Adaptive Total Variation Image Deconvolution:
Application to Magnetic Resonance Imaging

Joao P. Oliveira, José M. Bioucas-Dias, Mario A. T. Figedo
Instituto de Telecomunicagdes, Av. Rovisco Pais 1, 1089-isboa, Portugal
{j oao.oliveira,jose. bioucas, nario.figueiredo}@x.it.pt

Abstract— This paper presents a new approach to image decon- we have used a hand-tuned empirical rule, which leads to
volution (deblurring), under total variation ('I"V) regular ization, good results but lacks any formal support. In [25], we have
which is adaptive in the sense that it doesn’t require the ugeto adopted a Bayesian approach to integrate out this regatariz

specify the value of the regularization parameter. We follov the . . ;
Bayesian approach of integrating out this parameter, whichis tion parameter under a Jeffreys’ prior. Although the resglt

achieved by using an approximation of the partition function of ~ Prior is, obviously, different from the original TV-basedd,
the Bayesian interpretation of the TV regularizer. The resuting it leads to an optimization problem which can be addressed

optimization problem is then attacked using a majorization efficiently by a variant of thenajorization-minimizatiofMM)
minimization algorithm. We present some results on sparseacon- algorithm proposed in [16]. The resulting methodologg.(
struction, and show that the results obtain similar performance o NP . .
when compared with hand-tuned TV reconstruction. the criterion and the optimization algorithm) aqh|eve$e9ta
of-the-art performance, even when compared with appreache
l. INTRODUCTION where the regularization parameter is hand tuned for optima

Image reconstruction is a classical linear inverse probleperformance.
appearing in many applications such as remote sensing, medn spite of the good results reported in [16], [22], [25],
ical imaging, astronomy, digital photography [1], [2]. Thehe following issues were left opefi) the MM bound,i.e,
challenge in most inverse problems (linear or not) is th#éte surrogate objective function updated at each iteration
they are ill-posed,.e., either the direct operator does nois not defined if any first order differences are zero, and
have an inverse, or it is nearly singular, with its invers@i) the Jeffreys’ prior is impropei,e, it is non integrable,
thus being highly noise sensitive. To cope with the ill-pbsehus its use is open to critique. This paper builds on, and
nature of these problems, a large number of techniques lextends, previous work [16], [22], [25], making the follow
been proposed, most of them under the regularization (samtributions to clarify and settle these open issu@swe
[1], [3] and references therein) or the Bayesian frameworkise a recently proposed algorithm, TwIST [26], to solve the
[2], [3]. These technique are supported on some formaofupdated objective function at each iteratiqfii) we use a
priori knowledge (under the form or priors or regularizergjproper) Gamma prior, instead of the Jeffreys’ prior.
about the original image to be estimated. Some of these
methods, including Markov random field priors [4], [5], [6], l. PROBLEM FORMULATION
[7]’ wavelet-based priors/regu|arizers [8]’ [9], [10]1]1 [12]’ In linear image restoration problems, the g03.| is to esemat
[13], [14] and total variation regularization [15], [16]LT] are an original imagex from an observed (blurred and noisy)
considered the state-of-the-art. versiony, 1.€.,

Since its introduction in 1992, by Rudin, Osher, and Fatemi y =Hx+n, (1)
[15], the range of application of TV-based methods has begferex is the original imageH is a linear operator repre-
successfully extended to imaging problems other than dendienting, for example, the blur point spread function (P$ (
ing, such as inpainting, non-blind and blind deconvolutiofyentity operator in the case of denoising), ands a sample
and processing of vector-valued (e.g., color) images [14 5 zero-mean white Gaussian field of variarece
[18]. Arguably, the success of TV-based regularizatiors lie The problem of inferringk from the observation model (1)
on a good balance between the ability to model piecewige ysuyally ill-posed or ill-conditionedi.e., either the linear
smooth images and the reasonable difficulty of the resultiggerator does not admit inverse, or it is nearly singularsth
optimization problems. In fact, the TV regularizer favorgjelding highly noise-sensitive solutions. To obtain mean
images of bounded variation, without penalizing possilite djngful image estimates, some form of regularization (prior
continuities. Furthermore, the TV regularizer is conveoUgh  knowledge, from a Bayesian viewpoint) has to be enforced

not differentiable, and the resulting optimization prableas o penalize “undesirable” solutions [1], [2], [3]. Accondly,
stimulated a good amount of research on efficient algorithmygical criteria have the form

for computing optimal or nearly optimal solutions.g.[16], 1

[17], [19], [20], [21], [22], [23], [24]). % € argmin {—2 ly — Hx||* + ’yP(X)} , )
One of the central issues in regularization and Bayesian x |20

approaches is the selection of the so-caltedularization where||z||?> stands for the squardgliclidean normThe hyper-

parameter(or hyper-parameter which controls the relative parameter (or regularization parametergontrols the weight

weights of the data fidelity and regularization terms. In][16we assign to the regularizer, relatively to the data misfinte



The total variation regularizer (introduced in [15], seén previous work [25], a non-informative Jeffreys’ prior sva
also [17] for a review of recent advances and pointers &mlopted; since\ is a scale parametep(\) « 1/A, which is
the literature), is very well suited for piecewise smootkquivalent to a flat prior on a logarithmic scale [33]. In epit
images, as it avoids oscillatory solutions while presegvirof the good results reported in [25], two open problems had
edges/discontinuities [17]. These characteristics hastefed remained:(a) a “singularity issue”, relative to the estimation
the use of TV regularization in denoising and deconvolutioof A ; (b) the Jeffreys’ priorp(A) < 1/X is not normalizable,
of real world images with very good results [17]. which also may raise difficulties, depending on the loss

The total variation is defined in the context of boundefilinction adopted to infer the original image.
variation (BV) functions. As usual in discrete image reator In this paper we avoid the above referred difficulties by
tion formulation, we will adopt a discretized version of TVadopting a Gamma density foy, i.e.,
replacing derivatives with local differences, PO\, B) o A*L expl—BA]. ©6)

TV(x) =) \/(A?X)2 + (A}x)?, (3) Notice that, by using the Gamma prior, we are proceeding in
@ the same way as in [25], but avoiding the above mentioned

where A" and A? are linear operators corresponding toproblems; making(a, ) — 0 we would recover the non-
respectively, horizontal and vertical first-order diffeces, at informative Jeffreys’ prior [33].
pixel i; that is, APx = x; — x,(;), wherer(i) denotes the To integrated out the parametey; undgr the Bayesian
nearest neighbor to the right of pixglandAYx = x; —x;;, framework, we need to compute the marginal
where b(i) denotes the nearest neighbor below pixelOf
course, these neighborhood relationships have to be atidyjua p(x) = /p(X, A)dX = /P(XP\)p()\) dA,
adjusted at the image boundary; in this paper, we adopt{:ircuh
lar/periodic boundary conditions. The variational optiation where 1
problem is thus replaced naturally by the following finite- p(x|A) = WGXP(*ATV(X))’
dimensional optimization problem:

with
X in L 4 _
X €arg min (%), (4) Z(\) = / exp(—ATV(x)) dx
with , denoting the normalization factor (also known as the panrtit
L(x) = [ly — Hx|" + ATV(x), (5)  function). The major difficulty in computing(x) is that there

where A\ = 202+. Notice thatL(x) is a convex function is no closed form expression for the partition functig)).
but it may not be strictly convex (iHH is non-invertible): in 10 @Pproximate it, we make the assumption (which is of

that case, the minimizer is not unique, because the functibR!/rs€ not true) that, under(x), each pair of differences
TV : RMN . R is convex but not strictly so. (Ax, A¥x) is independent of all the other pairs; this resem-

bles the pseudo-likelihood approximation used in paramete

1. BAYESIAN TREATMENT OF THE REGULARIZATION estimation of Markov random fields [34]. Noting that

PARAMETER / exp{fk /02 +U2} du dv — 2_7T,
In this paper, we assume that is known; excellent off-line R? A2

estimates of this parameter can be obtained, for exampi®y usye obtain, under the above referred independence assumptio

the MAD rule [12]. In this scenario, only parametecontrols

the degree of regularization. Too small values\gfield overly Z(\) = / exp(—ATV(x))dx ~ CAX/MN (7)

oscillatory estimates owing to either noise or discontiesj RAA

too large values of\ yield oversmoothed estimates. Thavhere C' a constant independent of and ¢ = 2. Because

selection of the regularization parameter is thus a ctiticaf the dependence that really exists among the first-order

issue to which much attention has been devoted. Populgizontal and vertical differences, we uge¢o adjust (7) for

approaches, in a regularization framework, are the undiadeetter results. See [31] for a related derivation.

predictive risk estimator, generalized cross validatamd the ~ Using this approximate partition function, we are led to

L-curve method; see [27] for an overview and references. In /oo

0

Bayesian frameworks, methods to estimate the regulasizati P(X) = exp[—ATV(x)] p(Ala, B) dA
parameter have been proposed in [3], [28], [29], [30], [31],

[32].

Z(X)
1 [
5/0 AIMN oxp[- ATV (x)] p(A|a, B) dX

o [TV(x) + g) @M (8)

12

A. Hyper-priors and Marginalization

In a probabilistic view, the first term of the right hand side o Using the priorp(x) to obtain a maximum a posteriori
(5) is the negative logarithm of a Gaussian density with me4MAP) estimate, leads to the minimization of the following
Hx and covariance matrix2I, while the second term is the objective function (instead of (5))
negative logarithm of the prigs(x|\) o exp(—ATV(x)). As T 2 2
in [3], [29], [30], [31], [32], we will proceed in a Bayesian E(x) = lly — Hx[" + po” log[TV(x) + 5], ©)
way, by assigning a hyper-prior t& and integrating it out. wherep =2 (a+ 6 M N).



Lo . TABLE |
B. Optimization algorithm
RMSEOF THE PROPOSED ALGORITHM COMPARED WITH HAND TUNED
To minimize E(x), given by (9), we introduce a TV METHODS.
majorization-minimization(MM) algorithm. The MM ratio-

nale consists in replacing a difficult optimization problém SNR=30dB SNR=40dB

f si | v b Vi " Image TV Adaptive TV TV adaptive TV
a sequence of simpler ones, usually Dy relying on CONVeXKnpaniom (12 beams) 0.0428 0.0457 | 0.0293 0.0313
arguments. In this sense, MM is similar in spirit to expdot&t  Phantom (22 beams) 0.0140 0.0196 | 0.0054 0.0087
maximization (EM). A detailed application of MM in the case__Brain (60 beams) | 0.0242 0.0254 | 0.0292 0.0298

of TV deconvolution can be found in [25]. We will adopt here

a similar approach. , , . - .
To minimize (9), notice that the logarithm is a concavéSing radial beams passing through the origin (as illustrat

function, thus upper-bounded by any of its tangents; molfe Figure 1 (c)). We have used the well-known Shepp-Logan
formally, for anyz > 0 and zp > 0, phantom, with 12 and 22 sampling beams, and a real MRI

image with 60 sampling beams. Noise corresponding to SNR

log z < log zo + "% = 30dB and SNR = 40dB was added to the sampled data. Both
<0 images are56 x 256 with gray levels in[0, 1].
Applying this inequality to the right hand side of (9) we dhta
the following majorizer A. Choice of Parameters and Algorithm Initialization

Considering the Gamma distribution, is usually called
the “shape” parameter and the “scale” parameter. The
choice of these parameters was done so that the Gamma
eﬁrior will be very close to a non-informative Jeffreys’ prio
Accordingly, o was set t00.5 and 5 to 1. Given the non
convex nature of the objective function, it is importantttha
the regularization parameted*) be small at the beginning,
thus avoiding poor local minima. An initial small value for
A% leads to a low-bias, but highly noisy, estimate. A$)
increases, the image will became progressively smootleer. T
accomplish this, we initialize the algorithm with a random
po? image (Gaussian noise witlh = 0.001). As the algorithm
(11) runs, the image becomes smoother (and consequeéfftly
increases), reaching a solution where we have an equitibriu
Zetween the error and the prior term.

)y _ . 2 2 TV(x)

(where K is some irrelevant constant), which clearly satisfi
the requirements for a MM bound function) Q(x, x®) >
E(x) and, (i) Q(x,x) = E(x). By using a Gamma prior with
8 > 0 (instead of the Jeffreys’ prior, which correspondgte-
0) we avoid the “singularity issue” in (10); sinceV (x) > 0,
we haveT'V(x) + § > 0, for anyx.

Notice that ), is equivalent to the original TV-based
objective (5), with\ replaced by

A = P
TV(x®) + 3

Based on this equivalence, we use Algorithm 1 to minimi
E(x) in th_e foII_owmg cyclic fashion: for a given\'”), we In Algorithm 1, we use a maximum of 10 iterations for
run a few iterations of TwIST[26] and next update the Valuﬁ]e “\ stopping criterion”, or a relative difference between

of A" according to (11). The pseudo-code for the proposed,cecitive estimates below)—2, and a maximum of 150
generalized majorization-minimizatio(GMM) algorithm is 0 ox0ne of TWIST. with tolerance equals 102
summarized in Algorithm 1. ' '

B. Results

Table | shows theoot mean squared errofRMSE) of the
proposed approach, compared with the results obtained with
TV reconstruction, by hand tuning the hyper parameter. As we
can see, in all experiments the values obtained with Algorit
1 are close to the best ones obtained by TV reconstruction.

In Figure 1 we show the results with the Shepp-Logan phan-
tom, including a reconstruction obtained by back projectio

) Figure (2) shows the results with the real brain image, olethi
For a general convolution kernel, the prodik can be py phack projection and Algorithm 1.

computed efficiently with complexity(}(n logn)] via a two-
dimensional FFT, by embeddidg in a larger block-circulant V. CONCLUDING REMARKS
matrix [35]. If the observation mechanism is not a convalnti

the complexity of the algorithm is chiefly determined by thﬁ1
complexity of products of the forniIx and H” x.

Algorithm 1 Adaptive TV image reconstruction

Require: Initial estimatex(®)

- Computey’ = H'y; sett =0

: while “\ stopping criterion” not satisfiedo

A= po/(TV(Y) + )

Solve (5) using TwIST [26], with previous computed
: end while

[Eny

In this paper, we have present an extension of [25]
at avoids the singularity problem of the majorization-
minimization approach to TV reconstruction, by using the
TwIST algorithm. We have also used a Gamma prior, instead
IV. EXPERIMENTAL RESULTS of the non-informative Jeffrey’s prior; the Gamma density
In this section we present a set of magnetic resonance imageroper and avoids the singularity issue. We present a set
(MRI) reconstruction experiments illustrating the perfiance of experiments showing that our method is able to correct
of the algorithm. The observation operator in MRI is welestimate the hyper parameter and gives a similar perforenanc
modeled by a sub-sampling in the Fourier domain, usually that obtained by manually adjusting the parameter.



Fig. 1.

(d)

a) original Shepp-Logan phantom; b) reconstructedge by back
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projection; c¢) subsampling linear operator; d) reconsgmicimage using
algorithm 1

Fig. 2.
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(b)

a) reconstructed brain image by back projection lopmstructed

using algorithm 1
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