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Abstract— Hyperspectral imaging sensors provide image data
containing both spectral and spatial information from the Earth
surface. The huge data volumes produced by these sensors
put stringent requirements on communications, storage, and
processing.

This paper presents a method, termed hyperspectral signal
subspace identification by minimum error (HySime), that infer
the signal subspace and determines its dimensionality without
any prior knowledge. The identification of this subspace enables
a correct dimensionality reduction yielding gains in algorithm
performance and complexity and in data storage. HySime method
is unsupervised and fully-automatic, i.e., it does not depend on
any tuning parameters. The effectiveness of the proposed method
is illustrated using simulated data based on U.S.G.S. laboratory
spectra and real hyperspectral data collected by the AVIRIS
sensor over Cuprite, Nevada.

I. INTRODUCTION

Hyperspectral imaging sensors collect two dimensional spa-
tial images from the Earth’s surface over many contiguous
bands of high spectral resolution covering the visible, near-
infrared, and shortwave infrared (wavelengths between 0.3µm
and 2.5µm), in hundreds of narrow (on the order of 10nm)
contiguous spectral bands [1, 2]. For example, AVIRIS collects
a 512 (along track) × 614 (across track) × 224 (bands) × 12
(bits) data cube, corresponding to more than 800 Mbits [3].
Such huge data volumes put stringent requirements in what
concerns communications, storage, and processing.

Each pixel of an hyperspectral image can be represented as
a vector in the Euclidian space RL, where L is the number
of bands and each channel is assigned to one axis of space.
Under the linear mixing scenario, the spectral vectors are a
linear combination of the so-called endmember signatures.
The number of endmembers present in a given scene is, very
often, much less than the number of bands L. Therefore,
hyperspectral vectors lie in a low dimensional linear subspace.
The identification of this subspace enables the representation
spectral vectors in a low dimensional subspace, thus yielding
gains in computational time and complexity and in data
storage.
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Principal component analysis (PCA)[4] and maximum noise
fraction (MNF)[5] are two techniques often used to reduce
the dimensionality of hyperspectral data. The first technique
seeks the projection that best represents data in the least square
sense, whereas the second seeks the projection that optimizes
the ratio of noise power to signal power. In addition, MNF
method needs to estimate the noise covariance. Minimum de-
scription length (MDL) [6, 7] and Akaike information criterion
(AIC) [8] have also been used to infer the hyperspectral signal
subspace.

Harsanyi, Farrand, and Chang [9] developed a Neyman-
Pearson detection theory-based thresholding method (HFC) to
determine the number of spectral endmembers in hyperspectral
data, referred to in [10] as virtual dimensionality (VD). The
HFC method uses the eigenvalues to measure signal energies
in the detection model. A modified version, termed noise-
whitened HFC (NWHFC), includes a noise-whitening step
[10].

This paper presents a minimum mean squared error based
approach to determine the signal subspace in hyperspectral
imagery. The method, termed hyperspectral signal subspace
identification by minimum error (HySime)[11], starts by es-
timating the signal and the noise correlation matrices using
multiple regression. A subset of eigenvectors of the sig-
nal correlation matrix is then used to represent the signal
subspace. This subspace is inferred by minimizing the sum
of the projection error power with the noise power, which
are, respectively, decreasing and increasing functions of the
subspace dimension. Therefore, if the subspace dimension
is overestimated the noise power term is dominant, whereas
if the subspace dimension is underestimated the projection
error power term is the dominant. The overall scheme is
computationally efficient, unsupervised, and fully-automatic in
the sense that it does not depend on any tuning parameters.

The remainder of the paper is structured as follows. Sec-
tion II describes the fundamentals of the HySime method.
Sections III and IV evaluate the proposed algorithm using
simulated and real data, respectively. Section V ends the paper
by presenting some concluding remarks.



II. HYSIME METHOD DESCRIPTION

Let us assume an hyperspectral image where each pixel y
can be represented as a spectral vector in RL (L is the number
of bands), i.e.,

y = x + n, (1)

where x and n are L-dimensional vectors standing for signal
and additive noise, respectively.

Assume also that n ∼ N (0, R̂n), i.e., the noise is zero-
mean Gaussian distributed with covariance matrix R̂n. A com-
putational efficient method based on the multiple regression
theory [12] is used to estimate the noise as shown in Ref. [11].

Let the eigen-decomposition of the signal sample correlation
matrix R̂x = [x̂1, . . . , x̂N ] [x̂1, . . . , x̂N ]T /N be written as

R̂x = EΣET , (2)

where E ≡ [e1, . . . , eL] is a matrix with the eigenvectors of
R̂x. Given a permutation π = {i1, . . . , iL} of indices i =
1, . . . , L, let us decompose the space RL into two orthogonal
subspaces: the k-dimensional subspace 〈Ek〉 spanned by Ek ≡
[ei1 , . . . , eik

] and 〈Ek〉⊥ spanned by E⊥k ≡ [eik+1 , . . . , eiL ],
i.e., the orthogonal complement of subspace Ek.

Let Uk = EkET
k be the projection matrix onto 〈Ek〉 and

x̂k ≡ Uky be the projection of the observed spectral vector
y onto the subspace 〈Ek〉. The first and the second-order
moments of x̂k given x are1

E [x̂k|x] = UkE [y|x]
= UkE [x + n|x]
= Ukx

≡ xk, (3)

E
[
(x̂k − xk)(x̂k − xk)T |x]

= E[(Uky −Ukx)

×(Uky −Ukx)T |x]
= E

[
(UknnT UT

k )|x]

= UkR̂nUT
k . (4)

The mean squared error between x and x̂k is

mse(k|x) = E
{
(x− x̂k)T (x− x̂k)|x}

= E
{
(x− xk︸ ︷︷ ︸

bk

−Ukn)T (x− xk︸ ︷︷ ︸
bk

−Ukn)|x}

= bT
k bk + tr(UkR̂nUT

k ), (5)

Computing the mean of expression (5) with respect to x,
noting that bk = x − xk = U⊥

k x, and using the properties
U = UT , U2 = U, and U⊥ = I − U of the projection
matrices, we get

mse(k) = E{(U⊥
k x)T (U⊥

k x)}+ tr(UkR̂nUT
k )

= tr(U⊥
k Rx) + tr(UkR̂n)

= tr(U⊥
k Ry) + 2 tr(UkR̂n) + c, (6)

1E{·} denotes the expectation operator.

where c is an irrelevant constant. The criterion to estimate
the signal subspace, let us call it X , is the minimization
of mse(k) given by expression (6), with respect to all the
permutations π = {i1, . . . , iL} of size L and to k, with the
correlation matrix Ry replaced with the sample correlation
matrix R̂y = [y1, . . . ,yN ] [y1, . . . ,yN ]T /N ; i.e.,

X̂ =
〈 [

e î1
, . . . , e î

k̂

] 〉
(7)

(k̂, π̂) = arg min
k,π

{
tr(U⊥

k R̂y) + 2 tr(UkR̂n)
}

, (8)

where the dependence on the permutation π is through Uk =
EkET

k . For a given permutation π, each term of expression (8)
has a clear meaning: the first term accounts for the projection
error power and is a decreasing function of k; the second term
accounts for the noise power and is an increasing function of
k.

By exploiting, again, the fact that the Uk is a projection
matrix and that tr(AB) = tr(BA), for A, B ∈ RL×L, the
minimization (8) can be rewritten as

(k̂, π̂) = arg min
k,π

{
c +

k∑

j=1

δij

}
, (9)

where c is an irrelevant constant and δij = eT
ij
R̂yeij +

eT
ij
R̂neij . Based the right hand side of (9), it follows that the

corresponding minimization is achieved simply by including
all the negative terms δi, for i = 1, . . . , L, and only these, in
the sum.

III. EXPERIMENTS
In this section, we apply the proposed HySime algorithm to

simulated scenes and compare it with the NWHFC eigen-based
Neyman-Pearson detector [10]. As concluded in [10], these
algorithms are the state-of-the-art in hyperspectral signal sub-
space identification, outperforming the information theoretical
criteria approaches; namely, the minimum description length
(MDL) [6, 7] and the Akaike information criterion (AIC) [8].

A simulated hyperspectral image composed of 104 spectral
vectors, each one following expression (1), is generated.
Assume that signal vectors are in an p-dimensional subspace,
i.e.,

x = Ms,

where M ≡ [m1,m2, . . . ,mp] is a full-rank L×p matrix (mi

denotes the ith endmember signature), p is the number of end-
members present in the covered area, and s = [s1, s2, . . . , sp]T

is the abundance vector containing the fractions of each
endmember (notation (·)T stands for vector transposed).

The spectral signatures are selected from the USGS digital
spectral library [13]. The abundance fractions are generated
according to a Dirichlet distribution given by

D(s1, . . . , sp|θ1, . . . , θp) =
Γ(

∑p
j=1 θj)∏p

j=1 Γ(θj)

p∏

j=1

s
θj−1
j , (10)

where {s1, . . . , sp} are subject to nonnegativity and constant
sum constraints, i.e., {s ∈ Rp : sj ≥ 0,

∑p
j=1 sj = 1}.
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Fig. 1. Mean squared error versus k, with SNR = 20 dB and
p = 5.

This density, besides enforcing positivity and full additivity
constraints, displays a wide range of shapes, depending on
the parameters of the distribution. On the other hand, as noted
in [14], the Dirichlet density is suited to model fractions.

Consider that the noise correlation matrix is Rn =
diag(σ2

1 , . . . , σ2
L) and that the diagonal elements follow a

Gaussian shape centered at the band L/2, i.e.,

σ2
i = σ2 e

− (i−L/2)2

(2η2)

∑L
j=1 e

− (j−L/2)2

(2η2)

, (11)

for i = 1, . . . , L. Parameter η plays the role of variance in
the Gaussian shape (η →∞ corresponds to white noise; η →
0 corresponds to one-band noise). Parameter σ2 controls the
total noise power.

The method is evaluated with respect to the number of end-
members p, to the spectral noise shape (white and nonwhite),
and to the SNR defined by

SNR ≡ 10 log10

E
[
xT x

]

E [nT n]
. (12)

Fig. 1 shows the evolution of the mean squared error for
HySime algorithm as a function of the parameter k, for
p = 5, SNR= 20 dB and η = 0. The minimum of the
mean squared error occurs at k = 5, which is exactly the
number of endmembers present in the image. As expected, the
projection error power and of noise power display decreasing
and increasing behaviors, respectively, as a function of the
subspace dimension k.

Table I presents the signal subspace order estimates yielded
by HySime algorithm and the virtual dimensionality (VD)
determined by the NWHFC algorithm [10], as a function of
the SNR, of the number of endmembers, p, and of the noise
shape.

NWHFC algorithm is basically the HFC one [9] preceded
by a noise-whitening step, based on the estimated noise
correlation matrix. In implementing this step, we got poor

results in very high SNRs and colored noise scenarios. This is
basically because the noise estimation step in NWHFC needs
to invert the noise correlation matrix, which gives inaccurate
results when the noise power is small. For this reason, we have
used both the true and estimated noise correlation matrices.
The results based on the true correlation matrix are in brackets.
We stress that, for the setting of this experiment, HySime
method yields the same results, whether using the estimated
or the true noise correlation matrices.

Another central issue of NWHFC algorithm is the false-
alarm probability Pf it is parameterized with. This probability
is used in a series of Neyman-Pearson tests, each one designed
to detect a different orthogonal signal subspace direction. It is
necessary, therefore, to specify the false-alarm probability Pf

of the tests. Based on the hints given in [10] and in our own
results, we choose Pf ∈ {10−3, 10−4, 10−5}.

The figures shown in Table I, based on 50 Monte Carlo
runs, have the following behavior:

i) HySime and NWHFC algorithms parameterized with
Pf = 10−3 display similar performances at low
subspace dimension, say p ≤ 5, and white noise. This
is also true for colored noise and NWHFC working
with known noise covariance matrix. However, if the
noise statistics is unknown, NWHFC performs much
worse than HySime;

ii) HySime performs better that NWHFC for high space
dimensions, say p > 5.

We conclude, therefore, that HySime algorithm yields sys-
tematically equal or better results than NWHFC algorithm.
Another advantage of HySime approach is that it does not
depend on any tunable parameter.

IV. EXPERIMENTS WITH REAL HYPERSPECTRAL DATA

In this section, the proposed method, HySime, is applied to
a subimage (350 × 350 pixels and 224 bands) of the Cuprite
data set acquired by the AVIRIS sensor on June 19, 1997 (see
Fig. 2). The AVIRIS instrument covers the spectral region
from 0.41µm to 2.45µm in 224 bands with a 10nm band
width. Flying at an altitude of 20km, it has an IFOV of
20m and views a swath over 10km wide. This site has been
extensively used for remote sensing experiments over the past
years and its geology was previously mapped in detail [15].
The HySime method when applied to the AVIRIS data set,
estimates a subspace dimension of k̂ = 20. According to the
ground truth presented in [15], there are 18 materials in this
area. This difference is due to a) the presence of rare pixels
not accounted for in [15] and b) spectral variability.

The VD estimated by the NWHFC method [10] (Pf =
10−3) on the same data set yields k̂ = 23. A lower value of
Pf would lead to a higher number of endmembers. According
to the ground truth presented in [15], the estimates yielded
by HySime and NWHFC methods overestimate the number
of endmembers in the Cuprite data set. The mainly reason for
this difference, as we have explained, is the presence of rare
pixels present in the data set not accounted for in [15].



Table I
Signal subspace dimension k̂, based on 50 Monte Carlo runs, as

function of SNR, p, and η (noise shape). Figures in brackets were
computed based on the true noise statistics.

White Noise (η = 0)

SNR Method p = 3 p = 5 p = 10 p = 15

HySime 3 5 10 15
NWHFC

50 dB (Pf = 10−3) 3 (3) 5 (5) 7 (7) 10 (11)
(Pf = 10−4) 3 (3) 5 (5) 7 (7) 8 (8)
(Pf = 10−5) 3 (3) 4 (4) 7 (6) 8 (8)

HySime 3 5 10 15
NWHFC

35 dB (Pf = 10−3) 3 (3) 4 (4) 7 (7) 9 (9)
(Pf = 10−4) 3 (3) 4 (4) 7 (6) 8 (8)
(Pf = 10−5) 3 (3) 4 (4) 6 (6) 8 (8)

HySime 3 5 10 14
NWHFC

25 dB (Pf = 10−3) 3 (3) 5 (5) 6 (6) 9 (8)
(Pf = 10−4) 3 (3) 5 (5) 6 (6) 7 (7)
(Pf = 10−5) 3 (3) 4 (4) 5 (5) 7 (7)

HySime 3 5 8 12
NWHFC

15 dB (Pf = 10−3) 3 (3) 5 (5) 5 (4) 5 (5)
(Pf = 10−4) 3 (3) 4 (4) 3 (3) 3 (2)
(Pf = 10−5) 3 (3) 4 (4) 3 (3) 2 (2)

Gaussian shaped noise (η = 1/18)

SNR Method p = 3 p = 5 p = 10 p = 15

HySime 3 5 10 15
NWHFC

50 dB (Pf = 10−3) 59 (3) 41 (5) 61 (10) 45 (10)
(Pf = 10−4) 48 (3) 33 (5) 54 (10) 34 (10)
(Pf = 10−5) 43 (3) 28 (5) 41 (9) 27 (10)

HySime 3 5 10 15
NWHFC

35 dB (Pf = 10−3) 9 (3) 10 (5) 12 (10) 10 (10)
(Pf = 10−4) 9 (3) 9 (5) 11 (10) 8 (10)
(Pf = 10−5) 7 (3) 7 (5) 10 (9) 8 (10)

HySime 3 5 10 15
NWHFC

25 dB (Pf = 10−3) 4 (3) 5 (5) 11 (10) 9 (11)
(Pf = 10−4) 4 (3) 5 (5) 11 (10) 9 (10)
(Pf = 10−5) 4 (3) 5 (5) 11 (9) 8 (10)

HySime 3 5 8 12
NWHFC

15 dB (Pf = 10−3) 4 (3) 5 (5) 11 (10) 10 (10)
(Pf = 10−4) 4 (3) 5 (5) 11 (10) 8 (10)
(Pf = 10−5) 4 (3) 5 (5) 11 (9) 8 (10)

V. CONCLUSIONS

The huge volumes and rates of data generated by hyper-
spectral sensors demand expensive processors with very high
performance and memory capacities. Dimensionality reduction
is, therefore, a relevant first step in the hyperspectral data pro-
cessing chain. This paper introduces the HySime algorithm, a
new approach to estimate the signal subspace in hyperspectral
imagery. HySime algorithm estimates the signal and the noise

Fig. 2. False-color subimage of AVIRIS Cuprite Nevada data set.

correlation matrices and then selects the subset of eigenvalues
that best represents the signal subspace in the minimum mean
squared error sense. A set of experiments with simulated and
real data leads to the conclusion that the HySime algorithm
is an effective and useful tool, yielding comparable or better
results than the state-of-the-art algorithms.
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