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Abstract— MPLS provides the flexibility required for managing the way the traffic is routed 
through the network. However, LSP configuring is a hard task in a growing network, as more and 
more routes need configuring and monitoring. A viable alternative is to rely on a minimum weight 
routing protocol to determine the paths used by the LSPs. An important requirement is that the 
routing paths should be unique to avoid the additional management complexity required by Equal 
Cost MultiPathing. Here, we address the dimensioning of MPLS networks with single path minimum 
weight routing. To solve large scale problem instances, we propose a methodology composed by two 
phases: first, the network design solution is computed based on a Greedy Randomized Adaptive 
Search Procedure (GRASP) with a neighbor structure given by an exponential growing difference set 
of values; then, the link weights are assigned solving an appropriate ILP model. For the network 
design phase, the proposed heuristic is compared with other heuristic strategies, namely, with another 
neighbor structure previously proposed and with a Simulated Annealing strategy. The computational 
results show a significantly better performance of the proposed heuristic.  
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I. INTRODUCTION 
In the latest years, minimum weight routing technology has gathered a lot of interest by network operators 

mainly because of its ease of configuration and expansibility. IGP (Interior Gateway Protocol) routing 
protocols such as OSPF (Open Shortest Path First) and IS-IS (Intermediate System-Intermediate System) are 
the most used protocols in the today’s IP networks. These protocols establish minimum weight paths through 
the network based on link weight assignment. The task of configuring and managing the way the traffic is 
routed through the network is based on assigning appropriate weights to the links. In the traditional IGP 
routing, when multiple paths with the same weight are present, the traffic is equally split among these paths 
(this is known as ECMP – Equal Cost MultiPathing).  

MPLS (Multi-Protocol Label Switching) provides more flexibility than traditional IGP protocols by 
allowing for Traffic Engineering. Many IP service providers agree that MPLS Traffic Engineering can have 
beneficial impact on their networks [1-2]. A router that supports MPLS is known as a Label Switching 
Router (LSR). MPLS organizes the network in MPLS domains. The forwarding of IP packets from ingress to 
egress LSRs is done by means of routing paths, called Label Switched Paths (LSPs). In the ingress LSR, 
incoming IP packets are classified based on their destination and required quality of service and, depending 
on this classification, are forwarded through the appropriate LSP towards an egress LSR. In an MPLS 
domain, the ingress/egress nodes are designated as Edge LSRs. 

While providing a lot of flexibility, MPLS can lead to undesirable micromanagement and complexity due 
to the large number of paths that grows ever larger with the size of the network. An alternative is to use 
MPLS combined with an IGP routing protocol such as OSPF or IS-IS in order to combine MPLS’s flexibility 
with minimum weight routing’s simplicity (see references [3] and [4]). With this approach, the LSPs are 
established based on minimum weight routing, thus freeing the operator of the task of configuring all the 
paths in the network. An important requirement is that the routing paths should be unique to avoid the 
additional management complexity required by ECMP. 

II.  RELATED WORK 
In recent years, research has been focused on efficient weight assignment methods for traffic engineering 

purposes [3,4,6-16], i.e., a network configuration is considered with given link capacities and the weight 
assignment is exploited in order to optimize network performance. In [6] the authors address the problem of 
optimal routing in shortest path networks to minimize the average packet delay. They also enumerate and 
classify several types of routing problems used in networks as combinations of single-path routing, 
destination-based routing and shortest path routing. References [4] and [7] address the OSPF network routing 
task with the goal of minimizing the load on all links of the network considering that traffic flows can be 
routed based on ECMP mechanism. In these papers, algorithms based on local search heuristics are proposed 
for solving these problems. In [4] it is shown that OSPF routing leads to only a small decrease in 
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performance when compared to optimal routing. It is common practice for some network operators to forgo 
some performance in favor of a more easily configurable and manageable network. 

In [8] and [9] genetic algorithms are used to solve OSPF networks optimization problems. In [8] the 
authors propose a genetic algorithm approach to solve the problem presented in [4]. In [9] the authors 
describe a method for solving a survivable version of this problem by determining the arc weights and 
multiplicities (number of links assigned to the arc) that accomplish the minimum total weighted multiplicity 
(multiplicity multiplied by the arc length) needed to route the required demand and handle any single arc or 
router failure. In our previous work [5], we consider that each arc of the graph has a multiplicity of 1 and that 
the capacities assigned to the arc can be treated as a single capacity, which is equal to the sum of these. 

In [10], the authors prove the NP-Completeness of OSPF routing optimization tasks and discuss various 
heuristic approaches to solve these problems: Weight Adjustment Heuristics, Simulated Annealing, 
Lagrangean Relaxation, Simulated Allocation (see also [12]) and others. The authors formulate a two-phase 
approach to tackle these problems. They define phase I as the flow allocation task and phase II as the weight 
assignment task. In phase I they determine the single path flow allocation that optimizes a measure of the 
network performance such as residual link capacity. In phase II they determine a set of weights that provides 
the desired flow routing if such weights exist. 

In [14] a Tabu-Search heuristic is used to solve the OSPF routing problem with unique shortest paths to 
determine link weights that provide the minimal utilization of the maximally used link. The authors also 
divide the problem in two phases. In phase I they solve the relaxed problem without the integrality of the 
weights and in phase II they use a Tabu-Search heuristic to find integer weights that can provide the routing 
configuration obtained in phase I. 

The OSPF routing problem is solved in [15] with a branch-and-bound approach. This work considers 
ECMP and introduces a constraint that limits the number of outgoing links at a node to a maximum value, 
which may be suitable to operational use. In [16] the authors propose a branch-and-cut approach to solve the 
OSPF routing problem assuming also the ECMP rule. 

Network design problems based on minimum weight routing protocols are also addressed in recent 
literature ([17-21]). For a comprehensive reference on modeling network design problems, please see [19]. 
Reference [20] presents a Lagrangean Relaxation heuristic for dimensioning OSPF networks with single 
minimum weight paths. This heuristic aims to determine the topology of the network, the hardware 
components and the link weights that minimize the total cost of the network. In reference [21] the authors 
present a MIP formulation of a survivable OSPF network design problem that includes link capacity and link 
weight determination to minimize a function based on cost, total capacity or capacity violation. To solve this 
problem, a few improvement based heuristics are also proposed. As in [20], traffic splitting is not considered. 
In [17], the authors present a MIP formulation and two heuristics for solving the design of OPSF networks 
with ECMP. This problem aims to determine simultaneously the link capacity assignment, the link metric 
assignment and the routing configuration. 

Many of the strategies used to solve these problems are based on a two-phase approach. In the first phase a 
routing configuration is determined (and the link capacity, in the case of network design problems) and in the 
second phase the goal is to find a set of link weights that can provide the desired minimum weight paths. 
Depending on the method used for determining the routing configuration, this approach can sometimes lead 
to the infeasibility of the second phase. In some instances, the routing solution is not achievable via a 
minimum weight routing configuration. Destination based routing can often be accomplished by suitable 
choice of link weights, but that may not always be the case. For a study on the necessary and sufficient 
conditions to determine a minimum weight routing solution based on a destination based routing solution 
please see [22]. Reference [23] provides a polynomial method for determining routing instances that do not 
have a compatible set of link weights. In [24] the author formulates two problems for finding link weights 
that realize a prescribed set of routing paths as Inverse Shortest Path problems. The author shows how to 
compute approximate solutions via linear programming and shows that determining if a routing configura-
tion can be implemented with a link weight system is NP-Hard. However, the author also states that for real 
world instances these problems are solved very efficiently with standard integer linear programming solvers. 

III.  SOLVING TECHNIQUES 
Consider a network modeled by an undirected graph G = (N,E) where node set N represents the set of 

LSRs and link set E represents non ordered pairs of LSRs that can be connected by transmission facilities. A 
transmission facility is characterized by a given cost to be put in operation at each link and a given 
bandwidth α that it provides on each arc of any link. The MPLS network design problem is the 
determination of the number of transmission facilities required in every link that can accommodate all traffic 
demands at the minimum cost. The traffic demands are defined by a set of traffic flows that are routed 
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according to a minimum weight routing protocol. The origin and the destination nodes belong to the set U 
which is the set of Edge LSRs. Since the traffic routing is supported by a single minimum weight routing 
path, we define for each non-ordered pair of origin and destination nodes p, q (p∈U, q∈U \{ p}) a single 
commodity with a demand value that is the sum of the demands of all the traffic flows between its end nodes. 

The standard approach to implement heuristic algorithms for the design of networks with minimum weight 
routing is to assign different sets of link weights and, for each set, to determine the minimum weight routing 
paths and the required link capacities. This is straightforward when ECMP is considered since any set of link 
weights implicitly defines a network design solution. In the single path minimum weight routing case, this 
approach is not straightforward because a general set of link weights might contain multiple minimum 
weight paths for at least some pairs of network nodes. Moreover, there is no trivial way to determine a set of 
weights whose minimum weight paths are unique for all pairs of nodes. Therefore, to obtain a valid heuristic 
algorithm, we propose an approach with two phases: in the first phase, we determine a network design 
solution through the generation of sets of link weights; for each set, we select only one minimum weight path 
for each demand among the multiple ones that might be contained on it; in the second phase, we determine a 
suitable set of link weights defining the single minimum weight paths determined in the previous solution. In 
the following sub-sections, we will address separately each of these two phases. 

A. First Phase Network Design 

In the network design phase, for a given set of link weights, the minimum weight routing algorithm must 
carefully select the routing paths. In the cases where there is more than one minimum weight path, the paths 
selected by the minimum weight routing algorithm must have the following properties: (i) if the minimum 
weight path chosen from node p to node q goes through intermediate node i, this path should be the 
composed by the minimum weight path chosen from node p to node i plus the minimum weight path chosen 
from node i to node q; (ii) the minimum weight path chosen from node p to node q must cross the same 
nodes in inverse order than the minimum weight path chosen from node q to node p. In order to obtain a 
minimum weight routing algorithm with these properties, we propose a modification to the standard version 
of Dijktra’s algorithm. At the beginning, all nodes are assigned an index, which is a positive integer value. 
Taking the standard Dijktra’s algorithm for computing the minimum weight paths from a single origin to all 
other nodes, the following additional operations are included: 

• Whenever a node is to be selected, if it has two predecessor nodes a and b giving the same weight, we 
compute, through the predecessors, the inverse paths from a and from b back to the first common node 
and, then, (i) we select the predecessor that gives the path with the minimum number of hops or (ii) if 
both paths have the same number of hops, we select the predecessor that gives the path containing the 
smallest index node. 

• Whenever there are two nodes c and d to be selected with the same weight, we compute, through the 
predecessors, the inverse paths from c and from d back to the first common node and, then, (i) we 
select the node that gives the path with the minimum number of hops or (ii) if both paths have the 
same number of hops, we select the node that gives the path containing the smallest index node. 

Now, any set of link weights has an associated network design solution that is computed in the following 
way: first, based on the proposed modified version of Dijktra’s algorithm, we route the commodities through 
the minimum weight paths; then, we calculate the number of transmission facilities to install at each link to 
provide the required demand. The cost of this network design solution is the sum of the costs of the 
transmission facilities required on each link. For the first phase network design heuristic algorithm, we 
propose a network design search based on a Greedy Randomized Adaptive Search Procedure (GRASP) with 
the following neighbor structure: given a network solution associated to a set A of link weights, the neighbor 
set is composed by the network solutions associated to all valid sets B where B is different from A on a single 
link weight and this difference is one of the values of the difference set X = {1,-1,2,-2,4,-4,8,-8,16,-16}. We 
name this neighbor structure as the exponential growing difference set since it considers difference values 
that grow exponentially with the base of 2. 

Note that X is composed by ten values, which means that the number of neighbors of a given network 
solution is equal to ten times the number of links. Note also that the small values of X might represent, in 
same cases at least, the same routing solution (there is no guarantee that the change of a link weight will 
change the minimum weight routing paths). The proposed difference set is a compromise between too many 
neighbors to compute and too many neighbors that represent the same network design solution. 

The proposed heuristic algorithm is based on GRASP where for each random generated solution we run a 
local search procedure. In the local search phase of the algorithm, we search for the best solution among all 
neighbors and we let the algorithm move to the best neighbor solution even if it has the same cost value as 
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the present one. Nevertheless, we only allow a small number of consecutive moves for neighbors with the 
same cost. The algorithm stops when it reaches a predefined computing time. Consider Wx as the maximum 
positive value that can be assigned to the link weights (the minimum value is one). Given a set of link 
weights A (Ae is the weight value assigned to link e ∈ E, where 1 ≤ Ae ≤ Wx), consider the function Cost(A) 
that computes the cost of the network design solution associated to it as described before. Consider also the 
parameter MaxTime, the algorithm total execution time, and MaxCount, the maximum number of 
consecutive moves allowed between neighbors with the same cost.  In the algorithm description: 

PresCost is the cost of the network design solution associated to the present set of link weights A; 
BestA is the set of link weights that gives the best network design solution; 
BestCost is the cost of the best network design solution; 
B is the set of link weights of a neighbor of A; 
BestB is the set of link weights of the best neighbor of A; 
BestNeigCost is the cost of the network design solution associated to the best neighbor of A. 

In this algorithm, the outer Repeat cycle controls the execution time. At the beginning of this cycle, the 
link weight set A is randomly generated. Our computational experience showed that (i) small values of link 
weights usually obtain good results and (ii) assigning the weight value of 1 to all links frequently results in 
good solutions after the local search phase. Based on this experience, we have chosen to assign all the links 
with the weight value of 1 in the first execution of this cycle and to assign random values between 1 and 4 in 
the subsequent executions of this cycle. In the inner Repeat cycle, (i) the algorithm first stores the current 
solution if it is the best found so far, (ii) then, it computes the best neighbor solution among all possible 
neighbors (in the For cycles) and, finally, (iii) it moves to the best neighbor if its cost is better than the 
present solution (setting the count variable to zero) or if its cost is equal to the present solution (incrementing 
the count variable). Note that when the best neighbor has a worst cost, the count variable is set to MaxCount. 
Therefore, the inner Repeat cycle stops when the count variable is equal to MaxCount, which happens either 
if the best neighbor solution is worst than the present one or if the maximum number of consecutive moves 
allowed between neighbors with the same cost is reached. Note that before the computation of all neighbors 
(in the For cycles), the algorithm sorts the links in random order. Note also that when the best neighbor has 
the same cost of the current solution, the algorithm moves for the last equal cost neighbor computed in the 
chosen order. When there are multiple equal cost neighbors, the random sort prevents the algorithm from 
moving between the same pair of neighbors. 

Recently, in [17], a Simulated Annealing algorithm was proposed for the variant of our network design 
problem that considers ECMP routing. In that work, the following neighbor structure was proposed: given a 

Algorithm OH1: 
BestCost ← +∞; 
Repeat: 
 { 
 Set A assigning weights for all links; 
 PresCost ← Cost(A); 
 count ← 0; 
 Repeat: 
  { 
  If (PresCost < BestCost) do: { BestA ← A; BestCost ← PresCost; } 
  BestNeigCost ← +∞; 
  Sort the links in random order; 
  For all links e ∈ E in the order sorted before do: 
   For all values x ∈ X do: 
    If (1 ≤ (Ae + x) ≤ Wx) do: 
     { 
     Set B equal to A and add x to the weight of link e in B; 
     If (Cost(B) ≤ BestNeigCost) do: {  BestB ← B; BestNeigCost ← Cost(B); } 
     } 
  If (BestNeigCost < PresCost) do: { A ← BestB; PresCost ← BestNeigCost; count ← 0; } 
  Else if (BestNeigCost = PresCost) do: { A ← BestB; count ← count + 1; } 
  Else do: count ← MaxCount; 
  } 
 Until (count = MaxCount) 
 }  
Until (MaxTime is reached) 
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network solution associated to a set A of link weights, the neighbor set is composed by the network solutions 
associated to all valid sets B where B is different from A on a single link weight and this difference is the 
minimum value that changes at least one minimum weight routing path. We name this neighbor structure as 
the minimum difference set. To understand how this minimum weight difference is computed, consider the 
following notation for a given traffic commodity k on graph G: 

wk  weight of the minimum weight path between the origin and destination of commodity k in graph G; 
wke  weight of the minimum weight path between the origin and destination of commodity k in graph G 

without link e; 
wkeo  weight of the minimum weight path between the origin of commodity k and closest node of link e; 
wked  weight of the min. weight path between the destination of commodity k and closest node of link e. 

For any link e, two minimum weight differences can be computed: xup is the minimum positive value that, 
added to the weight of link e, will remove this link from at least one minimum weight path and xdown is the 
minimum positive value that, subtracted to the weight of link e, will add this link to at least one minimum 
weight path. These values are computed as follows: 

xup ← +∞; xdown ← +∞; 
For all commodities k do: 
 If (link e is in the minimum weight path between origin and destination nodes of k) do: 
  x ← wke  – wk + 1; 
  If (x < xup) do:  xup ← x; 
 Else do: 
  x ← ( wkeo + wked + Ae ) – wke + 1; 
  If (x < xdown) do:  xdown ← x; 

In this procedure, when link e is in the minimum weight path of commodity k, the difference x is the 
minimum difference that we have to add to the current link weight in order to take this link out of the 
minimum weight path. When link e is not in the minimum weight path of commodity k, the difference x is 
the minimum difference that we have to subtract to the current link weight in order to put this link in the 
minimum weight path. The procedure computes the differences for all commodities and it saves on each 
iteration the overall minimum values of xup and xdown. 

When comparing this minimum difference set with the previously explained exponential growing 
difference set, this has the merit of avoiding the search in neighbors with the same routing solution. 
However, the minimum difference set has two drawbacks. The first drawback is that it is computationally 
heavy. The second drawback is that it is conservative in the search space: it does not allow too many routing 
changes between neighbors. In the original work [17], this procedure does not sum one unit in the calculation 
of difference x since in their case, the ECMP can accept multiple paths with the same cost. The authors apply 
the minimum difference set to a Simulated Annealing algorithm where, a single link is randomly selected on 
each iteration. Given a set of link weights A, consider the function UpperLimit(A,e) that computes the 
minimum weight (the value Ae + xup) higher than the one assigned to link e that changes at least one 
minimum weight path (when there is no such weight value, this function is equal to +∞). Similarly, consider 
the function LowerLimit(A,e) that computes the maximum weight (the value Ae – xdown) lower than the one 
assigned to link e that changes at least one minimum weight path (when there is no such weight value, this 
function is equal to –∞). Consider also the function random(a,b), with a < b, that computes a random value 
between a and b with an uniform distribution and the parameter β, a value between 0 and 1, which controls, 
on each iteration, the decay of the temperature parameter T.  

The heuristic algorithm proposed in [17] and adapted to our network design problem is named OSA 
(presented in next page). In order to compare the performance of both algorithms, we adopted the same 
stopping criteria of OH1 algorithm. The algorithm stops when it reaches a predefined computing time that is 
controlled by the Repeat cycle. Before this cycle, an initial set A of link weights is randomly generated; the 
cost of its associated network design solution is assigned to the initial temperature T and saved as the cost of 
the best solution found so far. In the original work [17], the authors propose that the initial link weights be 
set to 50. However, our computational experience shows that initial weights of 1 usually achieve better 
results. In the Repeat cycle, (i) the algorithm first selects randomly a link, (ii) then, it computes the neighbor 
(whenever both increasing and decreasing minimum differences are valid weight values, the algorithm 
chooses randomly one of them with the same probability), (iii) then, it moves to the neighbor if it has a lower 
cost (and saves it if it is the best network design solution found so far) or moves to it with a probability of 
e–Delta/T if it has an higher cost and (iv) finally, it updates the temperature value T. 



P48/6 

Algorithm OSA:  
Set A assigning weights for all links; 
PresCost ← Cost(A); 
T ← PresCost; 
BestA ← A; 
BestCost ← PresCost; 
Repeat: 
 { 
 Select randomly a link e ∈ E; 
 If ((UpperLimit(A,e) ≤ Wx) or (LowerLimit(A,e) ≥ 1)) do: 
  {  
  If ((UpperLimit(A,e) ≤ Wx) and (LowerLimit(A,e) ≥ 1)) do: 
   Assign randomly the value x either with UpperLimit(A,e) or with LowerLimit(A,e); 
  Else if (UpperLimit(A,e) ≤ Wx) do:  x ← UpperLimit(A,e); 
  Else do: x ← LowerLimit(A,e); 
  Set B equal to A and assign x to the weight of link e in B; 
  Delta ← Cost(B) – PresCost; 
  If (Delta < 0) do: 
   { 
   A ← B; 
   PresCost ← Cost(A); 
   If (PresCost < BestCost) do: {  BestA ← A; BestCost ← PresCost; }   
   } 
  Else if (Random(0,1) < e–Delta/T) do: {  A ← B; PresCost ← Cost(A); } 
  T ← β × T; 
  } 
 } 
Until (MaxTime is reached) 

Algorithm OH2: 
BestCost ← +∞; 
Repeat: 
 { 
 Set A assigning weights for all links; 
 PresCost ← Cost(A); 
 count ← 0; 
 Repeat: 
  { 
  If (PresCost < BestCost) do: { BestA ← A; BestCost ← PresCost; } 
  BestNeigCost ← +∞; 
  Sort the links in random order; 
  For all links e ∈ E in the order sorted before do: 
   { 
   x ← UpperLimit(A,e); 
   If (x ≤ Wx) do: 
    { 
    Set B equal to A and assign x to the weight of link e in B; 
    If (Cost(B) ≤ BestNeigCost) do: {  BestB ← B; BestNeigCost ← Cost(B); } 
    } 
   x ← LowerLimit(A,e); 
   If (x ≥ 1) do: 
    { 
    Set B equal to A and assign x to the weight of link e in B; 
    If (Cost(B) ≤ BestNeigCost) do: {  BestB ← B; BestNeigCost ← Cost(B); } 
    } 
   } 
  If (BestNeigCost < PresCost) do: { A ← BestB; PresCost ← BestNeigCost; count ← 0; } 
  Else if (BestNeigCost = PresCost) do: { A ← BestB; count ← count + 1; } 
  Else do: count ← MaxCount; 
  } 
 Until (count = MaxCount) 
 } 
Until (MaxTime is reached) 

As will be seen in the following section, the OH1 algorithm has better performance than the OSA 
algorithm. To better understand the merits of OH1 algorithm, we have also implemented a second version, 
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named OH2, of the proposed GRASP based algorithm replacing the exponential growing difference set by 
the minimum difference set neighbor structure. 

B. Second Phase Link Weight Assignment 

The solution given by the first phase algorithm defines not only the required transmission facilities to be 
setup on each link but also the single minimum weight paths that must be observed through an appropriate 
set of link weights. As explained before, although these single minimum weight paths were computed based 
on a set of link weights, this set is not an appropriate solution since in the general case it contains multiple 
minimum weight paths. To solve this problem, we rely on an ILP (Integer Linear Programming) model and 
solve it through branch-and bound. Note that, in the general case, the solution given by the network design 
algorithm might have less links and less nodes than the ones defined on the original graph. The original links 
that are not included in any minimum weight path do not exist in the network design solution. Moreover, any 
original node that has no outgoing link does not exist also in the network design solution. Consider the graph 
G = (N,E) where N is the set of network nodes that are in the first phase solution and set E is the set of links 
that also are in the first phase solution. Each link is designated by {i,j} ( i∈N, j∈N\{ i}) and is composed of 
arcs (i,j) and (j,i). Set A is the set of all arcs. To model the link weight assignment problem, we consider the 
binary parameters zij

q that when are one, indicate that arc (i,j) is in the minimum weight path from node i to 
node q on the first phase solution. We consider also the following variables: wmax is integer variable with the 
maximum weight value assigned to all arcs; wij is integer variable with the weight value to be assigned to arc 
(i,j) and πi

q is the integer variable with the weight of the minimum weight path from i to q. 
The link weight assignment problem aims to find a set of link weights minimizing the maximum weight 

value and is defined by the following ILP model: 

Minimize     maxw  
Subject to: 
 1≥−++ q

i
q
jij

q
ij wz ππ ,  UqAji ∈∀∈∀  ,),(  

 1/)( ≤−++ Mwz q
i

q
jij

q
ij ππ , UqAji ∈∀∈∀  ,),(  

 1,≥ijw     Eji ∈∀ },{  

 maxw≤ijw     Eji ∈∀ },{  

 ,jiij ww =     Eji ∈∀ },{  

maxw  , ijw  and q
iπ  non negative integers 

It is known [22] that in the general case solving this ILP model with branch-and-bound can be either 
computationally hard or unfeasible. A necessary but not sufficient condition to have a solution to this 
problem is that the routing paths should observe the destination based routing property: the superposition of 
all routing paths for the same destination node should form a directed tree towards that node. The first phase 
routing solution not only observes this property but also has the following additional property: there is a set 
of link weights where each routing path is one of the minimum routing paths defined by it. Although 
mathematical proof is required, our computational experience (next section) suggests that this additional 
property makes the solution of the link weight assignment problem always possible and easy to obtain. 

IV.  COMPUTATIONAL RESULTS AND CONCLUSIONS 
The computational tests were conducted on four randomly generated Euclidian networks: A30, B30, A50 

and B50 (Figure 1). Networks A30 and B30 have 30 nodes and 60 links, while A50 and B50 have 50 nodes 
and 100 links. Half of the nodes in all networks have been chosen to be edge LSRs (darker nodes on Figure 
1). In all cases, we have considered the design of the networks based on SDH STM-4 transmission facilities 
with 622 Mbps of capacity. Transmission facility costs were modeled as a sum of two components: a fixed 
switching cost and a per unit length transmission cost. In the computational tests, the cost of each 
transmission facility link {i,j} is given by c{ ij} = 100 + 5 × (length of link). Link lengths vary between 48 and 
299 in network A30, 44 and 393 in network B30, 41 and 217 in network A50 and 37 and 256 in network 
B50. 

Concerning the demand matrices, we have considered three different average demand values: (L)ow, 
(M)edium and (H)igh. For the networks with 30 nodes these values are: 75, 150 and 300 Mbps. For the 
networks with 50 nodes these values are: 50, 100 and 150 Mbps. This results in a total of 12 case studies. For 
all traffic matrices, the demands values were randomly generated for all pairs of edge LSR nodes with a 
uniform distribution between 20% and 180% of the average traffic demand. 
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The 12 case studies were solved by the three heuristic algorithms (OH1, OH2 and OSA) to determine a 
network design solution. For each obtained solution, the appropriate link weights were assigned by solving 
the ILP model with CPLEX. All computations were done on a 2GHz Pentium IV PC with 512MB RAM and 
the MS Windows operating system. For each algorithm, we set two different execution time values 
determined in the following way: we run OSA algorithm to determine how long it took to run around 5000 
iterations and around 10000 iterations. The first value is designated as the Short Time while the second value 
is designated as the Long Time. For the networks with 30 nodes, the Short Time value was 45 seconds and 
the Long Time value was 90 seconds. For the networks with 50 nodes, the Short Time value was 5 minutes 
and the Long Time value was 10 minutes. 

 
A30                                                                                        B30 

 
A50                                                                                        B50 

Figure 1: Case Studies network graphs 

Since the heuristic algorithms are stochastic processes, different runs give different solutions. Therefore, 
for each of the execution time values, we run each algorithm 10 times. In the OSA algorithm, we set the 
parameter β = 0.999 for the Short Time runs and β = 0.9995 for the Long Time runs. Note that the correct 
tuning of this parameter is of great importance in the efficiency of the algorithm and one of the 
disadvantages of OSA algorithm when compared with the proposed OH1 and OH2 algorithms. These values 
were chosen in such a way that the probability of moving to a worst neighbor in the last iterations is neither 
too high nor too low. In the OH1 and OH2 algorithms, we set the parameter MaxCount = 10 (other values 
around the one chosen do not change significantly the efficiency of these algorithms). Figure 2 shows the 
average, minimum and maximum costs obtained in the 10 runs with the three network design algorithms for 
the case studies A30 and A50 (the results of case studies B30 and B50 are similar and, due to space 
constraints, are not presented here). 

The obtained results show that the OH1 is always the best algorithm both in terms of average results and in 
terms of the best out of ten results. OH1 is on average 4% better than OSA, which is a significant 
improvement. Moreover, this gain is roughly the same for the Short Time runs and for the Long Time runs. 
The relative results of OH2 show that the merits of the proposed OH1 are in both the proposed heuristic 
strategy and in the proposed neighbor structure: 

• OH2 is better than OSA, which means that for the same neighbor structure, a search procedure based 
on computing all neighbors produces better results than a search procedure that computes only a 
random selected neighbor. 

• OH1 is better than OH2, which means that for the heuristic strategy, the neighbor structure based on 
the exponential growing difference set produces better results than the minimum difference set; this 
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result confirms the idea that although the minimum difference set avoids the search in neighbors with 
the same routing solution, the exponential growing difference set is more efficient in the computation 
of the neighbors and, since it allows the movement to neighbors with more routing differences, it can 
find better solutions. 

Concerning the second phase link assignment problem, all network design solutions were solved by the 
ILP model using branch-and-bound. The average computing time to solve the ILP model for the case studies 
with 30 nodes was 0.17 seconds, while the worst case was solved in 2.7 seconds and the second worst case 
was solved in 2.3 seconds. For the case studies with 50 nodes, the average computing time was 11 seconds, 
the worst case was solved in 13 minutes and the second worst case was solved in 2.2 minutes. Note that for 
each case study, we run ten times three algorithms for two execution time values which gives a total of 60 
network design solutions. Therefore, the ILP model was solved for 360 network design solutions of all case 
studies with 30 nodes and another 360 solutions of all case studies with 50 nodes. These computing times 
suggest that the minimum weight routing paths of the solutions found by the network design heuristic make 
the solution of the link weight assignment problem always possible and easy to obtain. 

 

 

Figure 2: Cost results obtained for Case Studies A30 and A50 

Finally, we have tried to find the optimal network design solution of case study A30L using the best 
performing ILP models proposed in [5]. This was done in order to motivate the need for the development of 
good heuristic algorithms addressing these problem sizes. We set the upper cutoff limit of branch-and-bound 
equal to the best cost found over all heuristic runs (in the A30L case study, the best network design solution 
was found with a cost of 43304). The Linear Relaxation value of this problem is 3,7676e+4. We used the 
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same PC platform used for the heuristics and, after 6 days of continuous run, the branch-and-bound 
procedure: (i) did not find any solution better or equal to 43304 and (ii) improved the initial lower bound 
value of 3,7676e+4 to a new lower bound value of 3,8342e+4, which is yet much lower than the best upper 
bound obtained by the heuristics. This illustrates that it remains very difficult to obtain optimality proved 
solutions for this type of problems addressing the instance sizes of the considered case studies. 
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