CA to send, via the secure chan-
nel, a session key. A trivial authentication scheme between
user ux and uy is the following (see [14]):

1. Since CA and user ux share a keyKx, they can use the
BB84 protocol with an authenticated classical chan-
nel in order to agree on a secret key. After, the CA
generates and sends the session key K to ux;

2. CA sends the session key K to user uy by the same
method;

3. Now, both users ux and uy can use BB84 with an
classical channel authenticated with key K.

Whenever ux and uy want to carry out a QKD they have
to authenticate with CA. This simple protocol requires
2|K| qubits for each quantum key distribution with an
ideal quantum channel. We assume that |K|= |Ky|= |Kx|
because the authentication protocol between CA and ux,
and between CA and uy is the same used to authenticate
ux with uy.

A common and realistic restriction is to assume that the
classical channel between ux and CA is open only once (and
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the same for the channel between uy and CA), and more-
over, that there is not, at the same time, a channel open
between ux, CA, and uy. Since a quantum network needs
to pre-distribute secret keys to perform the first rounds
of authentication, the CA needs to generate distinct keys
for each pair among the n users and distribute to each
user its n− 1 keys appropriately labeled. The keys are
stored in classical memory for later authentication. Hence
the initialization of a network of n users requires the pre-
distribution of n(n− 1)/2 pairs of secret keys a priori.

A quantum identification system was first proposed by
C. Crpeau and L. Salvail in [15]. Alice and Bob mutually
check their knowledge of a common secret string without
disclosing it. In [16], Alice and Bob check their common
secret string in a classical way. To prevent from a later
misuse, each identification sequence is used only once and
the distribution of a new common secret string is achieved
by means of quantum key distribution. In [17], Barnum
considers the use of entanglement between two parties to
enable one to authenticate her identity to another over a
quantum communication channel. In [18], a quantum pass-
word is a quantum state analogue of the classical password.
Their proposal, the information is stored and manipulated
classically. However, to identify several agents, the pass-
word systems need one different password to each agent.

The purpose of this paper is to propose a scheme of
key pre-distribution and identification to users of quantum
channel. Our goal is to propose with unconditionally secu-
rity a network management service with complexity O(n)
for a network with n nodes (users). The quantum iden-
tification scheme proposed requires eight times less qubit
than the trivial protocol presented before.

The article is organized as follows: In section II we
present some notation and two quantum one-time-pad
codes. In section III we propose the scheme for key pre-
distribution and users identification with the certification
authority to provide security over a network of QKD links.
Finally in section IV some conclusion are draw.

II. Preliminaries

Let ux be any of the n users of network that trust in CA.
The key shared between CA and user ux is divided in three
parts Kx = (ax, bx, cx) such that 2|ax|= 2|bx|= |cx|= 2m.
In our notation the state |ψaxi

bxi
〉 is in two dimensional

Hilbert space and, axi and bxi are the i-th bit of the se-
quences ax and bx, , respectively. Bit bxi represents the
basis (0 for {|0〉, |1〉} and 1 for {|+〉, |−〉}) and axi repre-
sents the data logic value (0 if the state is |0〉 or |+〉 and 1
if the state is |1〉 or |−〉). The quantum state |ψaxi

bxi
〉 is rep-

resented in Table I for every possible bit value of axi and
bxi. The states |+〉 and |−〉 denote the following superpo-
sition: |+〉= (|0〉+ |1〉)/

√
2 and |−〉= (|0〉− |1〉)/

√
2. The

quantum state |ψax

bx
〉=

m
⊗
i=1
|ψaxi

bxi
〉 is in the Hilbert space of

dimension 2m.
The quantum state ρ is a density matrix represent by a

non-negative Hermitian matrix with trace Tr(ρ) = 1. We
use I2m = 1

2m

∑2m

i=1 |i〉〈i| to denote the totally mixed state.

axi bxi |ψaxi

bxi
〉

0 0 |0〉
0 1 |+〉
1 0 |1〉
1 1 |−〉

TABLE I

The state |ψaxi
bxi

〉 according to the bit values of axi and bxi.

A unitary transformation U is a Hermitian matrix with
U = U† and U−1 = U†. The unitary transformation U
applied to the pure state |ψax

bx
〉 results in the pure state

U |ψax

bx
〉 and when the unitary transformation is applied

to a mixed state ρ results in the mixed state UρU†. We
denote by pi the probability of the unitary transforma-
tion Ui to be applied and we denote the superoperator
E = {√piUi|1 ≤ i ≤ 22m} (where

∑
i pi = 1). The follow-

ing unitary transformations are known as the Pauli trans-
formations:

σ0 =
(

0 1
1 0

)
, σ1 =

(
1 0
0 −1

)
,

σ2 =
(

0 −i
i 0

)
and σ3 =

(
1 0
0 1

)
.

Let us sketch the scenario for the quantum version of
the one-time-pad know as quantum one-time-pad (QOTP).
There are 22m key and each key cx corresponds to a uni-
tary transformation Ucx

. CA and ux are connected by a
quantum channel where the CA want to transmit to user
ux the quantum state ρ without allowing an eavesdropper
to obtain any information about ρ. Let ρ be a pure state
without entanglement in form of density matrix then the
quantum channel is called a private quantum channel if
E(ρ) =

∑22m

cx=1 pcx
Ucx

ρU†cx
= Ĩ2m . Thus, the eavesdropper

Eve has no information about ρ encoded with the key cx
apart from the distribution pcx

.
The first proposed quantum one-time-pad code con-

sists of simply applying a random Pauli matrix to each
qubit individually. For cx ∈ {0,1}2m we denote cxi ∈
{00,01,10,11} for its i-th entry and we define the m-qubit
unitary transformation by σ̄cx = σcx1 ⊗ σcx2 ⊗ ·· · ⊗ σcxm ,
then the associated superoperator is E = { 1√

22m
σ̄cx
|cx ∈

{0,1}2m}. For this quantum one-time-pad code one can
easily verify that applying the operator E in the state with
m qubits result in I2m (see ref [12]).

The second proposed quantum one-time-pad code uses
only two Pauli matrices, σ0 and σ1. Associating σ0 to the
bit 0 and σ1 to the bit 1 then to ci ∈ {0,1} follows that
σci
|ψaxi

bxi
〉 = (−1)τ |ψaxi⊕bxi⊕c̄i

bxi
〉. Where c̄i represents the

logic operation NOT(ci). Observe that the global phase
factor (−1)τ does not affect the measurement results, and
therefore we will not consider it. Table II provides result
for the logical equation axi⊕ bxi⊕ c̄i in the quantum state
and note that τ = axi∧(bxi⊕ci) where ∧ denotes the logical
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axi bxi c σci|ψaxi

bxi
〉 (−1)τ |ψaxi⊕bxi⊕c̄i

bxi
〉

0 0 0 σ0|0〉 |1〉
0 1 0 σ0|+〉 |+〉
1 0 0 σ0|1〉 |0〉
1 1 0 σ0|−〉 −|−〉

0 0 1 σ1|0〉 |0〉
0 1 1 σ1|+〉 |−〉
1 0 1 σ1|1〉 −|1〉
1 1 1 σ1|−〉 |+〉

TABLE II

The state σci|ψaxi
bxi

〉 according bits values axi, bxi and ci.

operation AND. For c ∈ {0,1}m we define the m-qubit
unitary transformation by σ̃c = σc1⊗σc2⊗ ·· ·⊗σcm.

III. Quantum identification system over a
private quantum channel

As usual, we consider that each communicating agent
of the network share a secret key with the CA . Recall
that in Section II, the common key between CA and user
ux is divided in three parts Kx = (ax, bx, cx) such that
2|ax| = 2|bx| = |cx| = 2m. Thus the initialization requires
only n keys (one key to each user). Figure 1 shows the
initialization of a network QKD links.

Fig. 1. Initialization of a QKD network of n nodes

The authentication protocol proposed in this article is
describe as follows:

Protocol III.1:

1. User ux requests from the CA the quantum state
needed to identify user uy. CA sends to the ux the
quantum state with m qubits |ψay

by
〉 coded as in Table

I by quantum one-time-pad using the challenge cx of
user ux, σ̄cx

|ψay

by
〉.

2. User ux decodes the quantum state sent by the CA,
σ̄cx σ̄cx |ψ

ay

by
〉, and next he uses the unitary transforma-

tion of the second presented quantum one-time-pad to

write a challenge c randomly chosen by him. Then he
sends |ψay⊕by⊕c̄

bx
〉 to the user uy.

(a) User ux sends |ψay⊕by⊕c̄
by

〉 to uy.

(b) User uy correctly measures |ψayi⊕byi⊕c̄
bxi

〉 because
he knows the string by. He can calculate the
challenge string c because he knows by and ay
(NOT(by ⊕ ay ⊕ ay ⊕ by ⊕ c̄)=c).

(c) Finally, uy send a message signed with a message
authentication code (M , MAC(M,c)) to prove his
identity to ux.

Note that the user uy has shown his identity to ux with-
out revealing his key. For mutual identification, user uy
requests to CA the quantum state to identify user ux us-
ing the same protocol. Finally, after this process both users
can perform a quantum key distribution. A simple count
on the number qubits used shows an improvement of eight
times less.

IV. Conclusion

For quantum key distribution protocols to be robust to
the man-in-the-middle attack, users need to authenticate
themselves. In order to do so (in an unconditionally se-
cure manner) they need to used Message Authentication
Codes, with a small shared key that the system needs to
pre-distribute. This step is called the network initializa-
tion, and, if after all agents are authenticated to each other
the quantum network never goes off, each communication
keeps to be perfectly secure. Thus, it is important to have
efficient pre-distribution key protocols, since a node might
get off and needs to re-authenticate itself to the network.

In this papaer we consider an ideal quantum channel and
an initial common key K (remember K = |Kx| = |Ky| =
4m) between certification authority and any user. The
trivial proposal requires 4|K| qubits to provide identifica-
tion to each pair of users while ours requires 2m= 2(|K|/4)
qubits. Therefore, the proposed protocol needs eight times
less qubits than the trivial one, that uses QKD between
CA and ux (and between CA and uy) to create one com-
mon key between ux and uy. Due to the large number of
qubits in the trivial proposal, the CA prefers to generate
distinct keys for each pair among the n users and, initially
distribute to each user its n−1 keys appropriately labeled.
The keys are stored in classical memory for later authenti-
cation. Hence, the initialization of a network with n users
requires the pre-distribution of n(n− 1)/2 pairs of secret
keys. Due to reduction number of qubits in our proposal
CA can pre-ditribute only n keys and with them, the CA
provides the identification of any pair of users. Thus, the
protocol proposed in this article is an important improve-
ment for the management of quantum key distribution in
a network.

In this paper, we propose a sophisticated quantum key
pre-distribution protocol that requires eight times less
qubits than the standard one. Better protocols can be de-
vised, assuming that the nodes are always honest, and that
the attacking parties do not belong to the network. We let
this improvements for future work, as well as a detailed
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analysis of the security of the proposed protocol.
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