Heuristics for the MPLS Network Design with
Single Path Minimum Weight Routing

Carlos Lopes, Amaro de Sousa
Institute of Telecommunications, University of Aveiro
3810-193 Aveiro, Portugal
clopes@awv.it.ptasou@det.ua.pt

Abstract— MPLS provides the flexibility required for managing the way the traffic is routed
through the network. However, LSP configuring is a hardtask in a growing network, as more and
more routes need configuring and monitoring. A viable altrnative is to rely on a minimum weight
routing protocol to determine the paths used by the LSPsAn important requirement is that the
routing paths should be unique to avoid the additional maagement complexity required by Equal
Cost MultiPathing. Here, we address the dimensioning dfIPLS networks with single path minimum
weight routing. To solve large scale problem instances, weopose a methodology composed by two
phases: first, the network design solution is compute based on a Greedy Randomized Adaptive
Search Procedure (GRASP) with a neighbor structure igen by an exponential growing difference set
of values; then, the link weights are assigned solvingn appropriate ILP model. For the network
design phase, the proposed heuristic is compared withther heuristic strategies, namely, with another
neighbor structure previously proposed and with a Simwted Annealing strategy. The computational
results show a significantly better performance of the pyposed heuristic.
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l. INTRODUCTION

In the latest years, minimum weight routing technology hasegadl a lot of interest by network operators
mainly because of its ease of configuration and expaibgibiGP (Interior Gateway Protocol) routing
protocols such as OSPF (Open Shortest Path First) argl(I8térmediate System-Intermediate System) are
the most used protocols in the today’s IP networks. Tiwexecols establish minimum weight paths through
the network based on link weight assignment. The task of ewiffigand managing the way the traffic is
routed through the network is based on assigning appropridg@tsvéo the links. In the traditional IGP
routing, when multiple paths with the same weight aregnteshe traffic is equally split among these paths
(this is known as ECMP — Equal Cost MultiPathing).

MPLS (Multi-Protocol Label Switching) provides more flexityil than traditional IGP protocols by
allowing for Traffic Engineering. Many IP service providegsege that MPLS Traffic Engineering can have
beneficial impact on their networks [1-2]. A router that sump®PLS is known as a Label Switching
Router (LSR). MPLS organizes the network in MPLS domadihe forwarding of IP packets from ingress to
egress LSRs is done by means of routing paths, called Balitched Paths (LSPs). In the ingress LSR,
incoming IP packets are classified based on their destmatid required quality of service and, depending
on this classification, are forwarded through the apprtpiissP towards an egress LSR. In an MPLS
domain, the ingress/egress nodes are designated as Edge LSRs.

While providing a lot of flexibility, MPLS can lead to undtedle micromanagement and complexity due
to the large number of paths that grows ever larger \ithstze of the network. An alternative is to use
MPLS combined with an IGP routing protocol such as OSRE-S in order to combine MPLS'’s flexibility
with minimum weight routing’s simplicity (see referead@] and [4]). With this approach, the LSPs are
established based on minimum weight routing, thus freeing@pbeator of the task of configuring all the
paths in the network. An important requirement is that outing paths should be unique to avoid the
additional management complexity required by ECMP.

Il. RELATED WORK

In recent years, research has been focused on effiegght assignment methods for traffic engineering
purposes [3,4,6-16], i.e., a network configuration is considesitl given link capacities and the weight
assignment is exploited in order to optimize network pearémice. In [6] the authors address the problem of
optimal routing in shortest path networks to minimize dkerage packet delay. They also enumerate and
classify several types of routing problems used in netwakscombinations of single-path routing,
destination-based routing and shortest path routing. Refs¢#] and [7] address the OSPF network routing
task with the goal of minimizing the load on all links b&tnetwork considering that traffic flows can be
routed based on ECMP mechanism. In these papers, algobtts®ad on local search heuristics are proposed
for solving these problems. In [4] it is shown that OSPEting leads to only a small decrease in
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performance when compared to optimal routing. It is commaatige for some network operators to forgo
some performance in favor of a more easily configurabtbmanageable network.

In [8] and [9] genetic algorithms are used to solve OSP#wanks optimization problems. In [8] the
authors propose a genetic algorithm approach to solve theeprgimesented in [4]. In [9] the authors
describe a method for solving a survivable version of thiblpm by determining the arc weights and
multiplicities (number of links assigned to the arc) hetomplish the minimum total weighted multiplicity
(multiplicity multiplied by the arc length) needed tmute the required demand and handle any single arc or
router failure. In our previous work [5], we consider thath arc of the graph has a multiplicity of 1 and that
the capacities assigned to the arc can be treated mg@pacity, which is equal to the sum of these.

In [10], the authors prove the NP-Completeness of OSPF roopitignization tasks and discuss various
heuristic approaches to solve these problems: Weight Adjustidentistics, Simulated Annealing,
Lagrangean Relaxation, Simulated Allocation (see alsg Hr#] others. The authors formulate a two-phase
approach to tackle these problems. They define phasthé flew allocation task and phase Il as the weight
assignment task. In phase | they determine the single pathaflocation that optimizes a measure of the
network performance such as residual link capacity. Ingphakey determine a set of weights that provides
the desired flow routing if such weights exist.

In [14] a Tabu-Search heuristic is used to solve the O8®tihg problem with unique shortest paths to
determine link weights that provide the minimal utilizationtloé maximally used link. The authors also
divide the problem in two phases. In phase | they solve thgegblproblem without the integrality of the
weights and in phase |l they use a Tabu-Search heundfiiect integer weights that can provide the routing
configuration obtained in phase I.

The OSPF routing problem is solved in [15] with a bramotiHaound approach. This work considers
ECMP and introduces a constraint that limits the Ineinof outgoing links at a node to a maximum value,
which may be suitable to operational use. In [16] the auflraose a branch-and-cut approach to solve the
OSPF routing problem assuming also the ECMP rule.

Network design problems based on minimum weight routing pottoare also addressed in recent
literature ([17-21]). For a comprehensive reference on magektwork design problems, please see [19].
Reference [20] presents a Lagrangean Relaxation heuunstitimensioning OSPF networks with single
minimum weight paths. This heuristic aims to determine tdpology of the network, the hardware
components and the link weights that minimize the total abtlte network. In reference [21] the authors
present a MIP formulation of a survivable OSPF networigdgsroblem that includes link capacity and link
weight determination to minimize a function based on ¢o&t| capacity or capacity violation. To solve this
problem, a few improvement based heuristics are also prap&séal [20], traffic splitting is not considered.

In [17], the authors present a MIP formulation and two k&asi for solving the design of OPSF networks
with ECMP. This problem aims to determine simultaneoustylink capacity assignment, the link metric
assignment and the routing configuration.

Many of the strategies used to solve these problems aré dasetwo-phase approach. In the first phase a
routing configuration is determined (and the link capacityh@ncase of network design problems) and in the
second phase the goal is to find a set of link weightisddma provide the desired minimum weight paths.
Depending on the method used for determining the routing cortfigiirshis approach can sometimes lead
to the infeasibility of the second phase. In some instartbesrouting solution is not achievable via a
minimum weight routing configuration. Destination based ingutan often be accomplished by suitable
choice of link weights, but that may not always be the dase.a study on the necessary and sufficient
conditions to determine a minimum weight routing solution based destination based routing solution
please see [22]. Reference [23] provides a polynomial methatefermining routing instances that do not
have a compatible set of link weights. In [24] the authamédates two problems for finding link weights
that realize a prescribed set of routing paths as levehortest Path problems. The author shows how to
compute approximate solutions via linear programming and showsléterimining if a routing configura-
tion can be implemented with a link weight system isHNPel. However, the author also states that for real
world instances these problems are solved very effigianth standard integer linear programming solvers.

I. SOLVING TECHNIQUES
Consider a network modeled by an undirected g@ph (N,E) where node sdtl represents the set of
LSRs and link seE represents non ordered pairs of LSRs that can be conmgctedhsmission facilities. A
transmission facility is characterized by a given dostbe put in operation at each link and a given
bandwidth a that it provides on each arc of any link. The MPLS networkigte problem is the
determination of the number of transmission facilitexguired in every link that can accommodate all traffic
demands at the minimum cost. The traffic demands are ddfipe set of traffic flows that are routed
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according to a minimum weight routing protocol. The origin Hraldestination nodes belong to theldet
which is the set of Edge LSRs. Since the traffic routigupported by a single minimum weight routing
path, we define for each non-ordered pair of origin and @éktinnodes, q (pOU, qdU \{p}) a single
commodity with a demand value that is the sum of the ddmaf all the traffic flows between its end nodes.

The standard approach to implement heuristic algorithmhéodesign of networks with minimum weight
routing is to assign different sets of link weights d&ndgach set, to determine the minimum weight routing
paths and the required link capacities. This is strigigliard when ECMP is considered since any set of link
weights implicitly defines a network design solution. In the sipgith minimum weight routing case, this
approach is not straightforward because a general sktkofveights might contain multiple minimum
weight paths for at least some pairs of network nodes. derethere is no trivial way to determine a set of
weights whose minimum weight paths are unique for all pdireodes. Therefore, to obtain a valid heuristic
algorithm, we propose an approach with two phases: initbiephase, we determine a network design
solution through the generation of sets of link weightsgfarh set, we select only one minimum weight path
for each demand among the multiple ones that might be containtdrothe second phase, we determine a
suitable set of link weights defining the single minimum wegths determined in the previous solution. In
the following sub-sections, we will address separateath ehithese two phases.

A. First Phase Network Design

In the network design phase, for a given set of link wejghe minimum weight routing algorithm must
carefully select the routing paths. In the cases where thanore than one minimum weight path, the paths
selected by the minimum weight routing algorithm must havdal@wving properties: (i) if the minimum
weight path chosen from nodeto nodeq goes through intermediate nodethis path should be the
composed by the minimum weight path chosen from padenode plus the minimum weight path chosen
from nodei to nodeq; (ii) the minimum weight path chosen from ngaéo nodeq must cross the same
nodes in inverse order than the minimum weight path chosenrfooi®q to nodep. In order to obtain a
minimum weight routing algorithm with these properties, wappse a modification to the standard version
of Dijktra’s algorithm. At the beginning, all nodes are gssd an index, which is a positive integer value.
Taking the standard Dijktra’s algorithm for computing the mimin weight paths from a single origin to all
other nodes, the following additional operations are included:

* Whenever a node is to be selected, if it has two predecasdesa andb giving the same weight, we
compute, through the predecessors, the inverse paths faochfromb back to the first common node
and, then, (i) we select the predecessor that givesathenith the minimum number of hops or (ii) if
both paths have the same number of hops, we select thegssdethat gives the path containing the
smallest index node.

* Whenever there are two nodeandd to be selected with the same weight, we compute, thrthegh
predecessors, the inverse paths fioand fromd back to the first common node and, then, (i) we
select the node that gives the path with the minimum nuaibkops or (ii) if both paths have the
same number of hops, we select the node that gives theguditining the smallest index node.

Now, any set of link weights has an associated netwaiguaeolution that is computed in the following
way: first, based on the proposed modified version of Dijkatgsrithm, we route the commodities through
the minimum weight paths; then, we calculate the numbtmangmission facilities to install at each link to
provide the required demand. The cost of this network desidution is the sum of the costs of the
transmission facilities required on each link. For thist fphase network design heuristic algorithm, we
propose a network design search based on a Greedy Randdwiettle Search Procedure (GRASP) with
the following neighbor structure: given a network solution dased to a sef of link weights, the neighbor
set is composed by the network solutions associatdbvalid setsB whereB is different fromA on a single
link weight and this difference is one of the values of tfferdince seX = {1,-1,2,-2,4,-4,8,-8,16,-16}. We
name this neighbor structure as the exponential growing differset since it considers difference values
that grow exponentially with the base of 2.

Note thatX is composed by ten values, which means that the nuafbeighbors of a given network
solution is equal to ten times the number of links. Ndd¢® that the small values ¥f might represent, in
same cases at least, the same routing solution (there gsarantee that the change of a link weight will
change the minimum weight routing paths). The proposed differget is a compromise between too many
neighbors to compute and too many neighbors that represesarttgenetwork design solution.

The proposed heuristic algorithm is based on GRASP wheeabtr random generated solution we run a
local search procedure. In the local search phadeedlgorithm, we search for the best solution among all
neighbors and we let the algorithm move to the best neighbhgiosokven if it has the same cost value as
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the present one. Nevertheless, we only allow a small nuaft@nsecutive moves for neighbors with the
same cost. The algorithm stops when it reaches a predefingoliting time. Considéix as the maximum
positive value that can be assigned to the link weights r{ilémum value is one). Given a set of link
weightsA (Ac is the weight value assigned to liakl E, where 1< Ac < WKX), consider the functio@ost(A)

that computes the cost of the network design solution assbtiaieas described before. Consider also the
parameter MaxTime, the algorithm total execution time, ardaxCount, the maximum number of
consecutive moves allowed between neighbors with the sameladke algorithm description:

PresCost is the cost of the network design solution associatetetpriesent set of link weights
BestA is the set of link weights that gives the best netwoskgtesolution;

BestCost is the cost of the best network design solution;

B is the set of link weights of a neighbor/f

BestB is the set of link weights of the best neighboApf

BestNeigCost is the cost of the network design solution associatduetbest neighbor @.

Algorithm OH1.:
BestCost — +o00;
Repeat:
{
Set A assigning weights for all links;
PresCost — Cost(A);
count — 0;

Repeat:

{
If (PresCost < BestCost) do: { BestA — A; BestCost — PresCost; }
BestNeigCost — +oo;
Sort the links in random order;
For all linkse O E in the order sorted before do:
For all valuesx [0 X do:
If (1< (Ae+ X) <WK) do:

Set B equal to A and add x to the weight of link e in B;
If (Cost(B) < BestNeigCost) do: { BestB — B; BetNeigCost — Cost(B); }

If (BestNeigCost < PresCost) do: { A — BestB; PresCost — BestNeigCost; count — 0;}
Elseif (BetNeigCost = PresCogt) do: { A — BestB; count — count + 1; }
Else do: count — MaxCount;

Until (count = MaxCount)

}
Until (MaxTime is reached)

In this algorithm, the outer Repeat cycle controls thewtien time. At the beginning of this cycle, the
link weight setA is randomly generated. Our computational experience showe()thatall values of link
weights usually obtain good results and (ii) assigning the weagjbe of 1 to all links frequently results in
good solutions after the local search phase. Based on thisesiqee we have chosen to assign all the links
with the weight value of 1 in the first execution of thisleyend to assign random values between 1 and 4 in
the subsequent executions of this cycle. In the inner Regel®, (i) the algorithm first stores the current
solution if it is the best found so far, (ii) then, d@nagputes the best neighbor solution among all possible
neighbors (in the For cycles) and, finally, (iii) it mevt the best neighbor if its cost is better than the
present solution (setting tlweunt variable to zero) or if its cost is equal to the presetution (incrementing
thecount variable). Note that when the best neighbor has a wasttbecount variable is set ttvlaxCount.
Therefore, the inner Repeat cycle stops whertahiat variable is equal tMaxCount, which happens either
if the best neighbor solution is worst than the present oifaloe maximum number of consecutive moves
allowed between neighbors with the same cost is reactmd.thbt before the computation of all neighbors
(in the For cycles), the algorithm sorts the links ind@m order. Note also that when the best neighbor has
the same cost of the current solution, the algorithm movethéolast equal cost neighbor computed in the
chosen order. When there are multiple equal cost neighthersamdom sort prevents the algorithm from
moving between the same pair of neighbors.

Recently, in [17], a Simulated Annealing algorithm was predder the variant of our network design
problem that considers ECMP routing. In that work, thefailhg neighbor structure was proposed: given a
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network solution associated to a Aeatf link weights, the neighbor set is composed by the né&taalutions
associated to all valid seBwhereB is different fromA on a single link weight and this difference is the
minimum value that changes at least one minimum weighingppath. We name this neighbor structure as
the minimum difference set. To understand how this minimusight difference is computed, consider the
following notation for a given traffic commodikyon graphG:

wi  weight of the minimum weight path between the origin destination of commoditk in graphG;

W Weight of the minimum weight path between the origin amstimkgion of commoditk in graphG
without link €

Wieo Weight of the minimum weight path between the originashmodityk and closest node of lireg

Wieas Weight of the min. weight path between the destinati@ommodityk and closest node of lir

For any linke, two minimum weight differences can be computgglis the minimum positive value that,
added to the weight of ling will remove this link from at least one minimum weighthpahdxgow, is the
minimum positive value that, subtracted to the weightnéf e, will add this link to at least one minimum
weight path. These values are computed as follows:

Xup < 10 Xdown <« +09;
For all commodities k do:
If (link eisin the minimumweight path between origin and destination nodes of k) do:
X« We —Wk + 1;
If (X <xyp) dO: Xup « X;
Else do:
X « (Wkeo + Wked + Ae ) —Whe + 1;
If (X < Xdown) dO: Xdown « X;

In this procedure, when lin& is in the minimum weight path of commodity the differencex is the
minimum difference that we have to add to the current liekgkt in order to take this link out of the
minimum weight path. When link is not in the minimum weight path of commodkythe difference is
the minimum difference that we have to subtract to theenttink weight in order to put this link in the
minimum weight path. The procedure computes the differenceallfcommodities and it saves on each
iteration the overall minimum values xf, andXgown.

When comparing this minimum difference set with the preWowxplained exponential growing
difference set, this has the merit of avoiding the seamncheighbors with the same routing solution.
However, the minimum difference set has two drawbacks.fifstedrawback is that it is computationally
heavy. The second drawback is that it is conservatitfeeisearch space: it does not allow too many routing
changes between neighbors. In the original work [17],pfisedure does not sum one unit in the calculation
of differencex since in their case, the ECMP can accept multiplespatth the same cost. The authors apply
the minimum difference set to a Simulated Annealing algariivhere, a single link is randomly selected on
each iteration. Given a set of link weighs consider the functiotJpperLimit(A,e) that computes the
minimum weight (the valué\. + X,,) higher than the one assigned to liekhat changes at least one
minimum weight path (when there is no such weight valuefhistion is equal to ). Similarly, consider
the functionLowerLimit(A,e) that computes the maximum weight (the vafue- xsun) lower than the one
assigned to linle that changes at least one minimum weight path (when ther@ such weight value, this
function is equal toee). Consider also the functiomndom(a,b), with a < b, that computes a random value
betweerma andb with an uniform distribution and the paramefer value between 0 and 1, which controls,
on each iteration, the decay of the temperature paraimneter

The heuristic algorithm proposed in [17] and adapted to owvanletdesign problem is named OSA
(presented in next page). In order to compare the perfoamafinboth algorithms, we adopted the same
stopping criteria of OH1 algorithm. The algorithm stops wiheeaches a predefined computing time that is
controlled by the Repeat cycle. Before this cycle,rdtial setA of link weights is randomly generated; the
cost of its associated network design solution is assigmtk initial temperatur€ and saved as the cost of
the best solution found so far. In the original work [1tFig authors propose that the initial link weights be
set to 50. However, our computational experience shows thatl imidights of 1 usually achieve better
results. In the Repeat cycle, (i) the algorithm firséasts randomly a link, (ii) then, it computes the neighbor
(whenever both increasing and decreasing minimum differemes/alid weight values, the algorithm
chooses randomly one of them with the same probability)tH@i), it moves to the neighbor if it has a lower
cost (and saves it if it is the best network design swiuibund so far) or moves to it with a probability of

T if it has an higher cost and (iv) finally, it updatke temperature valie
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Algorithm OSA:
Set A assigning weights for all links;
PresCost — Cost(A);
T — PresCost;
BestA — A
BestCost — PresCost;

Repeat:

{
Select randomly alink e J E;
If (UpperLimit(A,e) < WK) or (LowerLimit(A,e) = 1)) do:

If (UpperLimit(A,e) < WX) and (LowerLimit(A,e) = 1)) do:
Assign randomly the value x either with UpperLimit(A,€) or with LowerLimit(A,e);
Elseif (UpperLimit(A,e) < Wx) do: x — UpperLimit(Ae);
Else do: x — LowerLimit(Ae);
Set B equal to A and assign x to the weight of link e in B;
Delta — Cost(B) — PresCost;
If (Delta < 0) do:

A « B;

PresCost — Cost(A);

If (PresCost < BestCodt) do: { BestA — A; BestCost — PresCost; }
}

Elseif (Random(0,1) < € °*®T) do: { A — B; PresCost — Cost(A); }
T BxT,

}

Until (MaxTime is reached)
Algorithm OH2:
Repeat:
{
Set A assigning weights for all links;

PresCost — Cost(A);
count — O;

Repeat:

{

If (PresCost < BestCost) do: { BestA — A; BestCost — PresCost; }
BestNeigCost — +oo;

Sort the links in random order;

For all linkse O E in the order sorted before do:

{
X « UpperLimit(A,e);
If (x < WK) do:

{
Set B equal to A and assign x to the weight of link e in B;
If (Cost(B) < BestNeigCost) do: { BestB — B; BestNeigCost — Cost(B); }

X « LowerLimit(A,e);
If (x=1)do:

Set B equal to A and assign x to the weight of link ein B;
If (Cost(B) < BestNeigCost) do: { BestB — B; BestNeigCost — Cost(B); }

}
If (BestNeigCost < PresCost) do: { A — BestB; PresCost — BestNeigCost; count — 0; }
Elseif (BetNeigCost = PresCogt) do: { A — BestB; count — count + 1; }
Else do: count — MaxCount;

Until (count = MaxCount)

Until (MaxTime is reached)

As will be seen in the following section, the OH1 aldorit has better performance than the OSA
algorithm. To better understand the merits of OH1 algorithexhawe also implemented a second version,
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named OH2, of the proposed GRASP based algorithm repl&teingxponential growing difference set by
the minimum difference set neighbor structure.

B. Second Phase Link Weight Assignment

The solution given by the first phase algorithm defines not thdyrequired transmission facilities to be
setup on each link but also the single minimum weight pathgarthst be observed through an appropriate
set of link weights. As explained before, although theseeimiiimum weight paths were computed based
on a set of link weights, this set is not an appropsatetion since in the general case it contains multiple
minimum weight paths. To solve this problem, we rely otLé(Integer Linear Programming) model and
solve it through branch-and bound. Note that, in the genasa, the solution given by the network design
algorithm might have less links and less nodes than the onredief the original graph. The original links
that are not included in any minimum weight path do not @xigte network design solution. Moreover, any
original node that has no outgoing link does not exist aldoeimétwork design solution. Consider the graph
G = (N,E) whereN is the set of network nodes that are in the first phals¢éien and seE is the set of links
that also are in the first phase solution. Each link sgihated by ij} (iON, jONYi}) and is composed of
arcs {,j) and {,i). Set A is the set of all arcs. To model the link wemggignment problem, we consider the
binary parameterg that when are one, indicate that drp (s in the minimum weight path from nodéo
nodeq on the first phase solution. We consider also the followim@bkes:wna is integer variable with the
maximum weight value assigned to all anegis integer variable with the weight value to be assigoedc
(i,j) and 7 is the integer variable with the weight of the minimumghiepath fromi tog.

The link weight assignment problem aims to find a setnéf Weights minimizing the maximum weight
value and is defined by the following ILP model:

Minimize w

max

Subject to:
Z+w + - 21, 0, j) OA OgqOU
20+ (w, + 71 - )M <1, 0G, j) OA Oq0OU
w, 21, i, j} OE
W S W {i, }OE
W =W, i, jyOE
W, » W; @ndzz' non negative integers

It is known [22] that in the general case solving this ILBdat with branch-and-bound can be either
computationally hard or unfeasible. A necessary but notcsrifi condition to have a solution to this
problem is that the routing paths should observe the déstinzdsed routing property: the superposition of
all routing paths for the same destination node should $odmected tree towards that node. The first phase
routing solution not only observes this property but also tegallowing additional property: there is a set
of link weights where each routing path is one of the mininmmauting paths defined by it. Although
mathematical proof is required, our computational experiénegt section) suggests that this additional
property makes the solution of the link weight assignment probleays possible and easy to obtain.

V. COMPUTATIONAL RESULTS ANDCONCLUSIONS

The computational tests were conducted on four randomly afedeEuclidian networks: A30, B30, A50
and B50 (Figure 1). Networks A30 and B30 have 30 nodes and 60 linits,A80 and B50 have 50 nodes
and 100 links. Half of the nodes in all networks have been chodenddge LSRs (darker nodes on Figure
1). In all cases, we have considered the design of the hetlWwased on SDH STM-4 transmission facilities
with 622 Mbps of capacity. Transmission facility costs waagleled as a sum of two components: a fixed
switching cost and a per unit length transmission costthén computational tests, the cost of each
transmission facility link {,j} is given byc;; = 100 + 5x (length of link). Link lengths vary between 48 and
299 in network A30, 44 and 393 in network B30, 41 and 217 in networkaAB037 and 256 in network
B50.

Concerning the demand matrices, we have considered threeediffaverage demand values: (L)ow,
(M)edium and (H)igh. For the networks with 30 nodes theseegahre: 75, 150 and 300 Mbps. For the
networks with 50 nodes these values are: 50, 100 and 150 Mbpsedilits in a total of 12 case studies. For
all traffic matrices, the demands values were randomhergeed for all pairs of edge LSR nodes with a
uniform distribution between 20% and 180% of the average tiddficand.
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The 12 case studies were solved by the three heuristidgthiger(OH1, OH2 and OSA) to determine a
network design solution. For each obtained solution, the appi®irnk weights were assigned by solving
the ILP model with CPLEX. All computations were done on a 2Getztiem IV PC with 512MB RAM and
the MS Windows operating system. For each algorithm, wetvee different execution time values
determined in the following way: we run OSA algorithm to datee how long it took to run around 5000
iterations and around 10000 iterations. The first value ignke®d as the Short Time while the second value
is designated as the Long Time. For the networks with 30 ntfde§hort Time value was 45 seconds and
the Long Time value was 90 seconds. For the networks witto86s, the Short Time value was 5 minutes
and the Long Time value was 10 minutes.

Figure 1: Case Studies network graphs

Since the heuristic algorithms are stochastic proced#&yent runs give different solutions. Therefore,
for each of the execution time values, we run each ithigorlO times. In the OSA algorithm, we set the
parameter3 = 0.999 for the Short Time runs affd= 0.9995 for the Long Time runs. Note that the correct
tuning of this parameter is of great importance in thécieffcy of the algorithm and one of the
disadvantages of OSA algorithm when compared with the prdpgosd and OH2 algorithms. These values
were chosen in such a way that the probability of movingworat neighbor in the last iterations is neither
too high nor too low. In the OH1 and OH2 algorithms, we sep#tameteMaxCount = 10 (other values
around the one chosen do not change significantly the efficiehnihese algorithms). Figure 2 shows the
average, minimum and maximum costs obtained in the 10 rdinghei three network design algorithms for
the case studies A30 and A50 (the results of case stu@i@saBd B50 are similar and, due to space
constraints, are not presented here).

The obtained results show that the OHL1 is always the lgestthm both in terms of average results and in
terms of the best out of ten results. OH1 is on aver&@ebdtter than OSA, which is a significant
improvement. Moreover, this gain is roughly the same folSthart Time runs and for the Long Time runs.
The relative results of OH2 show that the merits of the megpddH1 are in both the proposed heuristic
strategy and in the proposed neighbor structure:

* OH2 is better than OSA, which means that for the saemghbor structure, a search procedure based
on computing all neighbors produces better results than ahspewcedure that computes only a
random selected neighbor.

e OHL1 is better than OH2, which means that for the heusstiategy, the neighbor structure based on
the exponential growing difference set produces better rakaltsthe minimum difference set; this
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result confirms the idea that although the minimum diffeeeset avoids the search in neighbors with
the same routing solution, the exponential growing differencis seore efficient in the computation
of the neighbors and, since it allows the movement to neighbthranore routing differences, it can
find better solutions.

Concerning the second phase link assignment problem, all thetl@sign solutions were solved by the
ILP model using branch-and-bound. The average computing timeviothel ILP model for the case studies
with 30 nodes was 0.17 seconds, while the worst case was sol2etlsSeconds and the second worst case
was solved in 2.3 seconds. For the case studies with 50, nbdes/erage computing time was 11 seconds,
the worst case was solved in 13 minutes and the secondaasestvas solved in 2.2 minutes. Note that for
each case study, we run ten times three algorithmsvimiexecution time values which gives a total of 60
network design solutions. Therefore, the ILP model was ddime360 network design solutions of all case
studies with 30 nodes and another 360 solutions of all case stuthiesOnnodes. These computing times
suggest that the minimum weight routing paths of the solufmnsd by the network design heuristic make

the solution of the link weight assignment problem always possifiieeasy to obtain.
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Figure 2: Cost results obtained for Case Studies A30 and A50

Finally, we have tried to find the optimal network desgpiution of case study A30L using the best
performing ILP models proposed in [5]. This was done in amlenotivate the need for the development of
good heuristic algorithms addressing these problem sizes. tteagper cutoff limit of branch-and-bound
egual to the best cost found over all heuristic runs (iA8GL case study, the best network design solution
was found with a cost of 43304). The Linear Relaxation vafudhis problem is 3,7676e+4. We used the
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same PC platform used for the heuristics and, after & daycontinuous run, the branch-and-bound
procedure: (i) did not find any solution better or equal to 43&ad (ii) improved the initial lower bound
value of 3,7676e+4 to a new lower bound value of 3,8342e+4, whieh imuch lower than the best upper
bound obtained by the heuristics. This illustrates thegntains very difficult to obtain optimality proved
solutions for this type of problems addressing the instaizes of the considered case studies.
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