
A fast FPGA implementation of the inter-layer deblocking filter for H.264/SVC
Guilherme Corrêa, Luciano Agostini†, Luís A. Cruz¥

† Grupo de Arquiteturas e Circuitos Integrados, Universidade Federal de Pelotas, Pelotas, Brasil
e-mail: {gcorrea_ifm, agostini}@ufpel.edu.br

¥ Instituto de Telecomunicações, Universidade de Coimbra, Coimbra, Portugal
e-mail: lcruz@deec.uc.pt

Abstract1— The scalable extension to H.264/AVC defines a
coding scheme that organizes data in such a way that starting
from a base layer increased spatial, temporal and quality detail
can be obtained by the addition of successive information
layers. In the case of spatial scalability a fundamental operation
is inter-layer prediction which due to the block based nature of
the algorithm originates block-edge discontinuities. To alleviate
this problem the standard defines a block edge effect filter to
smooth block boundaries . This work presents a novel filtering
order aimed at speeding-up filter operation in the context of an
FPGA-based implementation.

I. INTRODUCTION

The technological advances of the last decades has brought
us a wide range of multimedia-capable devices as well as
data networks with varying transmission characteristics At
the same time, video coding has attained a development state
that makes feasible the transmission of very high resolution
(temporal and spatial) video enabling services like HDTV
broadcast, SDTV transmission over IP networks and low
resolution video communication over wireless links with
rendering at portable devices. This plethora of device and
network configurations posed a problem to video service
providers as they either had to have a multitude of coded
representations of each video item in their repository, one for
each possible combination of target device and transmission
link (in the case of real-time services multiple coders had to
be used) or had to employ transcoding devices to convert the
original video streams coded at the most inclusive resolution
and quality level to a format suitable for transmission and
decoding by the target network and receiving device. Since
both solutions had serious disadvantages, a new way of
achieving Universal Media Access (UMA) was sought in the
form of scalable coding techniques which found their way
into an extension of the standard H.264/AVC, here forth
designated as H.2647SVC.

The general operating principle of scalable coding (as used
in H.264/SVC) defines a hierarchy of information layers
where a base layer represents the video signal at a given
minimum temporal and spatial resolution and quality
Additional information layers are used to increase (in discrete
steps) temporal and spatial resolution as well as the
representation fidelity (quality). The arrangement allows
orthogonal refinement along each of the three scalability

This work was supported by IT – Coimbra and the Santander Group.

dimensions, time, space and quality and in the case of
H.264/SVC each layer’s information is carried as an
independent set of bits identified according to the NAL
signaling protocol detailed by H.264/SVC normative
documents.

Spatial scalability in H.264/SVC is realized using among
other operations, inter-layer prediction whereby a higher
layer image region is predicted from the corresponding lower
layer area by a process of up-sampling. Unfortunately the
block-based nature of the entire algorithm causes the
appearance of block-edge artifacts at the boundaries between
blocks which degrade the quality of the reconstructed video.
To reduce the visible effects of this phenomenon,
H.264/SVC defines an inter-layer filtering procedure that is
carried out across block boundaries (deblocking filter). This
filter performs quite well but has a high computational cost
and so it is of paramount importance to have efficient
implementations of its operations. In the case of
implementations using programmable devices (e.g. FPGAs)
the major goals are low cycle-count and low gate-count
solutions as they translate into respectively low latency
operation (possibly also calling for lower speed devices with
reduce power consumption) and smaller devices (desirable
for portable low-cost coder/decoder devices).

This work presents a new scheduling of the filtering
operations of the H.264/SVC interlayer deblocking filter
specifically designed for an implementation using FPGA
programmable devices. To the best of our knowledge it will
be shown that the filtering order proposed achieves a lower
operation count than the competing solutions presented the
literature.

This communication is structured as follows; in section II
we outline the operation of the deblocking filter as specified
by H.264/SVC, section III is devoted to the exposition of the
best performing filter ordering solutions published in the
technical literature as well as our solution, in section IV the
architecture of the proposed filter is presented, section V
reports on the results and compares them to competing
solutions. Section VI concludes with a discussion of the
current results and of promising directions for future work.

II. DEBLOCKING FILTER

Similarly to H.264/SVC so too the non-scalable
H.264/AVC standard specifies a deblocking filter to be used
in the decoder but in the latter the filter is used to smooth the
reference reconstructed block boundaries before using its
pixels in the prediction of the current block. The filter is

highly adaptive and can discern between naturally occurring
edges due to video texture and edges caused by severe
quantization and furthermore the filtering operation is
applied only to blocks coded in some modes.

The scalable-standard deblocking filter is similar to the
non-scalable version in that for the first layer only the intra-
coded blocks will be subject to smoothing. This is a result of
the single-loop decoding used in the scalable extension of
H.264/AVC [7]. Therefore all the blocks that were inter
coded will not be filtered and application of the scalable filter
will be less expensive than in the case for the non-scalable
standard where all the reconstructed blocks will be filtered.

The filtering operation is applied across the horizontal and
vertical boundaries of the 4x4 blocks that makeup a
macroblock in accordance with the steps 1 to 4 listed bellow
with reference to figure 1 [8].

1. Filter across the vertical edges of the luminance
macroblock (edges a,b,c and d on figure 1).

2. Filter across the horizontal edges of the luminance
macroblock (edges e,f,g and h on figure 1).

3. Filter across the vertical edges of each chrominance
block (edges i and j on figure 1).

4. Filter across the horizontal edges of each
chrominance block (edges k and l on figure 1).

Figure 1 – Block edges to be filtered

Each filtering operation modifies up to three pixels on each

side of the edge and involve four pixels of each of the two
blocks (p and q) that meet at the edge across which filtering
is taking place. The filter strength is adjustable and depends
on the quantization step-size used when the block was coded,
on the coding mode of neighboring blocks and the gradient
of the values of the pixels computed across the edge being
filtered. The standard specifies five different strengths
parameterized as bS which takes values 0 through 4, 0
standing for “no filtering” and 4 indicating maximum
smoothing. The value of bS is chosen according to the
following algorithm:

If p or q belong to an intra macroblock (MB)

different from I_BL
 Then bS = 4
If p and q belong to a intra MB of type I_BL
 Then

If at least one of the transform coefficients
of the blocks to which samples p0 and q0 belong
is ≠ 0

 Then bS = 1
 Else bS = 0

If p or q belong to an inter MB
 Then
If p (or q) belong to a inter MB and the
residues matrix rSL has at least one value ≠ 0
in the blocks associated with sample p0 (or
q0).

 Then bS = 2
 Else bS = 1

However for values of bS>0 filtering takes place only if
condition (1) is met where p2, p1, p0, q0, q1, and q2
represent the samples on both sides of the edge and occurring
in this order

| p0 – q0 | < α and | p1 – p0 | < β and | q1 – q0 | ≤ β (1)

where α and β defined in the standard increase with
increasing average value of the quantizer step-size (QP) of
blocks p and q so that if QP is small so will be α and β and
the filter will seldom be applied and vice-versa. For more
details please consult [3].

III. FILTERING ORDERS

The only restriction imposed by H.264/SVC on the filtering
order is that if a pixel is involved in vertical and horizontal
filtering, then the latter should precede the former. This is
rather loose and offer opportunities for implementation
optimization by exploring different filtering scheduling,
aiming at faster operation through the use of parallelism or at
solutions that use less memory. The filtering order proposed
by H.264/AVC [2] is shown in figure 2.

Figure 2 – Filtering order proposed by standard

H.264/AVC

It is obvious that all vertical edges are filtered before the

horizontal ones and since the results of vertical filtering are
needed for the horizontal filtering they have to be kept in
memory making this solution quite costly in terms of

memory usage. Khurana proposes in [9] a different order
where horizontal and vertical filtering alternate as illustrated
in figure 3.

Figure 3 – Alternate order of Khurana [9]

Using this order we have only to keep in memory a line of

4x4 blocks to be used during the next edge filtering and after
being filtered in both directions a pixel can be written back to
main memory. This principle inspired Shen [10] who
proposed the order depicted in figure 4 where a higher
frequency of vertical-horizontal filtering direction change is
observed

Figure 4 – Shen´s filtering order [10]

resulting in a need for a smaller temporary buffer. Li[11]
proposes another solution involving a degree of parallelism
with vertical and horizontal filtering occurring at the same
time, speeding up the filtering at the cost of having to use
two filtering units. The scheduling for this solution is
presented in figure 5.

Figure 7 – Filter architecture

Figure 5 – Filtering order from Li [11]

At the start our work it was decided to take a finer

granularity approach and seek filtering orders defined at
pixel level instead of at block level as is the case of the
solution
presented so far thereby hoping to achieve a higher degree of
parallelism while keeping memory use and the number of
filtering units low. The filtering order proposed is presented
in figure 6 (see last page) were same number labels identify
filtering operations that can be executed in parallel on
different filtering cores.

IV. GLOBAL ARCHITECTURE

Our architecture uses four filter cores who share a bS
computing unit as well as a α and β computing unit. Since
filtering occurs along a line-of-pixels (LOP) which can be
vertically or horizontally aligned we would need a
transposition operation to filter orthogonally the pixel storage
direction. Instead we use transposition matrices to be able to
access pixel memory in either direction. The filter
architecture is composed of the modules shown in figure 7:
eight transposition matrices (T1 to T8), four filter kernels (F1
to F3), one bS calculation unit (bS_calc), a threshold
calculator (thr_deriv) a c1 calculator (c1_calc) and a control
unit. Filtering is performed in a pipelined fashion as follows:

Cycle 1. First LOP from first blocks of macroblock are
loaded into T1,T2,T3,T4,

Cycle 2. Second LOP are loaded into T1,T2,T3,T4.
Cycle 3. Third LOP are loaded into T1,T2,T3,T4.
Cycle 4. Fourth LOP are loaded into T1,T2,T3,T4.
Cycle 5. First filter core starts filtering || First LOP of

second set of blocks are loaded into T5,T6,T7,T8.
Cycle 6. From this cycle on, one more filter core is

activated until all are busy.
From this point on, for each cycle two filtering operations
are performed per filtering core. If vertical filtering has
been done LOP can be sent to main memory otherwise it is
stored in its matrix and later read in filtered in the vertical
direction.

When all the filtering operations using pixels from a

transposition matrix have been done the matrix can be filled
with data from then next set of blocks. This way the matrix

that receives the samples from the first block will also store
the samples from the ninth block and so on.

V. RESULTS AND DISCUSSION

The architecture proposed in this article takes 53 cycles to
filter one macroblock which is about 24% less than the best
of the competing proposals with the same number of filtering
cores [12]. Table 1 shows other solutions data concerning
number of cycles necessary for filtering one macroblock and
size of working memory needed.

 Cycles

per MB
Filter
Cores

Memory
Bytes

H.264/AVC [2] 192 1 512

Khurana [9] 192 1 128

Sheng [10] 192 1 80

Li [11] 140 2 112

Ernst [12] 70 4 224

This work 53 4 128
Table 1 – Comparison with other solutions

Even though only one of the other methods uses four filter

cores, our proposal is faster and uses less memory. The
architecture was described using VHDL and synthesized for
Altera Stratix IV devices. The core filter used 737 ALUTs
and was able to run at 166,56 MHz which considering
operation of the four cores allows filtering of all blocks of a
video with VGA resolution (640x480) at a rate of 5,780
frames per second.

VI. CONCLUSIONS

This work presented a competitive architecture for the
implementation of the deblocking filter of H.264/SVC.

Results show its advantages over similar published designs,
outperforming the best one by 24%. In the near future the
architecture will undergo further validation, synthesis and
prototyping using Altera Stratix IV devices.

REFERENCES
[1] C. A. Segall e G. J. Sullivan, “Spatial Scalability Within the

H.264/AVC Scalable Video Coding Extension”, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, N. 9, pp. 1121-
1135, Set. 2007.

[2] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG. Draft of
Version 4 of H.264/AVC (ITU-T Recommendation H.264 and
ISO/IEC 14496-10 (MPEG-4 part 10) Advanced Video Coding), 2003.

[3] T. Wiegand, G. Sullivan, J. Reichel, H. Schwarz and M. Wien, “Joint
Draft 11 of SVC Amendment”, Joint Video Team, Doc. JVT-X201, Jul.
2007.

[4] H. Huang, W. Peng, T. Chiang e H. Hang, “Advances in the Scalable
Amendment of H.264/AVC”, Communications Magazine, IEEE. Vol.
45, No. 1, pp. 68-76, Jan. 2007.

[5] H. Schwarz, D. Marpe, T. Wiegand, “Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard”, IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 17, No. 9, pp. 1103-
1120, Sept. 2007, invited paper.

[6] M. Wien, H. Schwarz, T. Oelbaum, “Performance Analysis of SVC”,
IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 17, No. 9, pp.1194-1203, Sept. 2007.

[7] C. A. Segall, G. Sullivan, “Spatial Scalability Within the H.264/AVC
Scalable Video Coding Extension”, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 17, No. 9, pp. 1121-1135. Set.
2007.

[8] I. Richardson, “H.264 and MPEG-4 Video Compression: Video Coding
for Next-generation Multimedia”, John Wiley & Sons Publishers, USA,
2003.

[9] G. Khurana, A. A. Kassim, T. P. Chua e M. B. Mi, “A pipelined
hardware implementation of In-loop Deblocking Filter in H.264/AVC”.
IEEE Transactions on Consumer Electronics, 52(2):536 – 540, 2006.

[10] B. Sheng, W. Gao, e D. Wu, “An Implemented Architecture of
Deblocking Filter for H.264/AVC”. Proceedings - International
Conference on Image Processing, ICIP, 1:665 – 668, 2004.

[11] L. Li, S. Goto, e T. Ikenaga, “A highly parallel architecture for
deblocking filter in H.264/AVC”. IEICE Transactions on Information
and Systems, E88(7):1623 – 1628, 2005.

[12] Ernst Eric, “Architecture Design of a Scalable Adaptive Deblocking
Filter for H.264/AVC”. MSc thesis. Rochester, New York, 2007.

Figure 6 – Proposed filtering order.

