
Load Balancing of Telecommunication Networks
based on Multiple Spanning Trees

Dorabella Santos∗ Amaro de Sousa? Filipe Alvelos¦

∗Instituto de Telecomunicações

3810-193 Aveiro, Portugal

dorabella@av.it.pt

?Instituto de Telecomunicações / DETI, Universidade de Aveiro

3810-193 Aveiro, Portugal

asou@ua.pt

¦Centro Algoritmi / DPS, Universidade do Minho

4710-057 Braga, Portugal

falvelos@dps.uminho.pt

Abstract

In this paper we address the problem of load balancing optimization of telecommunication net-
works based on multiple spanning tree routing. We focus on two objectives – minimization of the
maximum link load and minimization of the network utilization imposing a worst case load value –
and we propose two sets of mixed integer programming models defining the optimization problems
(where one set is derived from the other). We further propose three decompositions (based on the
Dantzig-Wolfe principle) to be applied to the models, as alternative means to solve the same problems.
A set of computational results show the efficiency of the different models and decompositions.

Keywords: multiple spanning tree protocol, integer programming, branch-and-price

1 Introduction

This paper focuses on the load balancing optimization of telecommunication networks based on mul-
tiple spanning tree routing, which arises in the context of switched Ethernet networks. We address two
objectives: the minimization of the maximum link load (maximizing the network robustness to unpre-
dicted growth of traffic demand) and the minimization of the network utilization imposing a worst case
load value (maximizing the available network resources either to accomodate new traffic demands and/or
to reroute demands in the case of network failures). The aim of the second objective function is to
impose the worst value given by the optimal solution of the first objective function. Therefore, to achieve
the optimal solution of the second objective, we first need to determine the optimal solution of the first
objective.

In switched Ethernet networks with the IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) [1],
routing of traffic flows is done through the network based on spanning trees (STs). The operator defines
each required ST by creating a spanning tree instance (STI) and assigning to it a set of traffic flows.
When a traffic flow is assigned to a STI, it is routed between its end nodes through the unique path
defined by the assigned STI. MSTP also enables the set of STIs over a set of regions defined on the
network (it ensures that failures inside a region do not affect routing outside that region minimizing

1

the impact of network failures). Nevertheless, it has been shown in a previous work of one the authors
on this paper [2] that, with optimized configurations, considering the whole network as a single region
provides the best results with respect to load balance and service disruption and, here, we consider the
single region approach. MSTP has been recently proposed to enhance traffic engineering capabilities of
Ethernet networks [3, 4, 5, 6]. Nevertheless, as far as we are aware, there is no reference dealing with
exact methods to find optimal solutions for the load balancing objectives addressed here in the context
of multiple spanning tree routing based networks.

In this paper, we first propose in Section 2 two sets of mixed integer linear programming models
defining the two objectives: a first natural set and a second which is a reformulation of the first one.
Then, in Section 3, we describe different reformulations based on the Dantzig-Wolfe decomposition,
which are solved by branch-and-price, as alternative means to solve the optimization problems. Finally,
we present in Section 4 the computational results showing the efficiency of the different models and
decompositions.

2 Compact Models

Consider a network defined on a graph G(N, A) where N is the set of nodes and A is the set of links
between nodes. Edge {i, j} ∈ A represents a link between node i ∈ N and j ∈ N , while arc (i, j) ∈ A
represents the edge {i, j} directed from i to j. Let V (i) be the set of neighbor nodes of i ∈ N on graph
G(N, A). Each edge has a known capacity given by c{ij}(= cij = cji). The network is to support a set of
commodities K where each commodity k ∈ K is characterized by its origin node ok ∈ N , its destination
node dk ∈ N and its demand bk ∈ R+. Commodities must be routed over the network on paths defined
by one of a set of spanning trees S of size |S|. The aim is to choose set S and to assign the commodities
to the spanning trees.

2.1 First Set of Compact Models

Let r be one node of N and referred to as “root node”. The basic decision variables are:
xk

ij ∈ {0, 1} – indicates if arc (i, j) ∈ A is in the path of the commodity k ∈ K
φs

k ∈ {0, 1} – indicates if commodity k ∈ K is assigned to spanning tree s ∈ S
βs
{ij} ∈ {0, 1} – indicates if edge {i, j} ∈ A is in the spanning tree s ∈ S

We need also the following variables in order to model the spanning tree constraints:
yzs

ij ∈ {0, 1} – indicates if arc (i, j) ∈ A is in the path from node z ∈ N\{r} to the root node r on
the spanning tree s ∈ S
θs

ij ∈ {0, 1} – indicates if arc (i, j) ∈ A is in the spanning tree s ∈ S

All models have to be compliant with a set of common constraints. The first set is:

∑

j∈V (i)

(
yzs

ij − yzs
ji

)
=

{
1, i = z
0, i 6= z

∀z ∈ N\{r}, ∀s ∈ S, ∀i ∈ N\{r} (1)

θs
ij ≥ yzs

ij ∀z ∈ N\{r}, ∀(i, j) ∈ A, ∀s ∈ S (2)
∑

j∈V (i)

θs
ij =

{
1, i 6= r
0, i = r

∀i ∈ N, ∀s ∈ S (3)

θs
ij + θs

ji = βs
{ij} ∀{i, j} ∈ A, ∀s ∈ S (4)

which guarantees that the set of variables βs
{ij} define the spanning trees. For each s ∈ S: constraints

(1) guarantee that variables yzs
ij define a path from z ∈ N to root node r ∈ N ; constraints (2) guarantee

that variables θs
ij include the arcs of all paths defined by variables yzs

ij ; constraints (3), together with
constraints (2), guarantee that the paths given by variables yzs

ij define a directed spanning tree towards
the root node r; constraints (4) guarantee that the variables βs

{ij} include the edges of the directed

2

spanning tree defined by variables θs
ij . Note that the equalities (4) could be used to eliminate variables

βs
{ij} from the model but they are useful to define the decompositions. The second set is:

xk
ij + xk

ji ≤ βs
{ij} + (1− φs

k) ∀{i, j} ∈ A, ∀k ∈ K, ∀s ∈ S (5)

∑

j∈V (i)

(
xk

ij − xk
ji

)
=

1, i = ok

0, i 6= ok, dk

−1, i = dk

∀i ∈ N, ∀k ∈ K (6)

where constraints (6) are the path conservation constraints which together with (5) guarantee that the
path is defined on links belonging to the assigned spanning tree (when variable φs

k is 1, constraints (5)
impose that xk

ij + xk
ji ≤ βs

{ij} and when variable φs
k is 0, constraints (5) are redundant). The third set is:

∑

s∈S

φs
k = 1 ∀k ∈ K (7)

which guarantees that each commodity is assigned to one spanning tree.
For the first objective function (the minimization of the maximum link load), we use the decision

variable µ ∈ [0, 1] to account for the maximum load of any edge and the optimization problem is given
by the following mixed integer linear programming (MILP) model:

min µ

s.t.
(1)− (7)∑

k∈K

bk

(
xk

ij + xk
ji

) ≤ c{ij}µ ∀{i, j} ∈ A (8)

yzs
ij ∈ {0, 1}, θs

ij ∈ {0, 1}, φs
k ∈ {0, 1}, xk

ij ∈ {0, 1}, βs
{ij} ∈ {0, 1}, µ ∈ [0, 1]

For the second objective function (the minimization of the network utilization imposing a worst case
load value µmax), the decision variables are µ{ij} which account for the load of each edge {i, j} ∈ A and
the MILP model defining this optimization problem is given by:

min
∑

{i,j}∈A

µ{ij}

s.t.
(1)− (7)∑

k∈K

bk

(
xk

ij + xk
ji

)
= c{ij} · µmax · µ{ij} ∀{i, j} ∈ A (9)

yzs
ij ∈ {0, 1}, θs

ij ∈ {0, 1}, φs
k ∈ {0, 1}, xk

ij ∈ {0, 1}, βs
{ij} ∈ {0, 1}, µ{ij} ∈ [0, 1]

2.2 Second Set of Compact Models

Alternative MILP models defining the same optimization problems are obtained by disaggregating
each variable xk

ij into variables xks
ij , one for each s ∈ S. In this case, variable xks

ij indicates if arc (i, j) ∈ A
is in the path of commodity k ∈ K in the assigned spanning tree s ∈ S.

With this disaggregation technique, the common constraints (5)-(6) are reformulated as:

xks
ij + xks

ji ≤ βs
{ij} ∀{i, j} ∈ A, ∀k ∈ K, ∀s ∈ S (10)

∑

j∈V (i)

(
xks

ij − xks
ji

)
=

φs
k, i = ok

0, i 6= ok, dk

−φs
k, i = dk

∀i ∈ N, ∀k ∈ K, ∀s ∈ S (11)

3

Constraints (11) are straightforward under the proposed variable disaggregation. Concerning constraints
(10), the commodity to spanning tree assignment information, which is defined in (5) by variables φs

k, is
now defined by variables xks

ij and the term (1− φs
k) of constraints (5) is no longer required on (10).

It is possible to prove that the first set, although more compact than the second one (it has less
variables and less constraints), has a convex hull that accommodates solutions which do not belong to
that of the second set. Consider the linear relaxation of both sets assuming, for example, that the
spanning tree constraints define two integer spanning trees, s = 1 and s = 2 and that φ1

k = φ2
k = 0.5 for

some k ∈ K. Note that in the second set, under these conditions, constraints (10) and (11) guarantee
that 50% of the demand for commodity k is routed through tree s = 1, while the other 50% is routed
through the other tree, s = 2. However, in the first set, the right end side of constraints (5) is always at
least 0.5, which means that 50% of the demand can be freely routed by the constraint (5) of spanning
tree s = 1 and the other 50% can be also freely routed by the constraint (5) of spanning tree s = 2,
proving the statement that the convex hull of the first set accommodates solutions which do not belong
to that of the second set. Computational results will show which one leads to better performance.

The resulting MILP model for the minimization of the maximum link load objective is given by:

min µ

s.t.
(1)− (4) , (7) , (10)− (11)∑

s∈S

∑

k∈K

bk

(
xks

ij + xks
ji

) ≤ c{ij}µ ∀{i, j} ∈ A (12)

yzs
ij ∈ {0, 1}, θs

ij ∈ {0, 1}, φs
k ∈ {0, 1}, xks

ij ∈ {0, 1}, βs
{ij} ∈ {0, 1}, µ ∈ [0, 1]

and for the minimization of the network utilization imposing a worst case load value µmax is given by:

min
∑

{i,j}∈A

µ{ij}

s.t.
(1)− (4) , (7) , (10)− (11)∑

s∈S

∑

k∈K

bk

(
xks

ij + xks
ji

)
= c{ij} · µmax · µ{ij} ∀{i, j} ∈ A (13)

yzs
ij ∈ {0, 1}, θs

ij ∈ {0, 1}, φs
k ∈ {0, 1}, xks

ij ∈ {0, 1}, βs
{ij} ∈ {0, 1}, µ{ij} ∈ [0, 1]

3 Decompositions

This section briefly describes different possible decompositions, based on the Dantzig-Wolfe principle
[7], which we have solved by branch-and-price (B&P) [8], as alternative means to solve the optimization
problems. In our case, the branch constraints are added to the master problem and are defined using the
original variables (the ones from the compact model).

The first decomposition considers the set of spanning tree constraints, i.e., constraints (1)-(4), as the
subproblems (one for each required spanning tree). These subproblems define the minimum cost spanning
tree problem which we efficiently solve using the Kruskal algorithm.

The second decomposition considers the path constraints as subproblems. For the first set of models,
constraints (6) define the subproblems (one for each required commodity). The optimal solution of
each subproblem is a path. On the other hand, for the second set of models, constraints (11) are the
subproblems (one for each commodity and for each required spanning tree). Note that, in this case,
the optimal solution of a subproblem can be either a path (with variables xks

ij defining the path and
variable φs

k equal to 1) or a non-path (all variables xks
ij equal to 0 and variable φs

k also equal to 0). These
subproblems can be efficiently solved using the Bellman-Ford algorithm.

4

The third decomposition is the combination of the two previous ones. In this case, the subproblems
are either minimum cost spanning tree problems or shortest path problems.

4 Computational Results

Computational results for the compact formulations, as well as for the decompositions, were obtained
with the networks depicted in Figure 1 on a Pentium IV machine at 3.4 GHz and with 1GB of RAM. In
all cases,we have considered a number of spanning trees |S| = 2 and a maximum runtime of 2 hours was
allowed. Two sets of flow demands were considered for each network – Set I and II for Network A – and
Set III and IV for Network B – where Set I and III are significantly more unbalanced (in terms of total
traffic per network node) than Set II and IV, respectively.

A B C D

E

F G

A B C D

E F G H

Figure 1: Network A with 7 nodes and 11 links (left) and Network B with 8 nodes and 13 links (right).

The compact formulations were solved using CPLEX 9.1. The µmax value given to the second objective
function was always the value of the optimal solution of the first objective function. The results for the
first set of compact models are shown in Table 1, whereas the results for the second compact model
are shown in Table 2: the results include the LP value (value of the objective function for the Linear
Programming relaxation), the MIP value (the value of the objective function of the optimal integer
solution), the total computational time in seconds and the number of nodes of the branch-and-bound
(B&B) search tree.

Min of max link load
Min of network utilization

imposing a worst case value

LP MIP Time BB LP MIP Time BB

A & I 0.525 0.55 70.67 39434 3.35 3.45 0.08 1

A & II 0.325 0.35 55.05 18998 2.65 2.65 0.03 1

B & III 0.467 0.50 3069.78 766878 3.65 3.65 0.14 1

B & IV 0.533 0.55 3331.03 564598 4.45 4.50 7.49 1454

Table 1: Computational results for the first set of compact models

Min of max link load
Min of network utilization

imposing a worst case value

LP MIP Time BB LP MIP Time BB

A & I 0.525 0.55 51.6 16354 3.35 3.45 4.08 1384

A & II 0.325 0.35 22.6 4992 2.65 2.65 0.03 1

B & III 0.467 0.50 450.4 81887 3.65 3.65 2.53 161

B & IV 0.533 0.55 738.7 100952 4.45 4.50 8.89 1205

Table 2: Computational results for the second set of compact models

5

First of all, these results show that the models of the first objective function are much harder to solve
than the ones of the second objective function. Then, the disaggregation technique used in the second set
of models improves CPLEX efficiency in the case of the first objective function (huge reduction of B&B
nodes and computational time) but it has worse performance in the second case (the first model finds
the optimal integer solution at the very first LP node in three out of four instances, while this happens
only for one instance in the second model and all computational times are better for the first model).

The proposed decompositions were implemented with the ADDing (Automatic Dantzig-Wolfe Decom-
position for Integer Column Generation) set of C++ classes [9], where the restricted master problems
were solved using CPLEX 9.1. In the implementation of the B&B tree search, we have implemented
different node and variable selection strategies. Concerning the node selection strategy, we have consid-
ered: depth-first, breadth-first and best-bound. In average, depth-first and best-bound showed similar
performance, while breadth-first was worst (the computational results shown here refer to the results
with depth-first). Concerning variable selection strategy, we have tested a significant number of different
strategies. In the overall, the best strategy was to choose: (i) closest value to 1 among variables βs

{i,j}
of most loaded links; (ii) if all these variables are integer, then closest value to 1 among the remaining
variables βs

{i,j}; (iii) if all variables βs
{i,j} are integer, then closest value to 1 among variables φs

k of com-
modities using most loaded links; (iv) if all these variables are integer, then closest value to 1, among the
remaining variables φs

k.
Concerning the minimization of maximum link load, Tables 3 and 4 present the computational results

of all three decompositions applied to the first and second compact models, respectively. Each table
presents separately the number of B&B nodes and the computational times of all decompositions (in the
first case, we repeat the B&B nodes of the CPLEX runs for comparison reasons).

Number of B&B nodes
Min of max link load

Min of network utilization
imposing a worst case value

CPX Tree Path Tree+Path CPX Tree Path Tree+Path

A & I 39434 38709 482119 77422 1 858 159 9

A & II 18998 14365 184439 49988 1 5 1 3

B & III 766878 122186* 207139* 256036* 1 140 1 2971

B & IV 564598 125117* 174373* 232282* 1453 24121 32410 13563

Computational times in seconds

Min of max link load
Min of network utilization

imposing a worst case value

Tree Path Tree+Path Tree Path Tree+Path

A & I 399.64 5224.80 543.80 10.38 1.05 0.2

A & II 138.08 2323.73 369.30 0.17 0.17 0.16

B & III 7200 7200 7200 3.36 2.34 51.56

B & IV 7200 7200 7200 1161.28 612.55 344.84

*Reached time limit of 7200 seconds

Table 3: Computational results of decompositions applied to the first set of compact models.

Let us consider the first objective function. In the case of the first compact model (Table 3), and
for the instances that were solved within the given maximum runtime limit, the tree decomposition
has the best performance (both in terms of B&B nodes and in terms of computational time) and the
path decomposition has the worst performance. Moreover, the tree decomposition is slightly better
than CPLEX in number of B&B nodes (the computational times are not comparable since CPLEX is
an highly efficient commercial software package and the branch-and-price approaches were implemented
by the authors). In the case of the second compact model (Table 4), the path decomposition becomes
much more efficient and, therefore, the best decomposition. Note that although the path decomposition
generates on average a little less number of B&B nodes than the tree decomposition, its merit is more

6

Number of B&B nodes
Min of max link load

Min of network utilization
imposing a worst case value

CPX Tree Path Tree+Path CPX Tree Path Tree+Path

A & I 16354 24461 17571 14222 1384 552 313 431

A & II 4992 4879 7265 5129 1 3 1 4

B & III 81887 79543 70677 65928 161 43 1 72

B & IV 100952 35654 27291 39266 1205 804 1057 872

Computational times in seconds

Min of max link load
Min of network utilization

imposing a worst case value

Tree Path Tree+Path Tree Path Tree+Path

A & I 429.25 150.53 155.67 10.47 2.25 3.78

A & II 113.17 71.61 75.17 0.22 0.16 0.16

B & III 4972.30 1247.47 2954.69 1.66 1.31 1.34

B & IV 3673.50 755.83 2375.39 31.97 26.80 66.86

Table 4: Computational results of the decompositions applied to the second set of compact models.

apparent in its much shorter computational times. Finally, we see in both cases that combining tree and
path decompositions is not worthy since its performance is, in all cases, between the performance of each
individual decomposition.

Let us now consider the second objective function. In the case of the first compact model (Table 3), the
path decomposition was in general the best approach but the combined tree and path decomposition was
the best in two cases. Nevertheless, all decompositions performed worse than the compact model solved
by CPLEX. In the case of the second compact model (Table 4), the path decomposition was the best
approach and all decompositions performed better than the compact model solved by CPLEX (in terms
of generated B&B nodes). In the overall, the performance of the decompositions is better when applied
to the second compact model, in particular in the most difficult problem instances. Moreover, unlike
the first objective function, in this case there are cases where the combined tree and path decomposition
performs better than the individual decompositions.

5 Conclusion

Here, we have addressed two load balancing related objective functions applied to telecommunication
networks based on multiple spanning tree routing. Two sets of mixed integer linear programming models
defining the optimization problems were proposed and compared. The second model set, which is derived
from the first one based on a variable disaggregation technique, was found to be much more efficient
for the minimization of the maximum link load but less efficient for the minimization of the network
utilization imposing a worst case load value. Three different decompositions that can be applied to both
model sets were also proposed and compared. In the overall, the path decomposition applied to the
second model set is the best technique amongst all.

We note that the proposed decompositions do not improve the lower bound of the restricted master
problem, since the respective subproblems have the integrality property, i.e, the subproblems have integer
optimal solutions. In an attempt to improve the lower bound, we are investigating other decompositions,
namely decompositions involving constraints (1)-(4) and (10)-(11) in the subproblems and certain variants
of the path decomposition, although efficient algorithms for some of these subproblems are not known.

We note also that techniques based on disaggregation of variables have been also used in other con-
texts like, for example, in capacitated network design problems (disaggregating the decision variables
on the number of facilities, see [10]) or hop constrained network design problems (disaggregating the
routing variables in their position from the origin node, see [11]). These techniques sometimes allow the

7

identification of additional inequalities that improve lower bounds. Thus, we are in the process of iden-
tifying such inequalities adequate to the problems addressed here and investigating if they can improve
the efficiency of the solution techniques through row generation techniques.

Acknowledgment

The authors would like to thank the portuguese FCT (Fundação para a Ciência e a Tecnologia) for its
support through projects PTDC/EIA/64772/2006 and POSC/EIA/57203/2004 and through the post-doc
grant SFRH/BPD/41581/2007 of the first author.

References

[1] IEEE Standard 802.1s, “Virtual Bridged Local Area Networks - Amendment 3: Multiple Spanning
Trees”, 2002

[2] A. F. de Sousa, G. Soares, “Improving Load Balance and Minimizing Service Disruption on Ethernet
Networks using IEEE 802.1S MSTP ”, EuroFGI Workshop on IP QoS and Traffic Control, IST Press,
pp. 25 - 35, 2007

[3] A. Kern, I. Moldovan, T. Cinkler, “Scalable Tree Optimization for QoS Ethernet”, IEEE Symp. on
Computers and Communications (ISCC’06), pp. 578 - 584, 2006

[4] M. Ali, G. Chiruvolu, A. Ge, “Traffic Engineering in Metro Ethernet”, IEEE Network, Vol. 19, No.
2, pp. 10 - 17, 2005

[5] A. Kolarov, B. Sengupta, A. Iwata, “Design of Multiple Reverse Spanning Trees in Next Generation
of Ethernet-VPNs”, IEEE GLOBECOM’04, Vol. 3, pp. 1390 - 1395, 2004

[6] S. Sharma, K. Gopalan, S. Nanda, T. Chiueh, “Viking: A Multi-Spanning-Tree Ethernet Architec-
ture for Metropolitan Area and Cluster Networks”, IEEE INFOCOM’04, Vol. 4, pp. 2283 - 2294,
2004

[7] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs”, Operations Research,
Vol 8, pp. 101-111, 1960

[8] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance, “Branch-
and-price: Column generation for solving huge integer programs”, Operations Research, Vol. 46, pp.
316-329, 1998

[9] F. Alvelos, “Branch-and-price and multicommodity flows”, PhD Thesis, Universidade do Minho,
2005

[10] A. Frangioni, B. Gendron, “0-1 reformulations of multicommodity capacitated network design prob-
lem”, Discrete Applied Mathematics, doi:10.1016/j.dam.2008.04.022, 2008

[11] L. Gouveia L, P. Patŕıcio, A.F. de Sousa, “Hop-Constrained Node Survivable Network Design: An
Application to MPLS over WDM ”, Networks and Spatial Economics, Vol. 8, No. 1, pp. 3 - 21, 2008

8

