Spectrum analyzer with USRP, GNU Radio and MATLAB

Anténio José Costa, Joao Lima, Licia Antunes, Nuno Borges de Carvalho

{antoniocosta, jflima, a30423, nbcarvalho}@ua.pt

January 23, 2009

Abstract

In this paper, a spectrum analyzer in the
2.3 - 2.7TGHz band is proposed using the
USRP, GNU Radio and the MATLAB soft-
ware. With this solution, a cheap and reli-
able analyzer can be made, also serving as
an introductory work for a cognitive radio.
A RF signal generator was used to perform
the tests, and the results achieved are in
accordance with the ones obtained with a
standard spectrum analyzer. We observed
that the system response was considerably
affected by the LN A gain, thus further reg-
ulation on its gain will be crucial for correct
measurement.

1 Introduction

The concept of Software-Defined Radio (SDR) has
been acquiring a great deal of attention in the past
several years. Created in 1991 by Joseph Mitola
[1], it is “a radio whose channel modulation wave-
forms are defined in software”. This will allow users
to operate the radio in different environments and
applications. Since the software is easily reconfig-
urable, the radio itself would become adaptable to
a wide range of situations, depending on the user’s
needs.

This concept brought up a new idea, the Cog-
nitive Radio (CR). Also devised by Mitola[2, 3],
it is essentially a SDR that senses its environment,
tracks changes, and reacts according to its findings.
CR is widely regarded as being the next step in the
evolution of radio system, since it can adapt itself
to every situation, replacing the traditional single
function radios.

2 Software-Defined Radio

Software-Defined Radio is a system where the main
part of the radio is implemented in software. Typ-
ical components such as amplifiers, filters, mixers,
modulators / demodulators and detectors (among
others) that were usually implemented in hardware,
can now be implemented in software. This system
is characterized by its flexibility and reconfigurabil-
ity, due to the fact that changing its behavior only
requires modifying or replacing the software.

Since SDR is a radio where its components are
implemented in software, there is a need for a stan-
dard set of tools to process the signal received on
the antenna. The GNU Radio is a toolbox to im-
plement such a SDR. Essentially it consists of a
signal-processing package which users can use to
construct their own radio. Implementing a radio is
done by connecting blocks according to the desired
structure.

The SDR architecture, depicted in Figure 1, con-
sists of a RF front end, an Intermediate Frequency
(IF) part, and software to perform all the baseband
computations. The front end is comprised by the
antenna, LNA and filter, and will downconvert the
radio frequency signal to a frequency the ADC can
process. To receive the RF signals, a RF Front End
is all that is required; this was previously accom-
plished using a PC sound board. Currently it is
still not possible to implement an ideal SDR. It is
envisaged that future deployments won’t require an
IF, but that is dependent on the ADC conversion
rate. The present SDR implementations occur as
shown in Figure 1.

The Universal Software Radio Peripheral
(USRP) is the hardware which receives the RF
signal and downconverts it to the baseband for
digital processing. It consists of a RF front end and

RF IF
Section Section

—>{ ac |f ooc
(—'mcl(—iouc

Baseband
Section

RF
Front End

Baseband
processing

Figure 1: SDR architecture

IF blocks. Since its design is open and schematics
and drivers are freely available, at an affordable
cost, it is a worthwhile choice for those who work
with Software-Defined Radio.

With the access to the SDR being far easier with
the solutions presented, all the requirements are
met to move forward towards Cognitive Radio. As
seen in the introduction above, one of the impor-
tant parts of the CR is spectrum sensing. This task
is usually carried out with professional equipment,
however the costs associated with it usually restrict
its employment. Our proposal is a spectrum ana-
lyzer using GNU Radio tools, MATLAB, and the
USRP hardware.

3 Practical implementation

3.1 GNU Radio

The GNU Radio package is a set of tools for the de-
ployment of software-defined radio systems. One of
the most relevant tools for spectrum sensing is the
GNU Radio spectrum analyzer (usrp_fft.py), which
is shown in Figure 2.

Y] i Ay g

10 08 05 o4 032 0.0 0z

MHz

Centerfreq: [Gan: 26

L

FS@USB: 2M DBS Rx Analog BB: 921M DDC: 0

Figure 2: GNU Radio spectrum analyzer

This analyzer can effectively detect frequency
peaks, perform arithmetic averages, and view mul-
tiple frequency scales. It can also locate and focus

on the central frequencies of the spectrum, select
decimation value, and adjust the Low Noise Am-
plifier (LNA) gain.

However, this standard analyzer also has some
limitations. It does not allow the detection of un-
used frequencies, making it impossible to perform
the sensing part of the CR. Moreover, it is only pos-
sible to observe a narrow frequency band, and thus
one cannot visualize the whole gap. As mentioned
above, the CR should be able to sense the environ-
ment to detect the free spaces, and with this short
range of operation that is not possible.

3.2 Frequency sampling
In order to overcome such a limitation, we
evaluated another GNU Radio function, the

usrp_rx_cfile.py. This function allows us to col-
lect samples taken from the USRP and store them
in a data file (.dat). We can also tune our
input parameters in order to change the sam-
pled central frequency, the LNA gain, the num-
ber of samples, decimation value, among others.
An implementation example is described below:
Jusrp_rz_cfile.py -d 32 -f 2.4G -g 5 -N 20 test.dat

Our idea to sense the proposed spectrum - from
2.3 to 2.7 GHz - is to pick up separate parts of the
spectrum, and then aggregate the different data in
one big picture. To ease the work, a Bash script was
created in order to automatically take the samples
with the proper input parameters.

With all the samples taken, the next task is the
signal processing. Since MATLAB is a powerful
tool which includes FFT toolboxes, we have opted
to work on all signal processing parts with it.

For a user-friendly interaction, the graphical in-
terface depicted in Figure 3 was built in MATLAB.
This interface allows us to collect all the samples,
and display them in an intuitive graphic with a sim-
ple click. Afterwards, it is possible to choose the
central frequency and range, in order to have the
domain according to our needs.

Moreover, and because the main purpose of this
spectrum analyzer is the CR, we are required to
separate the used frequencies from the non-used.
To overcome this adversity, we created an auxiliary
vector containing the FFT position of the channels.
This vector, with the length of the FFT, is initial-
ized to “1”7. After searching for used channels, the
positions on this vector representing occupied fre-

[i

Dedicated Radio Systems Spectrum analyser [Y s 0

9 o .
L ﬁ

Free Spectrum
04
| Comtral requency (Ghiz)|_Banawitn adtiz)
0z il
N°Channels]
o1 0z ©3 04 05 08 o7 08 03 1
Status
Limiar 0.05 > | FindBands StatAnalyser l Stop.
Central Frequency (GHz)
0 V) [ZE CHr
RangekHz) Graphic Actualization
0 » [S0 KHE J

Figure 3: Spectrum analyzer graphic interface

quencies are set to “0”. It should be noted that
not only the central frequency but the whole 40
MHz centered in it is set to “0”. A typical proto-
col operating in the given range is WiFi (centered
around 2.4 GHz). Since it occupies a 22MHz band-
width, we have chosen 40MHz as a reasonable value
to avoid interference with other channels. The re-
sulting vector works as a mask, allowing us to ef-
ficiently know which frequencies are occupied, re-
quiring only a single sweep across the whole vector,
checking which values are set to “1”.

4 Experimental Results

To assess the validity of the proposed solution, sev-
eral experimental tests were performed. The first
was to directly connect the frequency generator to
the USRP with a direct cable. A sine wave with a
-30dBm gain centered at 2.4GHz was then created,
and the sensing operation was carried out with an
LNA gain of 70dB. The results are displayed in Fig-
ure 4. As shown in the figure, the spectrum does
not correspond to what we expected. The spectrum
shows several frequencies, whereas our frequency
generator was only transmitting around 2.4GHz.
Zooming in a bit more, in Figure 5 we can see
that around the 2.4GHz frequency there are spuri-
ous frequencies caused by LNA saturation distor-
tion. To attest these results, and to verify that the
obtained results were not as we expected, we used
a professional frequency sweep device to obtain a
base for comparison. With it, we were able to con-
firm that the distortion was caused by the USRP.

Fraquency Spectrum

Ju |||. ..‘ |l|-ll“| .Ll.l .

1%/ 23 1% 24 285 15 2155 6 285 27 275
Frequency(Hz)

Figure 4: Frequencies spectrum with a direct cable with
an LNA gain of 70dB

x10° Frequency Spectrum

3 LNA Saturation
= o
E 25 distortion
2
"2
15 P d

23987 23998 23999 24 2.4001 24002 2.4003 2.4004 2.4005
Frequency(Hz) x10°

Figure 5: Frequency spectrum around 2.4GHz

After some experimental tests, we discovered
that the cause for the distortion issue is the LNA
gain, which cannot be above a given value or it will
distort the signal.

After decreasing the LNA gain to a suitable value
- 10dB - and taking samples again, we could see
that the spurious frequencies have disappeared as
we expected. The frequency window is as in Figure
6. Zooming in further, we could see in the same
Figure that the frequency bandwidth around 2.4
GHz is as expected, and the spurious frequencies
cease to appear.

In the second simulation, an antenna was con-
nected to the frequency generator in order to sweep
the spectrum. One should notice that the received
power is considerably inferior to the one received
with direct connection to the USRP. Due to this

FFT)
ST

Figure 6: Frequency windows after decreasing the LNA
gain to 10dB

fact, the LNA gain was experimentally adjusted to
a higher value. This simulation consisted of several
tests with the generated frequencies ranging from
2.3 to 2.7GHz and varying the output power in or-
der to accurately simulate real-life conditions. The
experimental values for the LNA gain, in order to
obtain acceptable values, ranged from 50 to 70dB.
To avoid the referred distortion, we used a value of
50dB for the following tests.

After calibrating the LNA gain, we moved to a
real-life situation. Without an external frequency
generator, we sensed the spectrum in search of used
frequencies. The result is depicted in Figure 7.

Frequency Spectrum
04 T T T

035F b

03t B

abs(FFT)
o
N
|

015F 4
01F 1

0ost A

.| e . n . L . ,
. 235 24 245 25 255 26 265 27 275
Freguency(Hz) X 109

Figure 7: Frequency spectrum in a real-life experiment

We can see that the frequencies shown in the
figure are centered around 2.4GHz, and correspond
to well known protocols.

In Figure 8 we can also observe the differences
in the spectrum around 2.4GHz when the external
frequency generator is off. The image on the left
of Figure 8 shows the spectrum without the exter-

nal generator, while the one on the right shows the
central frequency band broadened.

Figure 8: Effects of the frequency generator

5 Conclusion

In this paper we proposed an alternative to the
expensive frequency spectrum analyzers using an
USRP, GNU Radio and MATLAB software. In
the first part of the work, a more theoretical study
was made in order to assess the capabilities of the
GNU Radio toolbox and the characteristics of the
USRP. Afterwards, and due to the insufficiency of
the GNU Radio spectrum analyzer, a new appli-
cation was proposed. It was developed in order to
overcome the narrow bandwidth spectrum given by
the original tool.

In the experimental and testing phase, it was
seen that the results obtained were in accordance
with the ones achieved with a professional spectrum
analyzer.

It is the authors’ opinion that this tool consists in
a powerful and cheap solution to analyze the spec-
trum, and with further development it can be a step
forward in order to achieve the devised Cognitive
Radio.

References

[1] Joseph Mitola III, Software Radio Architecture,
John Wiley & Sons, 2000

[2] J. Mitola III and G. Q. Maguire, “Cognitive ra-
dio: making software radios more personal,” IEEE
Pers. Commun., vol. 6, no. 4, pp. 13-18, 1999.

[3] J. Mitola III, “Cognitive radio: an integrated
agent architecture for software defined radio,”
Ph.D. dissertation, Computer Communication

System Laboratory, Department of Teleinformat-
ics, Royal Institute of Technology (KTH), Stock-
holm, Sweden, May 2000.

