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Abstract1— The Nonnegative Matrix Factorization (NMF) has 
become an increasingly popular approach in many areas of 
telecommunications. A number of properties and a nonlinear 
programming formulation for NMF are introduced, which allow 
approximations to the solution of diverse image processing 
problems, ranging from data analysis to video summarization,  
pattern recognition and image reconstruction. A spectral 
projected-gradient algorithm is investigated for the solution of 
the corresponding optimization problem. Techniques for finding 
an initial point of the decomposition are also discussed. Some 
computational experience is reported to highlight the efficacy of 
these techniques in practice. 

 

I. Introduction 
 
The Nonnegative Matrix Factorization (NMF) problem can 
be stated as follows: given a nonnegative matrix , 
find nonnegative matrices  and  such 
that . This problem has been intensively applied in 
recent years in various fields of science and engineering, such 
as biomedical applications, face and object recognition, data 
mining and semantic analysis. This approach seems to be 
particularly effective for problems where the identification of 
components is of utmost importance [8]. In this paper we 
mainly focus on video and image signal processing. For these 
problems, the matrices V,W and H have a particular structure 
that reflects the nature of the problem. For this reason, NMF 
is recommended for data compression prior to analysis and 
component identification. Furthermore, NMF has become 
increasingly popular for component and feature identification 
in image and video signals, when compared with other 
techniques, such as principal component analysis [4]. Other 
fields of application include sensor technology and computer 
hardware, where massive quantities of data have to be 
processed and classical data analysis tools easily become 
inadequate. The processing of these huge amounts of data 
created the need of new tools for data representation, 
disambiguation and dimensionality reduction. Furthermore, 
in many situations the data observed from complex 
phenomena represent the integrated result of several 
interrelated variables acting together. A reduced system 

                                                
 
 

model may provide the retrieval of information at a level 
close to the original system. In practice, quite often the data 
to be analyzed has to be nonnegative. Since classic tools 
cannot guarantee the maintenance of this property, the NMF 
may be a valid approach to deal with such problems. 
 

II. Characterization of the NMF problem 
 
We start by noting that, whenever there is one exact 
factorization, there are infinity possible pairs for the 
decomposition. In fact, if is a solution for NMF, so 
are all the pairs of the form for any diagonal 
matrix of order r with positive diagonal elements. The 
question to be answered is not how many decompositions 
there are but instead when one exists. It is a classical result 
[3] that the existence of an exact factorization for a given 
matrix  depends on the parameter . The following 
definition helps to understand the NMF problem. 
 
Definition: Given a nonnegative matrix of order m × n , the 
minimum positive integer  such that there are matrices 

 and  satisfying  is called the positive 
rank of V and is denoted by . 
 
Then the following result holds [3]. 
 
Theorem: For a given nonnegative matrix V of order m × n ,  

 
 
Therefore finding an exact factorization for a nonnegative 
matrix V directly depends on the value of  that is used. The 
exact factorization can only be achieved by fixing

. For values of r  below this limit, only an 
approximate decomposition for V  can be computed. On the 
other hand the increase of the value of r  implies a bigger 
computational work for computing the NMF of a matrix. 
Finally there are no efficient algorithms to compute the 
posrank of a nonnegative matrix. Fortunately, in some 
applications such as image recognition, computing an exact 
factorization is not an important issue [11]. Contrary to the 
LU decomposition of a square matrix, there is no direct 
algorithm for computing the nonnegative decomposition of a 
nonnegative matrix. The most common approach is to 
formulate NMF as an optimization problem and seek to 
obtain an approximation of a global optimum to this problem 



of good quality. The most important formulation for the NMF 
employs the Frobenius norm of a matrix and is given as 
below [8]: 

   (1) 

where is a given nonnegative matrix of order m × n , is 
a matrix, is a matrix and denotes the 
Frobenius norm.  
Clearly, the product is an approximate factorization of 
the matrix V. As stated before, an appropriate decision for the 
choice of the value of  is critical in practice. The dimension 
of this formulation is , which implies that, the 
bigger is the order of the data matrix V and of the value of 
the parameter r , the larger is the dimension of the 
optimization problem. Other important challenges affecting 
the numerical solution of the formulation (1) include the 
existence of different local minima due to the non-convexity 
of the objective function. Nevertheless, (1) constitutes a 
global optimization problem for which the global optimal 
value is known to be zero provided an exact factorization for 
the matrix V exists for the chosen value of r . 
 
III. Algorithms for the NMF problem 
A great deal of effort has been devoted to the design of 
efficient algorithms. In particular, the multiplicative Lee-
Seung algorithm [1, 7, 9] has been recommended by several 
authors. This procedure is essentially a fixed-point approach 
that can be expressed as follows: 
 
Lee-Seung Algorithm: 
 

1. Initialize W, H; 
2. While stopping condition is not satisfied, repeat 

 

 

 
It is possible to show that the algorithm converges under 
some reasonable assumptions. However, there is no guarantee 
that the accumulation point found by the algorithm is even a 
stationary point of the objective function on the constraint set 
defined by the nonnegative constraints mentioned above. On 
the positive side, the algorithm is quite simple to implement 
for a dense or a sparse matrix V .  
Another approach for the solution of this problem is the so-
called Alternate Least-Squares (ALS) Algorithm [1, 7, 11]. 
This method consists of alternately solving two linear least-
squares problems and can be stated as follows: 
 
 
 
 
 

Alternate Least-Squares (ALS) Algorithm: 
 

1. Given ; 
2. While stopping condition is not satisfied, repeat 

a. Solve linear least-squares problem 

 

b. Solve linear least-squares problem 

 

 
This algorithm derives from the observation that the NMF 
objective function is convex on either of the two variables H 
and W. Therefore, given one of these two matrices, the other 
one can be computed by linear least-squares calculations. The 
nonnegative constraints on both the linear least-squares 
problems ensure convergence of the Alternate Least-Squares 
Algorithm to a stationary point of the objective function on 
the set defined by the nonnegative constraints.  However, a 
great amount of work is required as two least-squares 
problems with nonnegative constraints have to be solved in 
each iteration. In practice, the optimal solutions of the 
unconstrained least-squares problems are found and then 
projected to the constraint set of the NMF optimization 
problem (1). This is simply done by transforming all the 
negative components of the unconstrained optimal solutions 
of the linear least-squares problems to zero. This 
modification reduces the amount of work of the algorithm to 
a great extent. On the negative side, there is no guarantee that 
the modified algorithm converges to a stationary point of the 
objective function on the constraint set defined by the 
nonnegative constraints.  
Recognizing the drawbacks of the two approaches discussed 
before, we propose to use of the so-called Spectral Projected-
Gradient (SPG) method to the solution of the optimization 
problem (1). This algorithm has been considered to be an 
efficient technique for the solution of large-scale optimization 
structured problems [2, 4, 8].  In some cases [8] the algorithm 
even outperforms some the most important commercial 
nonlinear programming codes, such as LOQO [12] and 
MINOS [10]. The SPG algorithm can be applied to general 
minimization problems of the form 
 

 
subject to  

where ,  and is a convex and closed set.  
If x = (W, H), the objective function is given by 
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and the constraint set is defined by nonnegative constraints, 
the steps of the SPG algorithm can be sated as below. 
 
 
 
 
 
 



Spectral Projected-Gradient (SPG) Algorithm: 
 

0. Given , , , and 
; 

1. Compute  and ; 
2. Compute the projected gradient direction: 

 
 

where P(X,Y )  is the projection of (X,Y ) on the set 
defined by the nonnegative constraints. 

3. If  then is a stationary 
point;       
Stop; 

4. Compute , where  is the first 
nonnegative integer m  satisfying  
ϕ(Wk + β

mdW ,Hk + β
mdH ) ≤ϕ(Wk ,Hk )−τβ

m (dW ,dH )
Tθ  

where θ = (∇Wϕ(Wk ,Hk ),∇Hϕ(Wk ,Hk )).  
5. Update  
6. Set and return to Step 1. 

 
According to [8], the parameter ηk  is computed by the 
following procedure: 

k = 0⇒ηk = 1  

∀k > 0 :ηk =
P[ηmin ,ηmax ]

ξk
νk

⎛
⎝⎜

⎞
⎠⎟

if νk > 0

ηmax            otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

where P[l ,u ](α ) represents the projection of  α ∈R on the 
interval [l,u] ,  

ξk = (Wk ,Hk )− (Wk−1,Hk−1)( )T (Wk ,Hk )− (Wk−1,Hk−1)( )  

νk = (Wk ,Hk )− (Wk−1,Hk−1)( )T (∇Wϕ(Wk ,Hk ),∇Hϕ(Wk ,Hk ))  

and ηmin and ηmax  are small and large numbers respectively. 
In practiceηmin = 10

−2 andηmax = 10
2 are appropriate in 

general. 
Furthermore the projection (Z,U ) = P(X,Y )  is computed as 
follows: 

Zij = min 0,Xij{ },   Uij = min 0,Yij{ },   for all i, j  
As before, the implementation of the SPG method is quite 
simple. Furthermore it is possible to show [2] that under 
reasonable hypotheses the algorithm converges to a stationary 
point of the objective function on the constraint set defined 
by the nonnegative constraints.   
All the three methods described in this section are local in the 
sense that can guarantee at most a stationary point of the 
objective function on the set defined by the nonnegative 
constraints. However, the main objective of these algorithms 
is to find a feasible solution with a small objective function 
value. Computational experience reported elsewhere shows 
that the choice of initial point  is quite important to 
this goal. In practice the algorithms are run several times with 
different initial points and the NMF is chosen as the feasible 

solution (H ,W )  of (1) with a smaller objective function 
value.  As discussed in [1] several approaches have been 
recommended for finding such initial points. One of the 
simplest techniques that has been quite employed in practice 
consists of randomly generate the elements of these initial 
matrices. Alternatively, a second simple approach assigns 
fixed values to the elements of the matrices. It is believed that 
the first approach performs well and usually better than the 
one that uses initial iterates with fixed elements. 
 
 

IV. Computational Experience 
In this section we study the numerical efficiency of the SPG 
algorithm and the effect of the initial approximations on the 
performance of the SPG algorithm. For this purpose, a 
random test problem was built, such that the nonnegative 
matrix is constructed so that 

  V = V1 :u1u2…un−r[ ],ui ∈Rm ,V1 ∈Rm×r  

whereV1  is a given randomly generated matrix, ui are 

column vectors of the form  
ui = [v1,r+i …vn,r+i ]

T , 

 
i = 1,…,n − r and 

 

vk ,r+i = vkjα ji
j=1

r

∑ , k = 1,…,m  

with α ji ≥ 0 , for all i, j . Trivially, at least one factorization 
V =W 'H '  exists and is given by 

W ' = V1 and 

 

H ' =
 α11 … α1,n−r

Ir   … 
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Two NMF problems (PROB1 and PROB2) were generated 
following this procedure. Tables 1, 2 and 3 display the 
performances of Lee-Seung, ALS and SPG algorithms, 
respectively on the solution of these problems. In these 
tables, NVAR represents the total number of variables of the 
optimization problem (1), CPU is the total CPU time required 
for the solution of the optimization problem (1) on a Pentium 
4 computer with 1Gb RAM running at 2Ghz, ITER is the 
total number of iterations and VAL is the value of the 
objective function at the solution found by the algorithms. 
Finally we have used the tolerance ε = 10−4 for the SPG 
algorithm and the stopping criteria stated in [6] for the two 
remaining algorithms with the same tolerance. Four initial 
matrices were tested in the   experience. The first technique 
for the construction of the initial matrix is denoted by Rand 
and consists of choosing all the elements as randomly 
positive values in the interval [0,1] . The remaining three 
initial matrices have all its elements equal to 0.25, 0.50 and 
0.75 respectively. The values in the row Rand displayed in 
these tables correspond to the average of the computational 
effort required by the three algorithms for the solution of 
each one of the problems PROB1 and PROB2 with 5 
different initial points. 



The results seem to indicate that the random initial point 
strategy leads to good approximations for the solution of the 
NMF problems by the SPG algorithm, at the expense of large 
iteration counts and CPU times. On the other hand, fixed 
strategies force the algorithm to compute stationary points 
that are not solutions of the NMF problems in a quite small 
number of iterations and CPU time. These conclusions also 
seem to be valid for the two remaining algorithms. The 
experiences also show that the SPG algorithm always finds 
stationary points of (1) with a small objective function value 
when the RAND initial strategy is employed, while the two 
remaining methods are not so consistent in this extent. 
 

Problems M N r NVAR INIT CPU ITER VAL 
Rand 0.08 416.2 0.07 
0.25 0.02 2 2.13 
0.50 0.02 2 2.13 PROB1 12 24 4 144 

0.75 0.02 2 2.13 
Rand 0.11 431.6 0.15 
0.25 0.02 2 4.87 
0.50 0.02 2 4.87 

PROB2 24 48 4 288 

0.75 0.02 2 4.87 

Table 1 – Performance of the Lee-Seung algorithm. 
 

Problems M N r NVAR INIT CPU ITER VAL 
Rand 0.06 85 1.61 
0.25 0.03 3 2.12 
0.50 0.03 3 2.12 

PROB1 12 24 4 144 

0.75 0.03 3 2.12 
Rand 0.06 118 0.08 
0.03 0.03 3 4.86 
0.03 0.03 3 4.86 

PROB2 24 48 4 288 

0.03 0.02 3 4.86 

Table 2 – Performance of the ALS algorithm 
 
Problems M N r NVAR INIT CPU  ITER VAL 

Rand 0.38 3505.6 0.00492 
0.25 0.04 59 4.47 
0.50 0.07 110 4.47 

PROB1 12 24 4 144 

0.75 0.03 43 4.47 
Rand 1.00 5194.4 0.003748 
0.25 0.05 47 4.86 
0.50 0.05 67 4.86 PROB2 24 48 4 288 

0.75 0.05 39 4.86 

Table 3 – Performance of the SPG algorithm. 
 
 

V. Conclusions 
 
In this paper some important issues concerning the 
nonnegative decomposition of a matrix are first introduced. 
The use of the SPG algorithm for computing an approximate 
NMF is investigated. Some experiences with the SPG and the 
traditional Lee-Seung and ALS algorithms on a set of NMF 
instances are also reported. The numerical results seem to 
indicate that the SPG algorithm is in general able to compute 
good quality approximate factorizations in a reasonable 
amount of time. Furthermore, the SPG algorithm has shown 
to be competitive with Lee-Seung and ALS methods in terms 
of computational effort and seems to be more consistent than 
their alternative techniques for computing good approximate 
decompositions. The incorporation of preconditioning 
techniques in the SPG algorithm may improve its efficiency 
and efficacy and should be investigated in future.  
 
Keywords: matrix factorization, nonlinear programming, 
large-scale problems, image processing models. 
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