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Manya V. Afonso∗, José M. Bioucas-Dias, Mário A. T. Figueiredo
Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, PORTUGAL
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Abstract

Some imaging inverse problems may require the solu-

tion to simultaneously exhibit properties that are not

enforceable by a single regularizer. In this paper, we

use regularization with linear combinations of simple

regularizers, to encourage the solution to simultane-

ously exhibit the characteristics enforced by each. We

apply the split Bregman iterative method to deal with

the optimization problem resulting from addressing a

linear inverse problem with compound regularization.

The resulting algorithm only requires the ability to ef-

ficiently compute the denoising operator associated to

each involved regularizer. Convergence is guaranteed

by the theory behind the Bregman iterative approach

to solving constrained optimization problems.

1 INTRODUCTION

Linear inverse problems involve estimating an unknown sig-
nal/image with certain characteristics (such as sparseness
or piece-wise smoothness) enforced by a suitable regular-
izer. In several problems such as image denoising, image
restoration [1, 2], image reconstruction, and compressed
sensing [3, 4], the solution is defined as the minimizer of
an objective function, leading to an optimization problem
of the form

û = arg min
u∈Rn

1
2
‖Au− f‖22 + τΦ(u), (1)

where A : Rn → Rm is the linear observation (direct) op-
erator, f ∈ Rm is the observed data, Φ : Rn → R is the
regularizer function, and τ ∈ [0, +∞[ is the regulariza-
tion parameter. If the operator A is the identity, (1) is a
denoising problem, the solution of which is unique (if Φ is
convex) and called the Moreau proximal mapping (MPM)
of Φ [5]. For some choices of Φ, the MPM has a sim-
ple close form (e.g., the well-known soft-threshold [6], if
Φ(u) = ‖u‖1 =

∑
i |ui|) or can be efficiently computed.

For non-diagonal operators, (1) has to be solved using an
iterative algorithm, such as iterative shrinkage-thresholding
(IST) [7], also known as forward-backward splitting [5], or
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the faster two-step IST (TwIST) [8], in which the MPM is
iteratively applied.

In certain problems, it may be desirable to favor solu-
tions that simultaneously exhibit properties that are en-
forced by two (or more) different regularizers. For example,
total variation (TV) regularization [9] encourages piecewise
smooth solutions, while an l1 (or lp, with p ≤ 1) regular-
izer favors sparse solutions; however, there is no “simple”
regularizer that favors both these characteristics simultane-
ously, as may be important in certain problems. To achieve
this, compound regularizers (i.e., linear combinations of
“simple” regularizers [10]) must be used, leading to

û = arg min
u

1
2
‖Au− f‖22 + τ1Φ1(u) + τ2Φ2(u), (2)

where Φ1 : Rn → R and Φ2 : Rn → R are the regulariz-
ers, with respective regularization parameters τ1 > 0 and
τ2 > 0. An iterative algorithm for solving (2) (easily gen-
eralizable to more than two regularizers) has been recently
proposed [10]; that approach involves a constrained op-
timization formulation of (2) followed by minimization of
the associated Lagrangian using a block-coordinate descent
algorithm. A similar formulation, specifically tailored for
regularizers which can be written as `1 norms (such as the
`1 norm itself and TV) was also very recently proposed [11];
in that work, the constrained problem is attacked using a
so-called split Bregman method.

In this paper, we propose an approach for solving prob-
lems of the form (2) involving any regularizers for which
the MPMs are known (not just `1 norms). As in [10], the
approach involves a constrained optimization formulation
of (2), which is then directly addressed using a Bregman
iterative method [12]. In [13], we have illustrated this ap-
proach in the problem of deconvolving an image which is
known to have a few white blobs on a black background;
such an image is characterized by having a low `1 norm (it’s
mostly black, i.e., sparse) and a low TV norm (it’s piece-
wise flat). Using a combination of `1 and TV regularizers,
we have shown the ability of the algorithm to solve the re-
sulting problem and also that the resulting estimates have
lower MSE than what can be achieved using each of the
two regularizers alone. In that problem, the `1 regularizer
was used so as to minimize the `1 norm of the image pixel
values. In this paper, we demonstrate this approach in the
problem of denoising an image which admits a sparse rep-
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resentation (such as a wavelet decomposition), and show
that the estimate obtained using a combination of the `1
(applied to the wavelet coefficients) and TV regularizers
again has a lower MSE than what can be achieved using
each of the two regularizers alone.

2 PROPOSED METHOD

2.1 Bregman Iterations

We begin by very briefly reviewing the Bregman iterative
approach for solving constrained problems of the form

min
x

E(x)

subject to H(x) = 0, (3)

with E and H convex, H differentiable, and minx H(x) = 0
(see [11, 12], for more details). The Bregman divergence
associated with E is defined as

Dp
E(x,y) ≡ E(x)− E(y)− 〈p,x− y〉, (4)

where p belongs to the subgradient of E at y (i.e., p ∈
∂E(y)). The Bregman iteration is given by

xk+1 = arg min
x

Dp
E(x,xk) + µH(x)

= arg min
x

E(x)− 〈pk,x− xk〉+ µH(x), (5)

where pk ∈ ∂E(xk); it has been shown that, for any µ >
0, this procedure converges to a solution of (3) [11, 12].
Moreover, it can be shown that pk+1 should be chosen as

pk+1 = pk − µ∇H(xk+1). (6)

2.2 Constrained Formulation

A constrained optimization problem equivalent to the un-
constrained problem (2) is

min
u,v

1
2
‖Au− f‖22 + τ1Φ1(u) + τ2Φ2(v)

subject to ‖u− v‖22 = 0. (7)

One approach to handling this constrained problem is to
consider its Lagrangian and minimize it using a block-
descent algorithm [10]. However, an extremely large value
of the Lagrange multiplier is required for the minimizer of
the Lagrangian to closely approximate that of (7), causing
numerical difficulties. The alternative herein proposed is
to use a Bregman iterative method to directly solve (7).

Letting x = [uT vT ]T , we can write (7) in the form
minx E(x), subject to H(x) = 0, where H(x) = ‖u − v‖2
and E(x) is the objective function in (7).

The split Bregman formulation for l1-regularized prob-
lems, proposed in [11], separates the l1 and l2 portions of
the energy in the problem

min
u
‖Φ(u)‖1 + H(u) (8)

where H(.) and Φ(.) are convex functionals and Φ(.) is
differentiable, by introducing an additional variable d ∈ Rn

and the constraint d = Φ(u). The constrained problem is
formulated as

min
u,d

‖d‖1 + H(u)

subject to ‖d− Φ(u)‖22 = 0. (9)

Applying the Bregman iteration, it can be shown that this
problem is solved by the two-phase algorithm

(uk+1,dk+1) = min
u,d

‖d‖1 + H(u) +

+
λ

2
‖d− Φ(u)− bk‖22 (10)

bk+1 = bk + (Φ(uk+1)− dk+1) (11)

The problem (10) can be minimized efficiently by itera-
tively minimizing with respect to u and d, in two steps

uk+1 = min
u

H(u) +
λ

2
‖dk − Φ(u)− bk‖22, (12)

dk+1 = min
d
‖d‖1 +

λ

2
‖d− Φ(uk+1)− bk‖22. (13)

The problem (8) is thus reduced to a sequence of uncon-
strained problems and Bregman updates. In (7), clubbing
the data misfit term 1

2‖Au− f‖2 and the regularizer term
τ1Φ1(u) together, we can apply a similar approach, that is,
iteratively minimizing with respect to u and v, separately.

After some algebraic manipulations, we can show that
the Bregman iteration for this problem has the form

uk+1 = arg min
u

1
2
‖Au− f‖22 + τ1Φ1(u) +

+
µ

2
‖u− vk − bk‖22

= arg min
u

1
2
‖Ku− g‖22 + τ1Φ1(u) (14)

vk+1 = arg min
v

τ2Φ2(v) +
µ

2
‖uk − v − bk‖22

= arg min
v

τ2Φ2(v) +
µ

2
‖uk − bk − v‖22 (15)

where KT =
[
A,
√

µ In

]
, g =

[
fT ,

√
µ(vk + bk)T

]T ,

bk+1 = bk − (uk − vk), (16)

and the initial values are u0 = 0, v0 = 0, and b0 = 0.
Since each of the problems (14) and (15) involves only

one regularizer, for which the MPM is known, they can be
efficiently solved using, e.g., the IST or TwIST algorithms
[8]. As convergence is guaranteed for any value of µ >
0, we can choose it so as to make these problems well-
conditioned. The iterations can be terminated when the
constraint term ‖uk−vk‖22 falls below some threshold and
the relative change in the objective function in (7) goes
below some tolerance level. The final value of either uk or
vk, after applying any inverse transform if applicable, is
taken as the estimate of u, û = ufinal
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Figure 1: Original image

3 RESULTS

For the purpose of demonstration, we will consider a de-
noising problem (i.e., A, the matrix representation of a
convolution, is simply an identity matrix), with the cam-
eraman image shown in Fig. 1. This image has mostly
piecewise smooth regions except for a bit of texture, and
can admit a sparse representation through a wavelet de-
composition. We therefore use a combination of the `1 and
the TV regularizers. The `1 regularizer seeks to minimize
the `1 norm of the wavelet coefficients. The MPM (denois-
ing operator) for the TV regularizer is implemented as in
[14], and the MPM for the `1 regularizer is the well-known
soft threshold [6].

Figure 2: Image from Figure 1, contaminated with Gaussian noise
(SNR = 20dB).

We use a four level Haar wavelet redundant decomposi-
tion. The optimal values of the regularization parameters
(which yielded the lowest mean square error) were found to
be τ`1 = 0.5 and τTV = 0.424σ2, where σ2 is the variance
of the noise. The best experimental value of µ, which led
to convergence in as few as 2 or 3 Bregman iterations, was
found to be 0.15.

The image with added zero mean Gaussian noise is
shown in Fig. 2. The SNR in this case is 20 dB. The

Figure 3: Image estimated using the compound regularizer
(`1+TV), with MSE = 49.9 (ISNR = 5.56 dB)

.

Figure 4: Image estimated using the TV regularizer, with MSE
= 51 (ISNR = 5.47 dB)

.

estimate obtained by the proposed method is shown in
Fig. 3 and has MSE = 49.9. This corresponds to an ISNR
= 10 log10(

‖u−f‖2
‖u−û‖2 ) = 5.56 dB, which is better than the

best result using each of `1- (ISNR = 1.15 dB) and TV
(ISNR = 5.47 dB) alone. The estimated images for `1-
and TV regularization (for their respective best possible
regularization paramter values), are respectively, shown in
Fig. 5 and Fig. 4.

The plot of the MSE obtained with the compound regu-
larizer (`1+TV) and with only TV regularization, for dif-
ferent values of the regularization parameter τTV, is shown
in Fig. 6(a). For each value of τTV, the value of τ`1 that
was used was found by hand-tuning to obtain the lowest
MSE. It can be observed that the minimum MSE that can
be obtained using `1+TV regularization is lower than the
minimum obtained using TV alone. Figure 6(b) shows a
similar MSE comparison between using only `1 regulariza-
tion and `1+TV regularization. The value of τTV used was
0.424σ2, which was the optimal for all values of τ`1 . For any
value of τ`1 , the MSE obtained with the `1+TV regularizer
is lower than that obtained with `1 alone.
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Figure 5: Image estimated using the `1 regularizer, with MSE =
138 (ISNR = 1.15 dB).

4 CONCLUDING REMARKS

We have introduced a new algorithm for solving the op-
timization problems resulting from using more than one
regularizer in imaging inverse problems. The algorithm
only requires the ability to efficiently compute the denois-
ing operator associated to each involved regularizer. It was
illustrated on a problem of image denoising, with encour-
aging results. The lowest MSE obtained using the `1+TV
regularizer was lower than that obtained with TV or `1
regularization alone.
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