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Abstract
1— This paper presents a new design automation tool 

based on a modified genetic algorithm kernel, in order to 

increase efficiency on the analog circuit and system design cycle. 

It combines a robust optimization with corners, machine 

learning modeling and distributed processing capability able to 

deal with multi-objective and highly constrained optimization 

problems. The resulting optimization tool, simulation 

capabilities, and extensible architecture are presented and the 

improvement in design productivity is demonstrated for the 

design of robust CMOS operational amplifiers. 

I. INTRODUCTION 

The microelectronics market trends present an ever-

increasing level of complexity with special emphasis on the 

production of complex mixed-signal systems-on-chip. Strict 

economic and design pressures have driven the development 

of new methods and tools for automating the analog design 

process. Despite the evolution verified in the past few years, 

most of the designer effort is still dedicated to automate the 

circuit sizing process because, like layout and topology 

generation tasks, circuit sizing is considered a very time-

consuming process. Analog design problem is typically an 

over constrained problem with many degrees of freedom and 

many performance requirements and it is still characterized 

by the lack of a unique and structured design flow definition. 

The majority of the applied techniques and tools used to solve 

the analog problem, such as DELIGHT.SPICE [1], 

ANACONDA [2], AMGIE [3], and APE [4], among many 

others [5], are based on powerful numerical optimization 

engines (e.g. evolutionary algorithms, geometric 

programming,) conjugated with evaluation engines (e.g. 

circuit simulators), equation engines (e.g. based on symbolic 

analysis) which evaluate the merit of some developing analog 

circuit candidate. In these approaches the design problem is 

first mapped or modeled into an optimization problem and 

then solved by an appropriate optimization method. In 

general, optimization tools, for analog circuits design, 

composed by an optimization kernel and an evaluation engine 

based on electrical simulation are pointed out as the most 

flexible solution when compared with other methodologies 

(equation-based, knowledge-based) since it accommodates to 

any type of circuit topology and accuracy, only depending on 

the selected device models.  
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The work presented in this paper describes a new design 

automation approach to the problem of sizing analog ICs. The 

developed design optimization tool, GENOM, is based on a 

modified genetic algorithm (GA) kernel and incorporates 

heuristic knowledge in the control mechanism, allowing a 

significant reduction of the required number of generations 

and, therefore, iterations to reach the optimal solution. 

However, the optimization process, employing a simulation-

based approach with a kernel based on stochastic 

optimization techniques, is clearly a computational intensive 

task typified by high dimension search spaces and high costly 

function evaluations. A step forward to enhance the efficiency 

of the implemented optimization tool corresponds to the 

introduction of modeling techniques. The model introduced in 

this paper follows a supervised learning strategy based on 

Support Vectors Machines [9] which, together with an 

evolutionary strategy, are used to create “feasibility” models 

to efficiently prune the design search space during the 

optimization process, therefore, reducing the overall number 

of required evaluations [6-8]. 

The paper is organized as follows: section II, gives an 

overview of the design automation tool and in section III, the 

improvement in algorithm performance is demonstrated. 

Finally, the conclusions are drawn in section IV. 

II. EVOLUTIONARY ANALOG IC DESIGN 

OPTIMIZATION TOOL 

A. Project Overview 

The EVOLUTION project aims at exploring new design 

automation techniques by combining state-of-the-art 

modeling and searching techniques. GENOM is a design 

optimization tool, resulting from the EVOLUTION project, 

which combines a modified genetic algorithm kernel with 

SVM models. This approach also handles multi-objective 

multi-constraint problem formulation, deals with process 

variations, supports the interaction with both equation-based 

and simulation-based evaluation engines (HSPICE), and can 

be executed either in a single processor machine or 

distributed in a multiprocessor environment [10]. The 

GENOM optimization tool can be used as a standalone 

application, although it holds some functionalities which can 

only be fully accomplished when it is part of the in-house 

design automation environment called AIDA [11], illustrated 

in Fig.1. 



B. GENOM Optimization Kernel 

A new hybrid optimization algorithm has been developed 

combined with a design methodology, which increases the 

efficiency on the analog circuit and system design cycle. This 

new algorithm combines an enhanced GA kernel with an 

automatic learning machine based on SVM model which 

efficiently guides the selection operator of the GA algorithm 

avoiding time-consuming SPICE evaluations of non-

promising solutions [12]. 

 
Fig.1 - Tool integration in an analog IC design flow 

automation environment (AIDA)  

 

. The SVM model can be used as a feasibility or 

performance model. Whenever the model is built before 

optimization (off-line) and the topology remains the same, it 

can be reused for other optimization runs with different 

performance requirements. Although the optimization tool is 

able to deal with equation based optimization, (as long as 

design equation has already been defined by an expert 

designer), the primarily decision is oriented to a simulation 

based approach, since it can be applied to all types of design 

circuits, producing more accurate results and providing an 

extended layer of analysis, concerning the robust design 

required in the industrial environment. Parameter variation 

effects due to manufacturing tolerances or environment 

conditions have also been included in the optimization loop 

implemented as a two step optimization methodology. The 

final solution results in a more robust approach with respect 

to variations and mismatches. Additionally, the undesired 

sensitivity effects are attenuated automatically by robust 

design. 

C. GENOM Tool 

The result of design methodology and optimization strategy 

is materialized in a tool, GENOM. The proposed design 

optimization tool represents an automated alternative to the 

traditional design flow, automating some steps of the design 

methodology. It covers some of the most time consuming 

tasks of analog design process at the circuit or transistor level, 

like circuit sizing and design trade-offs identification. Like in 

many analog design environments, some time is spent in the 

set-up of the optimization system prior to synthesis runs. This 

includes the conformance test to the format of input files, 

configuration of optimization, definition of design and 

independent variables, definition of performances and 

respective measures, incorporation of technology models, 

corners, mismatches, designer rules and finally, the training of 

the learning model in case of optimization with offline model 

generation. All these tasks take advantage of the GUI 

interface developed for these effects as illustrated in Fig.2. 

 

 
Fig. 2 – Two-stage amplifier 

 

The GUI interface adds some reporting facilities as the 

designer is able to evaluate some dynamic parameters of the 

optimization process and to carry out some configuration 

steps (interactive design, and flexibility). This computational 

tool allows a designer to examine regions of feasibility with 

differing uncertainty models available to approximate multi-

objective problems like uniform distribution, latin hyper 

sampling (LHS) and design of experiments. This tool also 

permits combining different algorithm approaches, like 

variations of standard operators and including several model 

approaches. A designer can quickly assess promising design 

space regions by entering the historical database used to build 

the SVM model or consulting the database of non-dominated 

solutions where all the detailed information associated with 

the current problem is maintained. The graphical 

representation of the evolution process updated on the fly 

depends on the specifications provided by the designer. A 

summary of statistics in the form of post-processing text 

reports completes the feedback of the process. The 

information gained in one experiment was useful to the 

understanding of the overall problem. Further optimizations 

could be followed after the changing of some design or 

optimization parameters. Embodying this tool in a design 

platform or using it as a standalone application can lead to the 

increase of design efficiency and the improvement of the 

circuit performance, as it is demonstrated on several examples 

where the convergence to the desired performance criteria has 

been attained. The computation cost for several experiments 

have shown that circuits of moderate complexity can be 

synthesized in a reasonable amount of time by the use of 

automatic learning models. This has been made possible by 

employing fast SVM models in the evolutionary cycle, 

avoiding expensive simulation iterations. The synthesized 

designs have also been simulated and verified with HSPICE 

using the industry standard transistor models. 



III. TESTING THE GENOM PERFORMANCE 

The benchmark circuit presented above, which was gently 

provided by the “Electrónica y Electromagnetismo” 

department from Sevilla University, allows the comparison 

between GENOM and one important reference tool for analog 

design, the FRIDGE [13] optimizer. 

A. Fridge Benchmark Circuit Tests 

The benchmark circuit of reference is a novel single ended 

folded cascode opamp tested with the Fridge synthesis tool 

[13] whose results are used to compare the performance and 

effectiveness of the final GENOM optimizer. This benchmark 

circuit includes all items necessary to the implementation and 

test, including the original netlist, testbench, device model, 

constraints, variables range and performance results obtained 

by the Fridge optimization tool. The schematic of the circuit 

is shown in Fig. 3 and tesbench defined in Fig. 4. 
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Fig. 3 - Two-stage amplifier 
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Fig. 4 – OpAmp testbench for DC and AC specifications 

 

B. Optimization Test with FRIDGE Ampop 

Following the original Fridge approach, this experiment 

does not optimize the bias circuit, only the main circuit. The 

experiments were synthesized with the UMC 0.18um Regular 

Vt 1.8V Mixed Mode process Spice Model and were 

executed on an AMD X64 2.8 GHz dual core machine and 

use HSPICE to simulate the circuit and extract performance 

parameters. The total of constraints (performance constraints 

and the constraints derived from designer’s rules) result in 20 

optimizations constraints that must be satisfied in the 

optimization process described in Table I. The design 

performances and final results achieved with both tools are 

depicted in Table II. Optimization process uses 15 

independent variables whose ranges and respective final 

transistor dimensions are given in Table III. 

Table I - Optimization algorithm parameters 
Parameter value Parameter value 

Kernel GA-MOD Crossover Two point 

Strategy 
Typical + Corner 

Optimization 
Mutation Dynamic 

Sampling LHS Adaptive No 

Sort method 
Priority to constraints  

then fitness  
Elite 

25% of  
population 

Selection 
Tournament by 

”feasibility” 
Generations 150 

Popsize 32 Search Space 4.7168e+53 

 

Table II - Design performance and final results 

Target FRIDGE GENOM  

gbw      >  1.20e+07 
gain       >  7.00e+01 

pm      >  5.50e+01 
sr        >  1.00e+07 
dm2    >  1.20e+00 
dm4    >  1.20e+00 
dm5    >  1.20e+00 
dm7    >  1.20e+00 
dm9    >  1.20e+00 
dm11  >  1.20e+00 
onm2   >  1.00e-01 
onm4   >  3.00e-02 
onm5   >  3.00e-02 
onm7   >  3.00e-02 
onm9   >  3.00e-02 
onm11 >  3.00e-02 
osp      >  5.00e-01 
osn     <  -5.00e-01 

1.60e+07 
7.00e+01 
8.06e+01 
1.53e+07 
9.78e+00 
5.20e+00 
2.21e+00 
1.05e+01 
3.05e+00 
1.95e+00 

1.004e-01 
3.02e-02 
5.66e-02 
4.25e-02 
4.91e-02 
1.78e-01 
6.25e-01 

-5.02e-01 

1.535e+07 

   7.061e+01 

    7.960e+01 

    1.536e+07 

9.245e+00 

  1.568e+00 

  1.836e+00 

  8.171e+00 

  2.807e+00 

 1.653e+00 

  1.098e-01 

 3.240e-01 

 9.866e-02 

 8.761e-02 

 3.802e-02 

2.451e-01 

  5.660e-01 

  -5.057e-01 

Areas    (min) 
Power   (min) 

2.371e+01 
2.333e-04  

1.687e+01 

2.44e-04 

Cost value 
Iteration Final/First solution 
Time (s) Final/First solution 

-0.29258 
2497/------ 
------------ 

8.070e-02 

2464 /1110 

53.68/25.08 

 

The main performance spec gbw stands for gainbandwith, 

gains means the dc gain, pm is the phase margin, sr is the 

slew rate and the goal is to minimize both the area (Areas) 

and power dissipation (power). The electrical constraints are 

illustrated in HPSICE style in expression (1): 

.m10)))'abs(vth(x1-(_cn'paramosn    ac  .meas 

.m8)))'abs(vth(x1(_cp'param  osp  ac  .meas 

' vth(x1.m1)-vgs(x1.m1)'  param  onm2  ac  .meas 

x1.m1))'.m1)/lv10(abs(lx3(x1'  param  dm2  ac  .meas 

=

+=

=

=

        (1) 



Table III – Ranges and Final Transistor Dimensions 

Optimization Var. FRIDGE GENOM 

$cn = [-0.4,0]; 
$cp = [0.0,0.4]; 

$l1 = [0.18u,5u]; 
$l4 = [0.18u,5u]; 
$l5 = [0.18u,5u]; 
$l7 = [0.18u,5u]; 
$l9 = [0.18u,5u]; 

$l11 = [0.18u,5u]; 
$ib = [30u,400u]; 

$w1 = [0.24u,200u]; 
$w4 = [0.24u,200u]; 
$w5 = [0.24u,200u]; 
$w7 = [0.24u,200u]; 
$w9 = [0.24u,200u]; 

$w11 = [0.24u,200u]; 

$cn = -8.75e-02 
$cp =  6.24e-02 
$l1 =  1.56e-06 
$l4 =  4.70e-07 
$l5 =  3.80e-07 
$l7 =  7.60e-07 
$l9 =  2.06e-06 

$l11 =  6.00e-07 
$ib =  4.84e-05 

$w1 =  1.95e-05 
$w4 =  3.03e-05 
$w5 =  7.13e-05 
$w7 =  1.04e-04 
$w9 =  6.56e-05 

$w11 =  3.08e-06 

_cn = -4.49e-02 

 _cp = 1.00e-03 

 _l1 = 1.38e-06 

 _l4 = 1.94e-06 

 _l5 = 3.70e-07 

 _l7 = 9.10e-07 

 _l9 = 8.90e-07 

_l11 = 2.19e-06 

 _ib = 4.85e-05 

 _w1 = 1.49e-05 

 _w4 = 6.99e-06 

 _w5 = 3.68e-05 

 _w7 = 6.30e-05 

 _w9 = 3.14e-05 

_w11 = 7.32e-06 

 

C. Comparison results 

Table IV shows the GENOM performance and depicts the 

run-time information in several optimizations points. 

Table IV – GENOM benchmarks 

Target nEval Power (min) Areas (min) Time (s) 

Final results in 
FRIDGE 

2497 2.333E-04 2.371E+01 ------- 

GENOM 

1st Solution  1110 4.0590e-04 2.9727e+01 25.08 

GENOM similar 

to FRIDGE 
1461 2.284e-04 2.377e+01 32.47 

GENOM better 

than FRIDGE 

2064 1.918e-04 2.009e+01 43.33 

Final Results 2464 2.446e-04 1.6873e+01 53.68 

 

GENOM achieved the first solution in 25s approx. using 

1110 evaluations and reaches a similar performance to 

FRIDGE in 1461 evaluations, corresponding to an efficiency 

increase of 41%. The GENOM optimization produces 183 

new feasible solutions. One of the best solutions improves 

simultaneously the power in 17% and 15% in the area as 

described in Table 6.53 with 2064 evaluations. 

IV. CONCLUSIONS 

The presented design automation work, GENOM, uses one 

of the most promising optimization techniques, evolutionary 

computation techniques, to face (handle) the challenges of the 

analog design industry. In order to ensure the design 

correctness and accuracy, GENOM employs a standard 

simulation tool in the loop of a modified genetic algorithm 

kernel. To increase the efficiency of the evolutionary 

algorithm, a machine learning algorithm based on SVM was 

introduced. The proposed approach results in a new GA-SVM 

learning scheme applied to analog circuit design composed by 

the interaction of two machine learning engines. Additionally, 

GENOM was designed to deal with statistical fluctuations 

(process variations) inherent to the fabrication process and 

varying operating conditions (supply voltage or temperature 

variations), a fundamental feature to obtain a robust design. A 

graphical user interface was also supplied in order to increase 

productivity. Finally, the performance and effectiveness of 

the GENOM optimizer was demonstrated taking into account 

a benchmark circuit and one important reference tool for 

analog design. 

REFERENCES 

[1] W. Nye, D.C. Riley, A. Sangiovanni-Vincentelli, and A.L. Tits, 

“DELIGHT.SPICE: An Optimization-Based System for the 

Design of Integrated Circuits,” IEEE Trans. on CAD, vol. 7, No. 

4, pp. 501-519, April 1988. 

[2] R. Phelps, M. Krasnicki, R. Rutenbar, L. R. Carley, and J. 

Hellums, “ANACONDA: Simulation-based synthesis of analog 

circuits via stochastic pattern search,” IEEE Trans. on CAD, 

Vol. 19, No.6, pp. 703-717,  Jun. 2000. 

[3] G. Van der Plas et al. “AMGIE-A synthesis environment for 

CMOS analog integrated circuits,” IEEE Trans. on CAD, Vol. 

20, No. 9, pp.1037 – 1058, Sept. 2001. 

[4] Nunez-Aldana, A., Ranga Vemuri. ”An analog performance 

estimator APE for improving the effectiveness of CMOS analog 

systems circuit synthesis,” Design, Automation and Test in 

Europe (DATE) Conference, Munich, Germany, 1999. 

[5] G. Gielen, R. Rutembar, “Computer-aided design of analog and 

mixed-signal integrated circuits,” IEEE Proceedings, Vol. 88, 

No: 12, pp. 1825 – 1854, Dec. 2000. 

[6] Glenn Wolfe and Ranga Vemuri,” Extraction and Use of Neural 

Network Models in Automated Synthesis of Operational 

Amplifiers,” IEEE Trans. on CAD, Vol. 22, No. 2, Feb. 2003. 

[7] K. Rasheed, S. Vatten, X.Ni, “Comparison of methods for 

reduced models to speed up design optimization,” in Proc. on 

Genetic and Evolutionary Computation Conference, NY, 

Morgan Kaufmann, pp.1180-1187, 2002. 

[8] M.A El-Beltagy, P.B. Nair, A.J. Keane, “Metamodeling 

Techniques for evolutionary optimization of computationally 

expensive problems: promises and limitations,” in Proc. of 

Genetic and Evolutionary Conference, pp. 196-203, 1999. 

[9] Marti Hearst, “Support vector machines,” IEEE Intelligent 

Systems, July/August 1998. 

[10]  M. Barros, G. Neves, J. Guilherme, N. Horta, “A Distributed 

Enhanced Genetic Algorithm Kernel Applied to a Circuit/Level 

Optimization EDesign Environment," in Proc. Design of 

Circuits and Integrated Systems (DCIS), France, 2004, pp. 20-

24. 

 [11]  M. Barros, G. Neves, J. Guilherme, N. Horta, "AIDA: Analog 

IC Design Automation based on a Fully Configurable Design 

Hierarchy and Flow", in Proc. 13th IEEE International Conf. on 

Electronics, Circuits and Systems,  France, 2006,  pp. 490-493 

[12] M.Barros, J. Guilherme, N. Horta, “GA-SVM Feasibility 

Model and Optimization Kernel applied to Analog IC Design 

Automation,” in Proc. 17th ACM Great Lakes Symposium on 

VLSI, Italy, 2007, pp. 469-472. 

[13] F. Medeiro et al., “A Statistical Optimization-Based Approach 

for Automated Sizing Of Analog Cells,” in Proc. ACM/IEEE 

Int. Conf. Computer-Aided Design (ICCAD), 1994, pp. 594–

597. 


