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Abstract — A method to generate a large number of M-ary 

Perfect Periodic Autocorrelation (PPAC) codes of length N, with 

good correlation properties, is presented. N+1 perfect sequences 

are obtained if an inverse discrete Fourier transform (IDFT) is 

applied to a specific subset of N+1 bipolar sequences derived 

from maximal-length sequences. This set of perfect sequences 

has a maximum absolute value of periodic cross-correlation 

equal to the square root of N+1. Moreover, this absolute value is 

equal to 1 when all perfect sequences are in-phase. 

I. INTRODUCTION 

Ideally, Code Division Multiple Access (CDMA) sequences 

should have a perfect periodic autocorrelation function 

(PACF) [1]–[3] when strong multi-path interference exists. In 

other words, the perfect PACF should be equal to the ( )nδ  

unit impulse function. However, since such bipolar sequences 

with perfect PACF are not known (except for x = (1; 1; 1;-1), 

which is a periodic sequence (discrete-time) of length four 

[3], [4]), it is desirable to find new sequences. Alternative 

solutions may be found with complex periodic sequences 

defined by some authors as Small or Large Alphabet 

Polyphase sequences [1], [5]–[7], Unimodular Perfect 

sequences [8], Phase Shift Pulse Codes [9], Perfect Root-of-

Unity sequences [10], Bent function sequences [11], or 

simply as Perfect sequences [12], [13]. Perfect tetra-phase 

sequences (small alphabet) with perfect PACF exist for 

lengths 2N = , 4 , 8 , and 16  (Milewski and Frank 

sequences). Many other sequences with good PACF may be 

found if a mathematical transformation is used [2], [3]. 

Any codes with a nearly perfect PACF and low maximum 

absolute value of periodic cross-correlation (MaxCC) can be 

applied in asynchronous CDMA communication systems, for 

fast start-up equalization, channel estimation, 

synchronization, or other applications impaired by strong 

multi-path interference. 

A variety of perfect sequences has been proposed in the 

literature [1]–[14]. The lower bound of MaxCC seems to be a 

constant and equals N  [7], [15], [16]. It is worth noting 

that, to the best our knowledge, there are no perfect sequences 

with zero cross-correlation for any time-shift. 

We present in section II a mathematical property that 

provides a way to find large sets of perfect sequences with 

low MaxCC. Despite their non constant envelope, these new 

complex perfect sequences may be transformed into two real 

M-ary Perfect Periodic Autocorrelation codes (M-ary PPAC 

codes with a nearly perfect periodic autocorrelation function) 

which may be used in CDMA systems with an adequate 

modulation technique. Simulation results are presented in 

section III for synchronous and asynchronous CDMA 

systems. The main conclusions are gathered in section IV. 

II. PERFECT SEQUENCES 

Let ( )x n , with 0,1,2..., 1n N= − , be one of the N points 

of a periodic sequence x . We define its discrete Fourier 

transform (DFT) [17] as: 
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The inverse discrete Fourier transform (IDFT) [17] is given 

by: 
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For convenience of notation, 
N

W  is defined as 

( )exp 2
N

W j Nπ= − , where 1j = − . We should also 

remember that the DFT and the IDFT are linear and invertible 
transforms. 

Using the DFT and IDFT transforms, the periodic cross-
correlation may be defined as [15], [17]: 
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where n  is an integer, the superscript * stands for the 

complex conjugate, and mod(a,b) is the remainder of a 

divided by b. A complex value ( )x n  is equal to 

( )mod ,x n N    when x is a periodic sequence with period N. 

When x = y, (3) is defined as the periodic autocorrelation 
function. A sequence x is called a perfect sequence if it has an 
ideal periodic autocorrelation function: 
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As it is well known, any constant amplitude sequence in the 

frequency domain corresponds to a perfect sequence in the 
time domain. In other words, we can say that the sequence: 

( ) ( )px n N IDFT x n= ×    , (5) 

for 0 1n N≤ ≤ − , where n  is an integer, is a perfect 

sequence if ( )
2

1x n = . Using (5) we can generate perfect 

sequences (with non constant envelope) of any length N, 

when ( )x n  is constant for all N values. However, what we 

want is to find perfect sequences with good correlation 



properties. The following property, defined by (12), will be 

useful for finding N+1 perfect sequences with a low MaxCC. 

Let kT  denote the operator which shifts complex 

sequences cyclically to the left by k places, i.e.: 

( ) ( ) ( ) ( ) ( ) ( ), 1 ,... 1 , 0 , 1 ,..., 1
k

T x x k x k x N x x x k= + − −   .(6) 

We will consider 0
T x x=  and use ⊕  to denote modulo 2 

addition (i.e. the EXCLUSIVE-OR operation). The sequences 

u  and v  are maximal-length sequences (m-sequences) with 

length N . It is important to remember that, for an m-

sequence v, there is an unique integer k, distinct from both 

integers r and s, with 0 , , 1r s k N≤ ≤ − , that verifies: 
r s k

T v T v T v⊕ = . (7) 

Since it is sometimes necessary to distinguish between a 

{ }0,1 -valued binary sequence and the corresponding 

{ }1, 1+ − -valued binary sequence, we introduce the function 

( ).χ  defined by ( )0 1χ = +  and ( )1 1χ = − . If x  denotes an 

arbitrary { }0,1 -valued sequence, then ( )xχ  denotes the 

corresponding { }1, 1+ − -valued sequence (called bipolar 

sequence), where the ith element of ( )xχ  is just ( )x iχ    . It 

should be noticed that: 

( ) ( ) ( )k k
u T v u T vχ χ χ⊕ = . (8) 

Other useful properties of { }1, 1+ − -valued m-sequences 

are [15]: 
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and 
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We should also remember that m-sequences are real 

sequences, and that it is possible to find the IDFT of any 

sequence X through a DFT transformation: 

( ) ( ){ }
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Property: If u and v are m-sequences of length N, the IDFT 

of the { }1, 1+ − -valued binary sequences of the set 

( ) { }2 1
, , , , ,...,

N
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This set ( ),u vΓ  has 1N +  perfect sequences (of length N ) 

and the maximum absolute value of its periodic cross-

correlation is 1N + . 

 

Using (5), we easily confirm that all sequences of the set 

( ),u vΓ  verify the condition ( )
2

. 1χ =  for all N elements, 

and generate N+1 perfect sequences with the same length N 

when they are transformed by an IDFT. 

The absolute value of periodic cross-correlation of any two 

distinct perfect sequences ( )ry N IDFT u T vχ = × ⊕   and 

( )sz N IDFT u T vχ = × ⊕  , when r s≠ , where r and s 

are integers, is given by: 
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We have used some useful properties, namely 
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(7), (8), and ( ) ( )
*

1u uχ χ =    (for all elements). Now, if we 

only want to find the MaxCC= { }max
yz

R , then the operator 

kT  can be dropped and: 
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1N= +  (14) 

For a complete verification, we need to calculate the 

MaxCC of ( )N IDFT uχ×     with all other sequences of 

( ),u vΓ , which is also: 

( ) ( ) ( ){ }*

max 1
s

N IDFT u u T v Nχ χ χ
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Therefore, we can say that the MaxCC for the N+1 perfect 

sequences is equal to 1N + . Besides, we can also say that 

this value occurs 1N −  times and the value 

( )1 0 1N Nδ+ − =  occurs one time (in-phase value). Result 

(14) is valid for any EXCLUSIVE-OR combinations of two 

m-sequences u and v of the same length N. In the next section 

we present simulation results obtained with some Gold 

sequences, which use preferred pairs of m-sequences. 

III. M-ARY PPAC CODES 

After some simulation tests with subsets of bipolar 

sequences derived from preferred pairs of m-sequences, we 

have concluded that the best set of perfect sequences (with 

length N) is found when the IDFT is applied to a subset of 

sequences of the bipolar Gold set, or alternatively to a subset 

of bipolar Time Inverted Gold (TIG) sequences [18], [19]. 

These conclusions have confirmed our property. The m-

sequence v  of the Gold Set: 

( ) { }2 1
, , , , , ,...,

N
G u v u v u v u Tv u T v u T v

−= ⊕ ⊕ ⊕ ⊕  

must be discarded before the IDFT application, because it is 

not possible to verify property (7) with two different m-

sequences u  and v . That is: 

( ) ( ){ }{ }*

max 1N IDFT u v Nχ χ× ≠ +   . 

We should remember that, in (12), the m-sequence v belongs 

to the Gold set ( ),G u v , but not to the ( ),u vϕ  set. Notice 

that our property is also valid for non preferred pairs of m-



sequences. Our simulations confirmed that the MaxCC is 

equal to 1N +  (see Normalized MaxCC for “PPAC [Gold 

seq. without the m-seq. v]” in Table I). For increased 

confidence on the simulation results, our tests have been 

performed with different lengths N (31, 63, 127 and 511). 

 

Important conclusions can be drawn from Table I. For 

example, it is possible to find 1N +  PPAC sequences with a 

MaxCC value 53% smaller than for Gold sequences. When 

63N = , it is possible to find 126Q =  different PPAC 

sequences with a value of MaxCC 6% smaller than for Gold 

sequences with the same length. For this reason, the TIG set 

has been considered as an alternative solution to achieve 

bigger sets of PPAC sequences with a low MaxCC value. The 

last column of Table I, N N , represents the known lower 

bound (normalized) for the perfect sequences of Chu [7] 

(large alphabet polyphase sequences). Notice that the known 

small alphabet polyphase sequences [2] have a higher MaxCC 

value. 

In order to enable a simple digital implementation, these 

PPAC complex sequences (such as the well known perfect 

sequences of Chu [7] or Zadoff–Chu sequences [13]) may be 

linearly quantized in a small number M of different phases, 

or alternatively in a small number M  of amplitude values, in 

order to obtain small alphabet sequences. We chose to 

quantize the amplitude of our perfect sequences, thereby 

creating dual real M-ary PPAC codes (real and imaginary 

parts of the complex M-ary PPAC code) that should be 

almost perfect. Therefore, the real and imaginary parts of the 

M-ary PPAC complex codes should have M  discrete 

amplitude values (such as the output of an analog-to-digital 

converter with a resolution of 
2

logn M=  bits). This linear 

amplitude quantization of the PPAC complex codes should 

keep all good mathematical properties if M is high enough. 

The influence of the number M  of discrete amplitude values, 

when 127N =  and 100Q = , is shown in Fig. 1. 

CDMA simulations with Gold codes [20] and M-ary PPAC 

codes have been made assuming multiple users. The 

performance results obtained are presented in Fig. 2 and 3. 

All simultaneously transmitted codes are received 

synchronously or asynchronously with a uniformly distributed 

amplitude variation around the amplitude of the selected 

code. Therefore, all codes have the same average power as 

the code selected randomly and used to find the average Bit 

Error Rate (BER). The M-ary quadrature amplitude 

modulation (M-ary QAM) has been selected. This modulation 

has been used to carry the real and imaginary parts of 

complex codes. A binary phase-shift keying (BPSK) 

modulation has been used to carry the bipolar Gold and 

orthogonal Gold codes. 

 

 

Figs. 2 and 3 show the Bit Error Rate versus number of 

simultaneous users (#Codes) in synchronous and 

asynchronous CDMA transmission scenarios, respectively. 

The correct code detection has been made asynchronously for 

all different codes. More precisely, the maximum correlation 

value obtained corresponds to the correct selected code. 

It should be noted that our set ( ),u vΓ  has two additional 

perfect sequences, compared to the sets of Chu or Zadoff-

Chu, and it seems to be more adequate for both synchronous 

and asynchronous CDMA transmission systems. Other 

simulation results have been obtained which are not included 

in Figs. 2 and 3. Specifically, good results were also obtained 

with the PPAC codes (derived from some Gold codes) 

impaired by strong multi-path interference. 

 
Fig. 2. Bit Error Rate versus number of simultaneous users 

(#Codes), for different sets of codes, used in asynchronous 

CDMA transmission scenarios. 

Table I 

Normalized absolute maximum periodic cross-correlation 

evaluated for Gold sets and PPAC sets. The PPAC sequences 

were generated with subsets of Gold sequences and subsets of 

TIG sequences [18], for a length N equal to 63. Q is the 

number of sequences in each set. 

Sequences Q 
Normalized 

MaxCC /N N  

Gold seq. 65 0.2698 0.1260 

PPAC [Gold seq.] 65 0.3436 0.1260 

PPAC [Gold seq. without the m-seq. v] 64 0.1270 0.1260 

PPAC [seq. of a TIG subset] 126 0.2540 0.1260 

PPAC [seq. of a TIG subset] 256 0.4921 0.1260  
Fig. 1. Normalized maximum out-of-phase periodic 

autocorrelation, MaxAC, and maximum periodic 

cross-correlation, MaxCC, for M-ary PPAC codes. 



 

IV. CONCLUSIONS 

A method to obtain large sets of sequences with perfect 

periodic autocorrelation functions and good cross-correlation 

properties was presented. These perfect sequences can be 

obtained simply by applying an inverse discrete Fourier 

transform to large sets of complex sequences x with x  

constant for all values of N. It was shown that, when the 

sequences x belong to a subset of bipolar sequences derived 

from m-sequences, it is possible to generate 1N +  perfect 

sequences with the same length N that have a maximum 

absolute periodic cross-correlation value given by 1N + . 

By simulation, we have confirmed all properties and found 

that the perfect sequences derived from bipolar m-sequences 

have a low maximum absolute value of periodic 

cross-correlation. Therefore, the PPAC sequences may be 

used in a synchronous or asynchronous CDMA transmission 

system. 

In order to enable their digital implementation, the new 

perfect sequences have been converted into M-ary PPAC 

codes and tested in synchronous and asynchronous 

transmission scenarios. It was found that the PPAC codes can 

be more versatile than the well known Gold codes, orthogonal 

Gold codes, and perfect sequences of Chu. 
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