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Abstract— This paper presents a new approach to image decon-
volution (deblurring), under total variation (TV) regular ization,
which is adaptive in the sense that it doesn’t require the user to
specify the value of the regularization parameter. We follow the
Bayesian approach of integrating out this parameter, whichis
achieved by using an approximation of the partition function of
the Bayesian interpretation of the TV regularizer. The resulting
optimization problem is then attacked using a majorization-
minimization algorithm. We present some results on sparse recon-
struction, and show that the results obtain similar performance
when compared with hand-tuned TV reconstruction.

I. I NTRODUCTION

Image reconstruction is a classical linear inverse problem,
appearing in many applications such as remote sensing, med-
ical imaging, astronomy, digital photography [1], [2]. The
challenge in most inverse problems (linear or not) is that
they are ill-posed,i.e., either the direct operator does not
have an inverse, or it is nearly singular, with its inverse
thus being highly noise sensitive. To cope with the ill-posed
nature of these problems, a large number of techniques has
been proposed, most of them under the regularization (see
[1], [3] and references therein) or the Bayesian frameworks
[2], [3]. These technique are supported on some form ofa
priori knowledge (under the form or priors or regularizers)
about the original image to be estimated. Some of these
methods, including Markov random field priors [4], [5], [6],
[7], wavelet-based priors/regularizers [8], [9], [10], [11], [12],
[13], [14] and total variation regularization [15], [16], [17] are
considered the state-of-the-art.

Since its introduction in 1992, by Rudin, Osher, and Fatemi
[15], the range of application of TV-based methods has been
successfully extended to imaging problems other than denois-
ing, such as inpainting, non-blind and blind deconvolution,
and processing of vector-valued (e.g., color) images [17],
[18]. Arguably, the success of TV-based regularization lies
on a good balance between the ability to model piecewise
smooth images and the reasonable difficulty of the resulting
optimization problems. In fact, the TV regularizer favors
images of bounded variation, without penalizing possible dis-
continuities. Furthermore, the TV regularizer is convex, though
not differentiable, and the resulting optimization problem has
stimulated a good amount of research on efficient algorithms
for computing optimal or nearly optimal solutions (e.g. [16],
[17], [19], [20], [21], [22], [23], [24]).

One of the central issues in regularization and Bayesian
approaches is the selection of the so-calledregularization
parameter(or hyper-parameter), which controls the relative
weights of the data fidelity and regularization terms. In [16],

we have used a hand-tuned empirical rule, which leads to
good results but lacks any formal support. In [25], we have
adopted a Bayesian approach to integrate out this regulariza-
tion parameter under a Jeffreys’ prior. Although the resulting
prior is, obviously, different from the original TV-based prior,
it leads to an optimization problem which can be addressed
efficiently by a variant of themajorization-minimization(MM)
algorithm proposed in [16]. The resulting methodology (i.e.,
the criterion and the optimization algorithm) achieves state-
of-the-art performance, even when compared with approaches
where the regularization parameter is hand tuned for optimal
performance.

In spite of the good results reported in [16], [22], [25],
the following issues were left open:(i) the MM bound,i.e.,
the surrogate objective function updated at each iteration,
is not defined if any first order differences are zero, and
(ii) the Jeffreys’ prior is improper,i.e., it is non integrable,
thus its use is open to critique. This paper builds on, and
extends, previous work [16], [22], [25], making the following
contributions to clarify and settle these open issues:(i) we
use a recently proposed algorithm, TwIST [26], to solve the
updated objective function at each iteration;(ii) we use a
(proper) Gamma prior, instead of the Jeffreys’ prior.

II. PROBLEM FORMULATION

In linear image restoration problems, the goal is to estimate
an original imagex from an observed (blurred and noisy)
versiony, i.e.,

y = Hx + n, (1)

wherex is the original image,H is a linear operator repre-
senting, for example, the blur point spread function (PSF) (the
identity operator in the case of denoising), andn is a sample
of a zero-mean white Gaussian field of varianceσ2.

The problem of inferringx from the observation model (1)
is usually ill-posed or ill-conditioned,i.e., either the linear
operator does not admit inverse, or it is nearly singular, thus
yielding highly noise-sensitive solutions. To obtain mean-
ingful image estimates, some form of regularization (prior
knowledge, from a Bayesian viewpoint) has to be enforced
to penalize “undesirable” solutions [1], [2], [3]. Accordingly,
typical criteria have the form

x̂ ∈ argmin
x

{
1

2σ2
‖y − Hx‖2 + γ P (x)

}
, (2)

where‖z‖2 stands for the squaredEuclidean norm. The hyper-
parameter (or regularization parameter)γ controls the weight
we assign to the regularizer, relatively to the data misfit term.
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The total variation regularizer (introduced in [15], see
also [17] for a review of recent advances and pointers to
the literature), is very well suited for piecewise smooth
images, as it avoids oscillatory solutions while preserving
edges/discontinuities [17]. These characteristics have fostered
the use of TV regularization in denoising and deconvolution
of real world images with very good results [17].

The total variation is defined in the context of bounded
variation (BV) functions. As usual in discrete image restora-
tion formulation, we will adopt a discretized version of TV,
replacing derivatives with local differences,

TV(x) =
∑

i

√
(∆h

i
x)2 + (∆v

i
x)2, (3)

where ∆h
i

and ∆v
i

are linear operators corresponding to,
respectively, horizontal and vertical first-order differences, at
pixel i; that is, ∆h

i
x ≡ xi − xr(i), wherer(i) denotes the

nearest neighbor to the right of pixeli, and∆v
i
x ≡ xi−xb(i),

where b(i) denotes the nearest neighbor below pixeli. Of
course, these neighborhood relationships have to be adequately
adjusted at the image boundary; in this paper, we adopt circu-
lar/periodic boundary conditions. The variational optimization
problem is thus replaced naturally by the following finite-
dimensional optimization problem:

x̂ ∈ arg min
x∈RMN

L(x), (4)

with
L(x) = ‖y − Hx‖2 + λ TV(x), (5)

where λ = 2 σ2 γ. Notice thatL(x) is a convex function,
but it may not be strictly convex (ifH is non-invertible); in
that case, the minimizer is not unique, because the function
TV : R

MN → R is convex but not strictly so.

III. B AYESIAN TREATMENT OF THEREGULARIZATION

PARAMETER

In this paper, we assume thatσ2 is known; excellent off-line
estimates of this parameter can be obtained, for example, using
the MAD rule [12]. In this scenario, only parameterλ controls
the degree of regularization. Too small values ofλ yield overly
oscillatory estimates owing to either noise or discontinuities;
too large values ofλ yield oversmoothed estimates. The
selection of the regularization parameter is thus a critical
issue to which much attention has been devoted. Popular
approaches, in a regularization framework, are the unbiased
predictive risk estimator, generalized cross validation,and the
L-curve method; see [27] for an overview and references. In
Bayesian frameworks, methods to estimate the regularization
parameter have been proposed in [3], [28], [29], [30], [31],
[32].

A. Hyper-priors and Marginalization

In a probabilistic view, the first term of the right hand side of
(5) is the negative logarithm of a Gaussian density with mean
Hx and covariance matrixσ2I, while the second term is the
negative logarithm of the priorp(x|λ) ∝ exp(−λTV(x)). As
in [3], [29], [30], [31], [32], we will proceed in a Bayesian
way, by assigning a hyper-prior toλ and integrating it out.

In previous work [25], a non-informative Jeffreys’ prior was
adopted; sinceλ is a scale parameter,p(λ) ∝ 1/λ, which is
equivalent to a flat prior on a logarithmic scale [33]. In spite
of the good results reported in [25], two open problems had
remained:(a) a “singularity issue”, relative to the estimation
of λ ; (b) the Jeffreys’ priorp(λ) ∝ 1/λ is not normalizable,
which also may raise difficulties, depending on the loss
function adopted to infer the original image.

In this paper we avoid the above referred difficulties by
adopting a Gamma density forλ, i.e.,

p(λ|α, β) ∝ λα−1 exp[−βλ]. (6)

Notice that, by using the Gamma prior, we are proceeding in
the same way as in [25], but avoiding the above mentioned
problems; making(α, β) → 0 we would recover the non-
informative Jeffreys’ prior [33].

To integrated out the parameterλ, under the Bayesian
framework, we need to compute the marginal

p(x) =

∫
p(x, λ) dλ =

∫
p(x|λ) p(λ) dλ,

where
p(x|λ) =

1

Z(λ)
exp(−λTV(x)),

with
Z(λ) =

∫
exp(−λTV(x)) dx

denoting the normalization factor (also known as the partition
function). The major difficulty in computingp(x) is that there
is no closed form expression for the partition functionZ(λ).
To approximate it, we make the assumption (which is of
course not true) that, underp(x), each pair of differences
(∆h

i
x, ∆v

i
x) is independent of all the other pairs; this resem-

bles the pseudo-likelihood approximation used in parameter
estimation of Markov random fields [34]. Noting that

∫

R2

exp
{
−λ

√
u2 + v2

}
du dv =

2π

λ2
,

we obtain, under the above referred independence assumption,

Z(λ) =

∫

RMN

exp(−λTV(x)) dx ≃ C λ−θ MN , (7)

where C a constant independent ofλ and θ = 2. Because
of the dependence that really exists among the first-order
horizontal and vertical differences, we useθ to adjust (7) for
better results. See [31] for a related derivation.

Using this approximate partition function, we are led to

p(x) =

∫
∞

0

1

Z(λ)
exp[−λTV(x)] p(λ|α, β) dλ

≃
1

C

∫
∞

0

λθ MN exp[−λTV(x)] p(λ|α, β) dλ

∝ [TV(x) + β]
−(α+θMN)

. (8)

Using the priorp(x) to obtain a maximum a posteriori
(MAP) estimate, leads to the minimization of the following
objective function (instead of (5))

E(x) = ‖y − Hx‖2 + ρ σ2 log[TV(x) + β], (9)

whereρ = 2 (α + θ MN).



3

B. Optimization algorithm

To minimize E(x), given by (9), we introduce a
majorization-minimization(MM) algorithm. The MM ratio-
nale consists in replacing a difficult optimization problemby
a sequence of simpler ones, usually by relying on convexity
arguments. In this sense, MM is similar in spirit to expectation-
maximization (EM). A detailed application of MM in the case
of TV deconvolution can be found in [25]. We will adopt here
a similar approach.

To minimize (9), notice that the logarithm is a concave
function, thus upper-bounded by any of its tangents; more
formally, for anyz > 0 andz0 > 0,

log z ≤ log z0 +
z − z0

z0
.

Applying this inequality to the right hand side of (9) we obtain
the following majorizer

Q(x,x(t)) = ‖y − Hx‖2 + ρ σ2 TV(x)

TV(x(t)) + β
+ K (10)

(whereK is some irrelevant constant), which clearly satisfies
the requirements for a MM bound function: (i) Q(x,x(t)) ≥
E(x) and, (ii ) Q(x,x) = E(x). By using a Gamma prior with
β > 0 (instead of the Jeffreys’ prior, which corresponds toβ =
0) we avoid the “singularity issue” in (10); sinceTV (x) ≥ 0,
we haveTV (x) + β > 0, for anyx.

Notice that Qb is equivalent to the original TV-based
objective (5), withλ replaced by

λ(t) =
ρ σ2

TV(x(t)) + β
. (11)

Based on this equivalence, we use Algorithm 1 to minimize
E(x) in the following cyclic fashion: for a givenλ(t), we
run a few iterations of TwIST[26] and next update the value
of λ(t) according to (11). The pseudo-code for the proposed
generalized majorization-minimization(GMM) algorithm is
summarized in Algorithm 1.

Algorithm 1 Adaptive TV image reconstruction

Require: Initial estimatex(0)

1: Computey′ = HTy; set t = 0
2: while “λ stopping criterion” not satisfieddo
3: λ := ρ σ2/(TV(x(t)) + β)
4: Solve (5) using TwIST [26], with previous computedλ
5: end while

For a general convolution kernel, the productHx can be
computed efficiently with complexity [O(n log n)] via a two-
dimensional FFT, by embeddingH in a larger block-circulant
matrix [35]. If the observation mechanism is not a convolution,
the complexity of the algorithm is chiefly determined by the
complexity of products of the formHx andHTx.

IV. EXPERIMENTAL RESULTS

In this section we present a set of magnetic resonance image
(MRI) reconstruction experiments illustrating the performance
of the algorithm. The observation operator in MRI is well
modeled by a sub-sampling in the Fourier domain, usually

TABLE I

RMSEOF THE PROPOSED ALGORITHM COMPARED WITH HAND TUNED

TV METHODS.

SNR=30dB SNR=40dB
Image TV Adaptive TV TV adaptive TV

Phantom (12 beams) 0.0428 0.0457 0.0293 0.0313
Phantom (22 beams) 0.0140 0.0196 0.0054 0.0087

Brain (60 beams) 0.0242 0.0254 0.0292 0.0298

using radial beams passing through the origin (as illustrated
in Figure 1 (c)). We have used the well-known Shepp-Logan
phantom, with 12 and 22 sampling beams, and a real MRI
image with 60 sampling beams. Noise corresponding to SNR
= 30dB and SNR = 40dB was added to the sampled data. Both
images are256 × 256 with gray levels in[0, 1].

A. Choice of Parameters and Algorithm Initialization

Considering the Gamma distribution,α is usually called
the “shape” parameter andβ the “scale” parameter. The
choice of these parameters was done so that the Gamma
prior will be very close to a non-informative Jeffreys’ prior.
Accordingly, α was set to0.5 and β to 1. Given the non
convex nature of the objective function, it is important that
the regularization parameterλ(t) be small at the beginning,
thus avoiding poor local minima. An initial small value for
λ(t) leads to a low-bias, but highly noisy, estimate. Asλ(t)

increases, the image will became progressively smoother. To
accomplish this, we initialize the algorithm with a random
image (Gaussian noise withσ = 0.001). As the algorithm
runs, the image becomes smoother (and consequentlyλ(t)

increases), reaching a solution where we have an equilibrium
between the error and the prior term.

In Algorithm 1, we use a maximum of 10 iterations for
the “λ stopping criterion”, or a relative difference between
consecutive estimates below10−2, and a maximum of 150
iterations of TwIST, with tolerance equals to10−2.

B. Results

Table I shows theroot mean squared error(RMSE) of the
proposed approach, compared with the results obtained with
TV reconstruction, by hand tuning the hyper parameter. As we
can see, in all experiments the values obtained with Algorithm
1 are close to the best ones obtained by TV reconstruction.

In Figure 1 we show the results with the Shepp-Logan phan-
tom, including a reconstruction obtained by back projection.
Figure (2) shows the results with the real brain image, obtained
by back projection and Algorithm 1.

V. CONCLUDING REMARKS

In this paper, we have present an extension of [25]
that avoids the singularity problem of the majorization-
minimization approach to TV reconstruction, by using the
TwIST algorithm. We have also used a Gamma prior, instead
of the non-informative Jeffrey’s prior; the Gamma density
is proper and avoids the singularity issue. We present a set
of experiments showing that our method is able to correct
estimate the hyper parameter and gives a similar performance
to that obtained by manually adjusting the parameter.
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(a) (b)

(c) (d)

Fig. 1. a) original Shepp-Logan phantom; b) reconstructed image by back
projection; c) subsampling linear operator; d) reconstructed image using
algorithm 1

(a) (b)

Fig. 2. a) reconstructed brain image by back projection b) reconstructed
using algorithm 1
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