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Abstract1— In a recent work, we have introduced a nonlocal 
homogenization method to extract the dielectric function of 
periodic structured materials formed by dielectric and metallic 
inclusions of arbitrary shape. Here, we report a Finite-
Difference Frequency-Domain (FDFD) implementation of the 
nonlocal homogenization method. 

I. INTRODUCTION 
The interest in structured materials with electromagnetic 

properties not readily available in nature has grown 
significantly in the last decade. Such materials (known as 
metamaterials) may interact with electromagnetic waves in a 
controlled and desired way, hence opening a whole new road 
of exciting possibilities such as imaging not limited by 
diffraction [1] or the realization of very compact waveguides 
with subwavelength mode sizes [2-3]. During recent years it 
has been shown that by structuring conventional materials, so 
that the geometry of the inclusions and their spatial 
arrangement is chosen judiciously, it may be possible to 
synthesize novel media with unconventional properties, such 
as simultaneously negative permittivity and permeability [4], 
permittivity near zero [5], or extreme anisotropy [6]. Even 
though these concepts and ideas are today widely accepted 
and understood, the extraction of the effective parameters of 
metamaterials remains a matter of active research since the 
typical homogenization methods [7] are not completely 
general and unambiguous, and may fail near resonances or in 
presence of spatial dispersion. 

Recently, our group has introduced a systematic and 
general homogenization method to extract the effective 
parameters of composite media [8]. Unlike previous works, 
which invariably assume that the electrodynamics of the 
material can be described in terms of an effective permittivity 
and permeability (or more generally in terms of a 
bianisotropic model), the method introduced in [8] describes 
the metamaterial in terms of a nonlocal dielectric function, 
i.e. in terms of a spatially dispersive model. A material with 
spatial dispersion is characterized by the fact that the 
polarizability acquired by the inclusions does not depend 
exclusively on the local electric field in the immediate 
vicinity of the particle, but may depend ultimately on the 
electric field in the whole crystal. The advantage of such 
approach is that it is completely general, and allows modeling 
arbitrary composite materials, even in the presence of 
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nonlocal effects. Moreover, in Ref. [8] it was demonstrated 
that the conventional local parameters (permittivity and 
permeability) may be obtained (if they have physical 
meaning) directly from the nonlocal dielectric function 
through a relatively simple procedure. 

In Ref. [8] we have shown how the dielectric function of a 
structured material may be numerically computed using the 
Method of Moments (MoM). Even though such procedure is 
completely general, it is well known that the MoM is mostly 
adequate for the characterization of metallic structures, being 
not so efficient in the analysis of dielectric structures, where 
finite difference methods are generally much more versatile 
and powerful.  

The goal of this paper is to apply the finite difference 
frequency domain (FDFD) [9] method to solve numerically 
the homogenization problem formulated in Ref. [8], and 
extract the effective parameters of periodic dielectric 
materials made of nonmagnetic dielectric inclusions with 
arbitrary shapes.  

In this work we assume that the fields are monochromatic 

and with time dependence j te  . 
 

II. HOMOGENIZATION USING THE FDFD METHOD 

A. The homogenization method 

The method proposed in [8] permits the extraction of the 
effective parameters of a generic periodic composite material 
formed by nonmagnetic dielectric or metallic inclusions. The 
permittivity r  may be a complex number and depend on 

frequency. The unit cell   of a hypothetical metamaterial is 
shown in Fig. 1.  
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Fig. 1. Unit cell of a generic metamaterial with a dielectric 

inclusion and a PEC inclusion. 



The dielectric crystal is obtained by translating the unit cell 
along the primitive vectors a1, a2 and a3, which define the 
periodicity of the system. 

The objective of the method is to calculate the nonlocal 

dielectric function ( , )keff eff    of the metamaterial, 

where is the angular frequency and ( , , )x y zk k kk  is the 

wave vector. The possible dependence of eff on the wave 

vector k  results from hypothetical spatial dispersion effects, 
which may exist in relevant metamaterials [10], even for very 
low frequencies [11-12]. As discussed in the Introduction, it 

may be advantageous to extract ( , )keff   instead of the 

parameters implicit in the bianisotropic constitutive relations 
[13] since the latter formalism is less general, and because 
there is no systematic method to compute the effective 
parameters associated with the bianisotropic model.  

In order to compute the unknown dielectric function, the 
structure is excited with a periodic external distribution of 
electric current Je . It is assumed that Je  has the Floquet 

property, i.e., k.rJ j
ee  is periodic along the crystal. 

Consequently, the excited microscopic electric and induction 
fields (E, B) have also the Floquet property. The fields E and 
B verify the frequency domain Maxwell equations, 

E Bj       (1a) 
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where 0 ( 1)J Ed r j    is the induced current relative to 

the host medium, which, without loss of generality, is 
assumed vacuum. 

In order to homogenize the structure, we introduce the 
average macroscopic fields avE and avB : 
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The macroscopic fields verify the following relations: 
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The system of equations (2) shows that the dielectric function 

( , )keff   must be defined consistently with the relation: 

av 0 av( , )k .E E Peff g    ,  (4)  

In particular, it should be clear from Eq. (4) that one can 
determine the dielectric function for fixed ( , )k  provided 

Pg  is known for three independent vectors avE . Hence, it is 

possible to compute the unknown dielectric function 

following the algorithm described next. To begin with, one 
selects three different distributions for the applied current Je  

(  and k  are fixed) such that the corresponding average 
fields avE  form an independent set of vectors in the three 

dimensional space. Next, for each distribution of current, the 
source driven electromagnetic problem (1) is numerically 
solved to obtain the microscopic fields. Finally, using the 
calculated microscopic fields, avE  and Pg  are computed and  

eff  is obtained using Eq. (4). The described approach has 

the important property that eff  is computed from the 

solution of a source-driven problem. Unlike other methods 
relying on the band structure of the periodic material, this 
permits to determine the effective parameters of the 
metamaterial, even when the frequency of interest lies in a 
complete band gap, or when the inclusions are lossy. 
  
 B. FDFD method 

In order to solve the source-driven problem (1) we employ 
a widely used FDFD method based on the Yee’s-mesh [14].  
In the finite differences (FD) method, the unit cell   is 
divided into many rectangular grids. The FD method is 
excellent to model devices with a complex geometry or 
structures of finite size.  

 
Fig. 2. 2D Yee’s mesh for the homogenization of 2D periodic 

metamaterials. (TE modes’ mesh).(After Ref. [9]) 
 

For simplicity, in the following we will assume that the 
geometry of the problem is intrinsically two-dimensional 
(axis of symmetry is along z) and that the electromagnetic 
waves are transverse electric (TEz). Hence, in our case, the 
numerical problem to be solved assumes the following form 
from Eq. (1): 
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In the above system, xE , yE , ,e xJ  and ,e yJ  are the 

microscopic fields and applied current densities along the x  
and y coordinates, respectively. 0k  is the wavenumber in 



free-space and 0  the impedance of free space. Finally, r  
represents the relative electric permittivity of each considered 
point on the structure. The transverse plane of the unit cell is 
then discretized using Yee’s mesh for the TE mode as shown 
in Fig. 2. 

In order to discretize the electric field derivatives in Eq. (5), 
the following formulas proposed in [15] are used: 
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where x and y  is the grid spacing in the x - and y -

directions, respectively. For periodic structures, for a grid 
with 1N   nodes in each side of a unit cell, there are 22N  
FD equations and 22N  unknowns. When a given node is 
situated at the boundary of the unit cell, some of the adjacent 
nodes are out of the unit cell but they can be “brought back” 
using the periodic boundary conditions, 

k a k b( a, y + b) ( , y)x yj jx e x     .  (7) 

Here, ( , )x y  represents a generic field component, k x , a , 

k y  and b  are the wave vector components and lattice 

constants along the x - and y - directions, respectively.  

Substituting Eq. (6) into Eq. (5) and taking into account the 
Floquet boundary conditions (7), it is possible to numerically 
solve the source-driven problem formulated in Sec. II A, and 
in this way to extract the unknown dielectric function.  

 
III.NUMERICAL RESULTS 

A. Validation of the FDFD method 

In order to validate the FDFD method, initially we 
computed the dielectric function of a one dimensional 
metamaterial (Fig. 3) formed by a periodic stack of dielectric 
slabs normal to the y-direction. The numerically extracted 
results were then compared with theoretical results derived 
from the exact analytical solution of the homogenization 
problem.  

The unit cell of the periodic structure has a single 
horizontal dielectric inclusion with permittivity 3.0r  , as 

shown in Fig. 3a. We studied in-plane propagation with 
polarization TEz. The homogenized material is anisotropic 
with principal directions along the coordinate axes. The 
calculated effective permittivity along the principal axes is 
represented in Fig. 3d as a function of frequency for 0k . 
The effective parameters are nearly independent of 
frequency, and match well the theoretical ones, obtained from 
the analytical solution of the homogenization problem. 
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Fig. 3. (a): geometry of the unit cell, representing a 

metamaterial formed by a periodic stack of dielectric slabs. 
The inclusion has a permittivity 3.0r  and thickness 

0.5at  . (b) and (c): amplitude of the electrical field as a 
function of y  for a fixed x , when the current source is 

directed along x  and y , respectively. The discrete triangles 

in (b) and (c) correspond to the values extracted with the 
FDFD method and the solid lines are the theoretical values. 
(d): the green and blue solid curves represent the extracted 

xx  and yy , respectively, as function of frequency. The 

discrete circles in (d) represent the results calculated 
analytically. 

 
The panels (b) and (c). are drawn for 0k 0.3a  , k 0x   

and k 0.8ya   and show the absolute value of the 

microscopic electrical field when the current source is 

directed along x , i.e., J uxe eJ , or along y, i.e. J u ye eJ , 

respectively. When k 0x  , xE  ( yE ) vanishes when the  

current source is directed along y ( x ). Consistent with the 
boundary conditions at a dielectric interface, the ratio 
between yE  inside and outside the dielectric slab, is 

approximately equal to the ratio between the permittivities.  
 

B. Extraction of the effective permittivity of a material formed 
by plasmonic particles 

In a second example, we have computed the effective 
dielectric function of a metamaterial formed by square-
shaped tilted plasmonic inclusions (with negative 
permittivity) arranged in a square lattice (Fig. 4) [16].  

The extracted permittivity is shown in Fig. 4 as a function 
of the (negative) permittivity of the square-shaped inclusion. 
The quasi-static regime is assumed and losses are taken into 
account. Unlike the previous example, it is not possible to 
solve the homogenization problem analytically. It can be seen 
that the composite material may have an effective response 
quite distinct from those of its constituents, and that the 
effective permittivity of the structure may have several 



singularities. This irregular behavior is a consequence of the 
excitation of multiple quasi-static resonances, which are 
characteristic of plasmonic particles (surface plasmon 
resonances). In particular, the sharp corners of the plasmonic 
inclusion may cause a great enhancement of the 
electromagnetic field in their vicinity. It may be seen in Fig. 4 
that when the corners of the inclusion are less rounded (blue 
line) the number and density of singularities increases.  
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Fig 4. Real part of the effective quasi-static permittivity 

eff  as a function of the real part of the inclusion’s 

permittivity r  , using different rounding R/a=0.16 (green 

curve), R/a=0.04 (blue curve) and small losses '' '0.01r r  . R 

is the radius of the corners. The geometry of the unit cell of 
the two dimensional metamaterial is shown in the inset: the 
unit cell consists of a square-shaped inclusion with negative 

permittivity r r rj      and sharp corners. The host 

material is air. 
 

The described results are consistent with those obtained in 
Ref. [16] using a different homogenization approach. It was 
shown in [16] that when the inclusion has negative 
permittivity and an infinitely sharp wedge, the 
electromagnetic fields may have a very pathological behavior 
at the wedge, and, in the absence of loss, the stored energy 
may not be finite. These problems can be avoided by either 
rounding the corners of the sharp wedge, and possibly by 
adding loss to the material, as our results have also 
confirmed.  

In conclusion, we have demonstrated that the FDFD may be 
an excellent solution to solve the homogenization problem 
formulated in Ref. [8], yielding very accurate results, and 
allowing for the computation of the effective parameters of 
metamaterial structures formed by dielectric inclusions with 
arbitrary shapes.  
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