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Abstract1— The scalable extension to H.264/AVC defines a 
coding scheme that organizes data in such a way  that starting 
from a base layer increased spatial, temporal and quality detail 
can be obtained by the addition of successive information  
layers. In the case of spatial scalability a fundamental operation 
is  inter-layer prediction which due to the block based nature of 
the algorithm originates block-edge discontinuities. To alleviate 
this problem the standard defines a block edge effect filter to 
smooth block boundaries . This work presents a novel filtering 
order aimed at speeding-up filter operation in the context of an 
FPGA-based implementation.  

I. INTRODUCTION 

The technological advances of the last decades has brought 
us a wide range of multimedia-capable devices as well as 
data networks with varying transmission characteristics At 
the same time, video coding has attained a development state 
that makes feasible the transmission of very high resolution  
(temporal and spatial) video enabling services like HDTV 
broadcast, SDTV transmission over IP networks and low 
resolution video communication over wireless links with 
rendering at portable devices. This plethora of device and 
network configurations posed a problem to video service 
providers as they either had to have a multitude of coded 
representations of each video item in their repository, one for 
each possible combination of target device and transmission 
link (in the case of real-time services multiple coders had to 
be used) or had to employ transcoding devices to convert the 
original video streams coded at the most inclusive resolution 
and quality level to a format suitable for transmission and 
decoding by the target network and receiving device. Since 
both solutions had serious disadvantages, a new way of 
achieving Universal Media Access  (UMA) was sought in the 
form of scalable coding techniques which found their way 
into an extension of the standard H.264/AVC, here forth 
designated as H.2647SVC.  

The general operating principle of scalable coding (as used 
in H.264/SVC) defines a hierarchy of information layers 
where a base layer represents the video signal at a given 
minimum temporal and spatial resolution and quality 
Additional information layers are used to increase (in discrete 
steps) temporal and spatial resolution as well as the 
representation fidelity (quality). The arrangement allows 
orthogonal refinement along each of the three scalability 
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dimensions, time, space and quality and in the case of 
H.264/SVC each layer’s information is carried as an 
independent set of bits identified according to the NAL 
signaling protocol detailed by H.264/SVC normative 
documents. 

Spatial scalability in H.264/SVC is realized using among 
other operations, inter-layer prediction whereby a higher 
layer image region is predicted from the corresponding lower 
layer area by a process of up-sampling. Unfortunately the 
block-based nature of the entire algorithm causes the 
appearance of block-edge artifacts at the boundaries between 
blocks which degrade the quality of the reconstructed video. 
To reduce the visible effects of this phenomenon, 
H.264/SVC defines an inter-layer filtering procedure that is 
carried out across block boundaries (deblocking filter). This 
filter  performs quite well but has a high computational cost 
and so it is of paramount importance to have efficient 
implementations of its operations. In the case of 
implementations using programmable devices (e.g. FPGAs) 
the major goals are low cycle-count and low gate-count 
solutions as they translate into respectively low latency 
operation (possibly also calling for lower speed devices with 
reduce power consumption) and smaller devices (desirable 
for portable low-cost coder/decoder devices). 

This work presents a new scheduling of the filtering 
operations of the H.264/SVC interlayer deblocking filter 
specifically designed for an implementation using FPGA 
programmable devices. To the best of our knowledge it will 
be shown that the filtering order proposed achieves a lower 
operation count than the competing solutions presented the 
literature. 

This communication is structured as follows; in section II 
we outline the operation of the deblocking filter as specified 
by H.264/SVC, section III is devoted to the exposition of the 
best performing filter ordering solutions published in the 
technical literature as well as our solution, in section IV the 
architecture of the proposed filter is presented, section V 
reports on the results and compares them to competing 
solutions. Section VI concludes with a discussion of the 
current results and of promising directions for future work. 

II. DEBLOCKING FILTER 

Similarly to H.264/SVC so too the non-scalable 
H.264/AVC standard specifies a deblocking filter to be used 
in the decoder but in the latter the filter is used to smooth the 
reference reconstructed block boundaries before using its 
pixels in the prediction of the current block. The filter is 



highly adaptive and can discern between naturally occurring 
edges due to video texture and edges caused by severe 
quantization and furthermore the filtering operation is 
applied only to blocks coded in some modes. 

The scalable-standard deblocking filter is similar to the 
non-scalable version in that for the first layer only the intra-
coded blocks will be subject to smoothing. This is a result of 
the single-loop decoding used in the scalable extension of 
H.264/AVC [7]. Therefore all the blocks that were inter 
coded will not be filtered and application of the scalable filter 
will be less expensive than in the case for the non-scalable 
standard where all the reconstructed blocks will be filtered. 

The filtering operation is applied across the horizontal and 
vertical boundaries of the 4x4 blocks that makeup a 
macroblock in accordance with the steps 1 to 4 listed bellow 
with reference to figure 1 [8]. 

1. Filter across the vertical edges of the luminance 
macroblock (edges a,b,c and d on figure 1). 

2. Filter across the horizontal edges of the luminance 
macroblock (edges e,f,g and h on figure 1). 

3. Filter across the vertical edges of each chrominance 
block (edges i and j on figure 1). 

4. Filter across the horizontal edges of each 
chrominance block (edges k and l on figure 1). 

 

 
Figure 1 – Block edges to be filtered 

 
Each filtering operation modifies up to three pixels on each 

side of the edge and involve four pixels of each of the two 
blocks (p and q) that meet at the edge across which filtering 
is taking place. The filter strength is adjustable and depends 
on the quantization step-size used when the block was coded, 
on the coding mode of neighboring blocks and the gradient 
of the values of the pixels computed across the edge being 
filtered. The standard specifies five different strengths 
parameterized as bS which takes values 0 through 4, 0 
standing for “no filtering” and 4 indicating maximum 
smoothing. The value of bS is chosen according to the 
following algorithm: 

 
If p or q belong to an intra macroblock (MB)

different from I_BL 
  Then bS = 4 
If p and q belong to a intra MB of type I_BL 
  Then 

If at least one of the transform coefficients 
of the blocks to which samples p0 and q0 belong
is ≠ 0 

         Then bS = 1 
         Else bS = 0 

If p or q belong to an inter MB 
  Then 
If p (or q) belong to a inter MB and the 
residues matrix rSL has at least one value ≠ 0 
in the blocks associated with sample p0 (or
q0). 

         Then bS = 2 
         Else bS = 1 

However for values of bS>0 filtering takes place only if 
condition (1) is met where p2, p1, p0, q0, q1, and q2 
represent the samples on both sides of the edge and occurring 
in this order 

| p0 – q0 | < α and | p1 – p0 | < β and | q1 – q0 | ≤ β (1) 

where α and β  defined in the standard increase with 
increasing average value of the quantizer step-size (QP) of 
blocks p and q so that if QP is small so will be α and β and 
the filter will seldom be applied and vice-versa. For more 
details please consult [3].  

III. FILTERING ORDERS 

The only restriction imposed by H.264/SVC on the filtering 
order is that if a pixel is involved in vertical and horizontal 
filtering, then the latter should precede the former. This is 
rather loose and offer opportunities for implementation 
optimization by exploring different filtering scheduling, 
aiming at faster operation through the use of parallelism or at 
solutions that use less memory. The filtering order proposed 
by H.264/AVC [2] is shown in figure 2. 

 
Figure 2 – Filtering order proposed by standard 

H.264/AVC 
 
It is obvious that all vertical edges are filtered before the 

horizontal ones and since the results of vertical filtering are 
needed for the horizontal filtering they have to be kept in 
memory making this solution quite costly in terms of 



memory usage. Khurana proposes in [9] a different order 
where horizontal and vertical filtering alternate as illustrated 
in figure 3. 

 
Figure 3 – Alternate order of Khurana [9] 

 
Using this order we have only to keep in memory a line of 

4x4 blocks to be used during the next edge filtering and after 
being filtered in both directions a pixel can be written back to 
main memory. This principle inspired Shen [10] who 
proposed the order depicted in figure 4 where a higher 
frequency of vertical-horizontal filtering direction change is 
observed 

 
Figure 4 – Shen´s filtering order [10] 

 
resulting in a need for a smaller temporary buffer. Li[11] 
proposes another solution involving a degree of parallelism 
with vertical and horizontal filtering occurring at the same 
time, speeding up the filtering at the cost of having to use 
two filtering units. The scheduling for this solution is 
presented in figure 5. 

 
Figure 7 – Filter architecture 

 
Figure 5 – Filtering order from Li [11] 

 
At the start our work it was decided to take a finer 

granularity approach and seek filtering orders defined at 
pixel level instead of at block level as is the case of the 
solution  
presented so far thereby hoping to achieve a higher degree of 
parallelism while keeping memory use and the number of 
filtering units low. The filtering order proposed is presented 
in figure 6 (see last page) were same number labels identify 
filtering operations  that can be executed in parallel on 
different filtering cores. 

IV. GLOBAL ARCHITECTURE 

Our architecture uses four filter cores who share a bS 
computing unit as well as a α and β  computing unit. Since 
filtering occurs along a line-of-pixels (LOP) which can be 
vertically or horizontally aligned we would need a 
transposition operation to filter orthogonally the pixel storage 
direction. Instead we use transposition matrices to be able to 
access pixel memory in either direction. The filter 
architecture is composed of the modules shown in figure 7: 
eight transposition matrices (T1 to T8), four filter kernels (F1 
to F3), one bS calculation unit (bS_calc), a threshold 
calculator (thr_deriv) a c1 calculator (c1_calc) and a control 
unit. Filtering is performed in a pipelined fashion as follows: 

Cycle 1. First LOP from first blocks of macroblock are 
loaded into T1,T2,T3,T4, 

Cycle 2. Second LOP are loaded into T1,T2,T3,T4. 
Cycle 3. Third LOP are loaded into T1,T2,T3,T4. 
Cycle 4. Fourth LOP are loaded into T1,T2,T3,T4. 
Cycle 5. First filter core starts filtering || First LOP of 

second set of blocks are loaded into T5,T6,T7,T8. 
Cycle 6. From this cycle on, one more filter core is 

activated until all are busy. 
From this point on, for each cycle two filtering operations 
are performed per filtering core. If vertical filtering has 
been done LOP can be sent to main memory otherwise it is 
stored in its matrix and later read in filtered in the vertical 
direction. 
 
When all the filtering operations using pixels from a 

transposition matrix have been done the matrix can be filled 
with data from then next set of blocks. This way the matrix 



that receives the samples from the first block will also store 
the samples from the ninth block and so on.  

V. RESULTS AND DISCUSSION 

The architecture proposed in this article takes 53 cycles to 
filter one macroblock which is about 24% less than the best 
of the competing proposals with the same number of filtering 
cores [12]. Table 1 shows other solutions data concerning 
number of cycles necessary for filtering one macroblock and 
size of working memory needed.  

 
 Cycles 

per MB 
Filter 
Cores 

Memory 
Bytes 

H.264/AVC [2] 192 1 512 

Khurana [9] 192 1 128 

Sheng [10] 192 1 80 

Li [11] 140 2 112 

Ernst [12] 70 4 224 

This work 53 4 128 
Table 1 – Comparison with other solutions 

 
Even though only one of the other methods uses four filter 

cores, our proposal is faster and uses less memory. The 
architecture was described using VHDL and synthesized for 
Altera Stratix IV devices. The core filter used 737 ALUTs 
and was able to run at 166,56 MHz which considering 
operation of the four cores allows filtering of all blocks of a 
video with VGA resolution (640x480) at a rate of 5,780 
frames per second.  

VI. CONCLUSIONS 

This work presented a competitive architecture for the 
implementation of the deblocking filter of H.264/SVC. 

Results show its advantages over similar published designs, 
outperforming the best one by 24%. In the near future the 
architecture will undergo further validation, synthesis and 
prototyping using Altera Stratix IV devices. 
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Figure 6 – Proposed filtering order. 


